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Recent research has revealed that complex networks with a smaller average distance and more
homogeneous degree distribution are more synchronizable. We find, however, that synchronization in
complex, clustered networks tends to obey a different set of rules. In particular, the synchronizability of
such a network is determined by the interplay between intercluster and intracluster links. The network is
most synchronizable when the numbers of the two types of links are approximately equal. In the presence
of a mismatch, increasing the number of intracluster links, while making the network distance smaller, can
counterintuitively suppress or even destroy the synchronization. We provide theory and numerical

evidence to establish this phenomenon.
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There has been a growing interest in the synchroniz-
ability of complex networks [1-3]. Earlier works [1] sug-
gest that small-world [4] and scale-free [5] networks are
generally more synchronizable than regular networks.
While heterogeneous degree distributions can inhibit syn-
chronization [2], adding suitable weights to the network
elements can enhance their chances to synchronize with
each other [3]. In general, given a complex network with a
fixed number of nodes, its synchronizability can be im-
proved by increasing the number of links. This is intuitive
as a denser linkage makes the network more tightly
coupled or “smaller,” thereby facilitating synchronization.

In this Letter, we present a counterintuitive finding about
the synchronizability of clustered networks. A clustered
network consists of a number of groups, where nodes
within each group are densely connected, but the linkage
among the groups is sparse [6]. These networks have
recently been discovered in important areas of biological
physics [7,8]. A complex clustered network is typically
small world so that its average distance is small. Moreover,
its degree distribution can be made quite homogeneous.
The surprising phenomenon is that more edges (links),
which make the network smaller, do not necessarily lead
to stronger synchronizability. There can be situations
where more edges can even suppress synchronization if
placed improperly. In particular, we find that the synchro-
nizability of a clustered network is determined by the
interplay between the interconnections (links among clus-
ters) and intraconnections (links within clusters) of the
network. Strong synchronizability requires that the num-
bers of the interlinks and intralinks be approximately
matched. In this case, increasing the number of links can
indeed enhance the synchronizability. However, if the
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matching is deteriorated, synchronization can be severely
suppressed or even totally destroyed.

Our finding can have potential impacts on real network
dynamics. In particular, there is mounting evidence that
several types of biological networks possess a clustered
structure, such as the metabolic networks [7] and the pro-
tein interaction graphs [8]. In biology, synchronization is
fundamental, on which many biological functions rely. Our
result implies that, in order to achieve robust synchroniza-
tion for a clustered biological network, the characteristics
of the links are more important than the number of links.
Simply counting the number of links may not be enough to
determine its synchronizability. Instead, links should be
distinguished and classified to predict synchronization-
based functions of the network. Clustered structure has
also been identified in technological networks such as
electronic circuit and computer networks [9]. Suppose a
large-scale, parallel computational task is to be accom-
plished by a computer network, for which synchronous
timing is of paramount importance. Our result can provide
clues as to how to design the network to achieve the best
possible synchronization and consequently optimal com-
putational efficiency.

Our approach is to introduce nonlinear dynamics on
each node in the network and then perform stability and
eigenvalue analyses [10,11]. The theoretical derivation
yields the stability regions for synchronization in the
two-dimensional parameter space defined by the numbers
of the two types of links. The analytic predictions are
verified by numerical simulations.

We consider a random clustered network model: N
nodes are classified into M groups, where each group has
n = N/M nodes. In a group, a pair of nodes is connected
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with probability p,, and nodes belonging to different
groups are connected with probability p;. For a clustered
network, the number of interconnections is typically far
less than the number of intraconnections. As a result, the
parameter region of small p; values is more relevant. To be
concrete, we first study the following general class of
coupled-map networks: x!, , | =f(x},) — &} ;G H[f(x},)],
where x,,.; = f(x,,) is a d-dimensional map, ¢ is a global
coupling parameter, G is the Laplacian matrix, and H is a
coupling function. For convenience we choose G;; =
—A;;/k; for j # i and G;; = 1, where k; is the degree of
node i and A;; is an element of the adjacent matrix A of the
network. Since the rows of the coupling matrix G have zero
sum, the system permits an exact synchronized solution:
x), =x2 =...=xN=s,, wheres,,;; = f(s,,). To gain
insight, we set f(x) to be the logistic map f(x) = 1 — ax?
(0 <a =2) and choose H(x) = x. If the system is syn-
chronizable, starting from a random initial condition, it
will approach the synchronization state. In the simulation,
synchronization is defined as {|x; — {x;)|y < 10710, where
() denotes the average over the network. The average time
T required for the system to become synchronized can be
used to characterize the ability of the system to synchro-
nize. If the system is unsynchronizable, 7 is infinite.
Figure 1 shows the behavior of T in the two-dimensional
parameter space (p;, p,) for networks with 2 clusters (a)
and 10 clusters (b). This gives the synchronizable region
(gray regions in Fig. 1) in the parameter space that the
system is able to synchronize within a certain time, and the
unsynchronizable region (white regions in Fig. 1). The
shape of the figure depends on the coupling strength &
and on the contour lines of A, and Ay (see Fig. 2). For
2-cluster networks, if € = 1, the shape appears to be
symmetric, while if € <1, the boundary is asymmetric.
Figure 1(a) demonstrates that for a given p; (e.g., 0.2), as
p, is increased from 0.2, synchronization time 7 is also
increased. At a certain point (about 0.75 in this case), the
system becomes unsynchronizable. That is, too many intra-
links tend to destroy the global synchronization [12].

For the coupled-map network, the variational equations
are

ox! ., =Df(s,,) 8xi, — sZGijDH[f(sm)] -Df(s,,) " 8x%,
J

ey

where 6x’ = x! —s, and Df and DH are the Jacobian
matrices of the corresponding vector functions.
Diagonalizing the Laplacian matrix G yields a set of
eigenvalues {A; i = 1, -, N}, which are real and non-
negative [11]. Thus we can sort the eigenvalues as 0 =
A = A, = ... = Ay and denote the corresponding nor-
malized eigenvectors by ej, e,, ..., ey. The smaller the
ratio Ay/A,, the stronger the synchronizability of the net-
work [1-3]. The transform 8y = O~! - x, where O is a
matrix whose columns are the set of eigenvectors, leads to
the block-diagonally decoupled form of Eq. (1),
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FIG. 1 (color online). Contour plot of the synchronization time
T (on a logarithmic scale log;,T) in (p;, p,) space for coupled
logistic-map network with (a) N =100, M =2, and
(b) N =500, M = 10. € = 1, a = 1.9. The line segments defin-
ing the boundaries between the synchronizable and unsynchro-
nizable regions are determined by theory. Each data point is the
result of averaging over 100 network realizations.

8yl = {I — eA,DH[f(s,,)]} - Df(s,,) - 8y},. The sys-
tem is stable if for any i, 2 =i = N, the following
holds:  1im,, e, (1/m) In(|8yi,|/18yil) = lim,,_(1/m) X
In[ 172, (18y'4,1/18y;1) < 0. For a linear coupling function
H, DH is a constant matrix. If the system is one dimen-
sional, DH is simply a constant, say, y. We obtain In|1 —
eyl + lim,,_o(1/m) ln]‘[;”;o1 |f(s;)] <0, where the
second term is the Lyapunov exponent u of a single
map. We have |e#(1 — eA;y)| <1 for i =2,...,N. For
the coupled logistic-map network, we have [11] y = 1 and
le#(1 —eA)| <1,i =2,...,N. Because of the ordering
of the eigenvalues, this condition becomes A, > (1 —
e #)/e and Ay < (1 + e #)/e. The boundaries of the
synchronization regions in the parameter space can be
determined by setting A, = (1 — e #)/e and Ay = (1 +
e *)/e. In our simulations, we have used a = 1.9 (u =
0.55). Thus we have A, = 0.4 and Ay = 1.6 for ¢ = 1, the
contour lines of which are shown in Fig. 1. There is a good
agreement between the theory and numerics. If the cou-
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FIG. 2 (color online). Contour plot of Ay (a), (c) and A, (b),
(d) in the (p,, p,) plane, for N = 100 and M = 2 (a), (b) and
N = 500 and M = 10 (c), (d).

pling function H is nonlinear, DH[f(s,,)] will depend on
the value of f(s,,) and it is difficult to obtain explicit
boundaries for A, and Ay.

To better understand the abnormal behavior of the de-
pendence of synchronizability on p,, we analyze the ei-
genvalues of the Laplacian matrix of a general clustered
network. Figure 2 shows the contour plots of the Ay and A,
in the parameter space, for 2 [2(a) and 2(b)] and 10 [2(c)
and 2(d)] clusters. There is an apparent similarity between
some of the contour lines and the stability boundaries in
Fig. 1. From Fig. 2 we can see that, for a given value of p;,
Ay decreases as p, increases, so it is easier to synchronize
the network. However, for large values of p,, A, decreases
as p, increases, thus synchronization becomes more diffi-
cult. We see that the behavior of A, accounts for the ab-
normal synchronizability behavior shown in Fig. 1. In the
following, we shall derive a theoretical formula to under-
stand the dependence of A, on p; and p, for small values of
p; (typical parameter regime of clustered networks).

For a clustered network, the components of the eigen-
vector e, have approximately the same value within
any cluster, while they can vary among clusters, as
demonstrated in Fig. 3. Thus, we can write e, =
[él’ El’ ctty, él’ Ez, ctty, 52, 53, sy, éM]T, where [*]T de-
notes the transpose, and for each I, 1 = I = M, there are
n &;’s in e,. By definition, G - ¢, = A,e, and e, - e, = 1,
we have A, = €] - G - e; = Y\, €3,G;jey;, where ey; is
the ith component of e,. Expanding the summation in j
yields /\2 = z{il eZi{Gilél + Gi2él + -0+ Ginél +
Ginr1é, + -+ + Giyéyt. If i and j belong to the same
cluster, G;; equals —1/k; with probability p; and 0 with
probability 1 — p,; while if i and j belong to different
clusters, G;; equals —1 /k; with probability p; and 0
with  probability 1 — p,. We thus have A, =
YL el N(pi/ki)e, — n(p,/k;) YL, €], where &, is the
component associated with the cluster that contains node i,

200 300 400 500
node i

FIG. 3. A typical profile of components of the eigenvector e,.
Parameters are N = 500, M = 5, p; = 0.01, and p;, = 0.8.

and the equality 1 — np,/k; = (N — n)p;/k; has been
used. For a randomly clustered network, the degree distri-
bution has a narrow peak centered at k = np, + (N —
n)p;, implying k; = k. This allows us to carry out the
summation over i. We obtain A, = N(3M., né?)p,/k —
(nSM &,)%p;/k. Since SN né? =3V e =1, and
nYM. &, =3V, ey, we have

Np, s ’pi
A = - )2 2
> np+ (N =n)p (Zl eZ') k @

As the normalized eigenvector e; associated with A,
describes the synchronized state, its components are iden-
tical: e, =[1/+/N, -+, 1/s/N]'. If G is symmetric, its
eigenvectors are orthogonal to each other: e; -e; = 9;;,
where §;; = 1fori = jand Oelse. Takingi = 1, j = 2 we
have S¥ ey = 0. If G is slightly asymmetric (as for a
weighted network), >V, e,; is nonzero but small, and the
second term in Eq. (2) can be neglected. These approx-
imations lead to

- Np,
npg + (N - ”)Pl

Ay (3
For p; < p,, the above equation agrees well with the
numerics. This provides an analytic explanation for the
observed abnormal behavior. Furthermore, the fact that A,
depends only on the ratio of p;/p, explains the straightline
patterns in Fig. 1 and in Fig. 2(b) and 2(d) for p; > p,.

The above analysis can be extended to more general
clustered networks, i.e., those with different cluster sizes or
heterogeneous degree distributions in each cluster, by re-
placing n with n;—the size of the Ith cluster—for each I,
and using the degree distribution P,(k) in the summation
over 1/k. In this case, p, and p; can be regarded as
effective parameters, and may vary for different clusters.
A formula similar to Eq. (3) can be obtained, because even
in such a case, the contribution of the second term in
Eq. (2) is small.

To assess the generality of the abnormal synchroni-
zation behavior, we have considered clustered net-
works of continuous-time oscillators, e.g., dx;/dt =

F(x;) — eZ?’:l G;H(x;), where x =[x,y z]", F(x) =
[—(y + 2), x+ 0.2y,0.2 + z(x — 9)]" (the Rossler oscilla-
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FIG. 4 (color online). Contour plot of synchronization proba-
bility of a clustered network of Rossler oscillators with N = 100
and M = 2. T, = 10* and € = 0.5. Each datum is the result of
averaging over 1000 network realizations. The boundary is
obtained by theoretical analysis.

tor), and H(x) =[x, 0,0]" is a linear coupling function,
and G is the Laplacian matrix describing the network
topology. The master stability function W(K) is negative
in the interval [K, K;], and the system is stable if K| <
€Ay = ... = €Ay <K, [10]. For the parameters given
above, K; = 0.2, K, = 4.62. Thus the stable condition
becomes A, > K, /€ and Ay < K,/ €. Figure 4 shows the
boundary from the above analysis with € = 0.5, and the
synchronization probability [the probability that {|x; —
(x)|) < 0.01 in a time interval of T, = 10*]. We see that
the matching condition of the number of inter- and intra-
links plays the same role in shaping the synchronizability
of the continuous-time network system.

In conclusion, we have uncovered a phenomenon in the
synchronization of complex clustered networks, namely,
the balance between the numbers of the intercluster and
intracluster links plays a key role in the global synchro-
nizability of the network [13]. The network has the stron-
gest synchronizability only when these numbers match.
Mismatch can weaken and even destroy the synchroniz-
ability. Clustered networks have been increasingly recog-
nized to be important for real network systems. Our work
may provide fresh insight into the functionings of such
networks.
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