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Noise Promotes Species Diversity in Nature
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Species diversity in nature is accomplished by coexistence. In a spatial environment, inferior but rapidly
moving species can coexist with superior but relatively stationary species. Recent work showed that
chaotic dynamics can provide the spatiotemporal variation in the fitness required for coexistence, via the
dynamical mechanism of synchronization and intermittency. Utilizing a realistic model that consists of
two interacting species in a two-patch environment, we discovered a stochastic-resonance phenomenon
where noise can significantly enhance the coexistence and thereby promote species diversity.
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The beneficial role of background noise in physical
systems [1] has been appreciated, particularly since the
discovery of stochastic resonance [2]. Indeed, a nonlinear
system in general cannot respond to a weak, subthreshold
signal, but the presence of background noise can enhance
the probability of threshold crossing, thereby increasing a
system’s response. Some proper measure of the response,
e.g., signal-to-noise ratio [1] or correlation, can reach a
maximum at an optimal noise level or in a range of noise
levels [3]. It is in this sense that noise can be regarded as
beneficial. Over the past two decades, stochastic resonance
has been identified in many natural and man-made systems
[1,4]. A related phenomenon is coherence resonance,
where noise can induce a dominantly periodic motion [5]
and enhance it. If a regular motion is desired, then noise
can again be beneficial.

In this Letter, we argue that the benefits of noise may go
far beyond the range of phenomena explored by traditional
stochastic or coherence resonance: noise can in fact pro-
mote species diversity in nature. As diversity is accom-
plished by coexistence of species, we will focus on how
noise affects species coexistence. To address this problem,
we shall be interested in how an inferior species may
coexist with a superior one in a patchy environment. In
order to survive in a closed environment where a superior
and competitive species is present, the inferior species
must move (or disperse) fast relative to the motion of the
superior species. Another necessary condition for coexis-
tence is spatiotemporal heterogeneity in the environment
because, in a homogeneous environment, the superior spe-
cies usually dominates [6]. It was shown by Holt and
McPeek [7] that temporal irregularity in the dispersing
dynamics alone can play the role of spatiotemporal het-
erogeneity and, in fact, chaotic dynamics is sufficient for
dispersal to be favored. They obtained this important result
by studying an ecologically realistic, two-species, and two-
patch model. More detailed examination of this model
revealed [8] an intermittent, temporally synchronous type
of dynamics. In particular, if one examines the total pop-
ulations in the two patches relative to their respective
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carrying capacities, one finds that the populations tend to
synchronize with each other in various time intervals, with
occasional, relatively fast phases of desynchronization. In
a synchronous state, dispersal is disfavored, while it is
favored during the desynchronization phases. Thus, the
more frequently desynchronization occurs, the more likely
and robust that the inferior species is able to survive and
coexist with the superior one. We will show that the
presence of noise can enhance the occurrence of the de-
synchronization events by reducing the average time be-
tween these events. As a result, the average relative
frequency of the dispersing species increases with noise.
A maximal degree of coexistence, as characterized by
equal frequencies of the two competing species, can be
realized by an optimal level of noise. This is a stochastic
resonance. The goal of this Letter is to establish and
quantify this phenomenon in relation to species
coexistence.

Some background of the coexistence problem in ecology
is as follows. Traditional approaches to species coexis-
tence tended to focus on niche partitioning that includes
differentiations in resource use and in response to predators
and parasites [9]. The importance of spatial heterogeneity
and dispersal in species coexistence was recognized [6].
In an environment consisting of local communities coupled
in space, dispersal can facilitate coexistence at the land-
scape scale because it introduces a trade-off between col-
onizing and competitions among species [10]. More
important is the temporal variation in the evolutionary
dynamics of the dispersal because, without such variations,
spatial heterogeneity alone does not appear to favor the
evolution [11,12]. It was discovered recently in theoretical
ecology through patchy-dynamical models that even with-
out spatial heterogeneity, insofar as the nonlinear popula-
tion dynamics is chaotic, the resulted spatiotemporal
variation in fitness may be appropriate for the evolution
of dispersal and, consequently, for coexistence to be fa-
vored [7,13,14]. These pioneering studies introduced a
new, nonlinear-dynamics-based approach to the problem
of coexistence.

© 2005 The American Physical Society



PRL 94, 038102 (2005)

PHYSICAL REVIEW LETTERS

week ending
28 JANUARY 2005

Taking this nonlinear-dynamical approach, we study a
representative class of population models in which clones
compete in patches and disperse among them. For simplic-
ity, we assume that within patches all clones are equivalent,
but their rates of movement among patches are generally
different. If the population dynamics generates temporally
varying states, two or more clones differing significantly in
dispersal rates can coexist permanently [7,13-15].
Because of the equivalence of clones in any patch, there
is no trade-off between colonizing and competitive abili-
ties, in contrast to the traditional approach [9]. A plausible
mechanism for coexistence, which was studied in detail
recently [8], is that the system can produce distinct dy-
namical behaviors and it can shift between these behaviors
in concordance with temporal variation in average disper-
sal rates. In particular, normalized patch populations tend
to synchronize with each other, which is interspersed by
rapid excursions from the synchronous state. Synchro-
nization occurs as a result of strong coupling among the
patch populations, which can be expected when the dis-
persal rates are high. This favors low dispersal, driving the
system towards lower dispersal rates, which in turn reduces
the amount of effective coupling among the dynamics of
different patches and triggers the occurrence of desynch-
ronization. During desynchronization, a selective advan-
tage of dispersal emerges. The intermittent alternations
between synchronization and desynchronization thus
makes possible the coexistence of the highly dispersing
species with the relatively stationary ones.

For concreteness, we consider a population model con-
sisting of two species and two patches: the Holt-McPeek
model [7]. Let N;;(7) be the population of clone i in patch j
at generation ¢. The realized fitness (the local population
growth rate) of clone i in patch j is given by W;;(¢) =
exp{r;[1 — N7;(1)/K;]}, where r;; is the intrinsic rate of
increase of clone i at low-population size in patch j,
Nrj(t) = Ny;(t) + Np;(1) is the total population in patch
J» and K; is its carrying capacity. Realistically, in the same
patch the intrinsic growth rates for different clones are
approximately the same [7]. We thus write rj; = ry; = r;
and W;; = W,(#). Dispersal is modeled by assuming that,
of the total population of clone i, a fraction e; migrates at
each generation from their natal patch. The key parameter
that distinguishes one clone from another is then e;, the
dispersal rate of clone i. There is a cost of dispersal, since
the migratory fraction of the population experiences a
mortality rate, which can be conveniently modeled by the
parameter (1 — m). To have a model feasible for compu-
tation and analysis, the following ecologically realistic
assumptions were also made [7]: (1) reproduction and
density dependence precede dispersal, (2) the census im-
mediately follows dispersal, (3) costs of dispersal for a
clone are experienced entirely by those individuals that
actually disperse, and (4) population densities are suffi-
ciently high so that they can be treated as continuous

variables. The resulted model can be written as a four-
dimensional, discrete-time, noninvertible map [7]: N;;(t +
1) = (1 = e)W [Ny (OIN;; (1) + me;W,[N,(1)]N5(¢) and
Nip(t + 1) = (1 = e))Wo[Np(0)INjp (1) + me;Wi[N,y(1)] X
N, (1), fori =1,2.

The effect of small, additive noise on a reduced, two-
dimensional Holt-McPeek model [8] has been considered
in [16]. The ecological meaning of additive noise is, how-
ever, not clear. Realistically, random fluctuations in the
environment would ultimately affect the resource required
for population dynamics. It is thus reasonable to assume
that the carrying capacities of the patches fluctuate ran-
domly about some nominal values: K;(1) = K; + €£(1),
where € is the noise amplitude and £;(r) (j = 1,2) are
independent random variables of zero mean and unit vari-
ance. The noise term thus enters the Holt-McPeek model in
a sophisticated way in the sense that it is neither additive
nor multiplicative but may be a complicated combination
of both.

Consider the situation where two species, one relatively
stationary and another fast-moving, compete for a common
resource. We can conveniently classify the fast-moving
species as inferior because it would in general be displaced
by the stationary species and becomes extinct if the popu-
lation dynamics exhibits a stable fixed point [7].
Computationally, the two species can be distinguished by
setting very different values for their dispersal rates, say
e; <K e so that clone 1 is the inferior species. For con-
creteness, we choose ¢; = 0.5 and e, = 0.01, and other
parameters to be K; = 100, K, =50, m =1, and r; =
ry = r, where r is a bifurcation parameter. If r is small (say
around the value of 1.0), the system’s asymptotic dynamics
is a stable fixed point, leading to the extinction of the
inferior clone [7]. For higher values of r (say about 3.0),
chaotic attractors are common. In this case, the high-
dispersal clone can persist and experience episodic in-
creases in population [7]. A convenient quantity to measure
the ability of the high-dispersal clone to coexist with the
stationary clone is the frequency: p;(z) =[N(¢) +
N (0)]/IN11(1) + Nip(2) + Noy (1) + Nyp(2)]. Figure 1(a)
shows, for » = 3.0 and in the absence of noise (¢ = 0), a
time trace of p,(t). The average value of p,(f) is about
0.34, indicating that under chaotic dynamics the inferior
species can coexist with the superior one, although the
frequency of the former is relatively smaller. The dynami-
cal origin of the episodic increases in Fig. 1(a) can be
understood by observing that, in the phase space, trajecto-
ries on the chaotic attractor tend to spend most time in the
vicinity of the line defined by Ny,/K; = Ny,/K,, with
occasional deviations away from it [8]. Dynamics on the
line can be regarded as a state of synchronization between
the populations in the two patches, normalized by their
respective carrying capacities. The quantity Q(r) =
N7 (t)/K; — N1»(t)/K, can thus be used to characterize
the degree of synchronization, as shown in Fig. 1(b) for
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FIG. 1. For r = 3.0, (a) time evolution of the frequency p,(z)
of the inferior species in the absence of noise (e = 0), and
(b) on-off intermittency in Q(7). (c), (d) p;(r) and Q(r), respec-
tively, for € = 4.0.

€ = 0. We see that Q(¢) exhibits an on-off intermittent
behavior. Under noise, we expect more desynchronous
bursts to occur. Since the existence of the high-dispersal
clone is favored by such desynchronzation events between
the populations in the two patches, heuristically we expect
noise to enhance the survivability of this inferior clone and
hence to promote species coexistence. Figure 1(c) shows,
for € = 4.0, the time evolution of p;(z), where we see that
its average value is now increased to about 0.52, indicating
that at this noise level (which corresponds to random
fluctuations of magnitude of a few percent of the carrying
capacities), the inferior and superior species appear almost
equally often during the time evolution. The more frequent
occurrence of the desynchronzation bursts in Q(¢) is shown
in Fig. 1(d).

To demonstrate a more dramatic case of the positive role
of noise in promoting coexistence, we set r = 2.6 for
which p,(¢) asymptotically approaches zero (i.e., the infe-
rior species becomes extinct) in the absence of noise, as
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FIG. 2 (color online). For r = 2.6, (a) for € = 0 the frequency
of the inferior species p,(¢) asymptotically approaches zero, and
(b) restoration of the population by noise for € = 4.0. In both
cases, an initial transient of 1000 iterations is disregarded.

shown in Fig. 2(a). However, the presence of noise can help
restore and sustain the population, as shown in Fig. 2(b),
where € = 4.0. We see that, on average, the inferior spe-
cies appears almost frequently as the superior species.
Examination of the synchronization dynamics indicates
that, when noise is present, frequent and irregular desynch-
ronization bursts dominate the evolution of Q(¢), similar to
Fig. 1(d).

The intermittent dynamics can be conveniently charac-
terized by the distribution of the time interval 7 during
which the patchy populations are temporally synchronized.
The distribution can be numerically obtained by setting an
arbitrary (small) threshold Qy, and constructing histograms
of the time intervals during which Q(¢) < Qy,. Figure 3(a)
shows, for » = 3.0, on a semilogarithmic scale, histograms
of 7 for four values of the noise amplitude. For relatively
small noise (say € = 1.0), the distribution exhibits an
apparent exponential tail in the large 7 range. For larger
noise, the distributions are dominantly exponential. For a
given noise amplitude, an average synchronization time {7)
can thus be meaningfully defined. Figure 3(b) shows (7)
versus € on a logarithmic scale. We observe that for small
noise, (7) remains approximately constant and starts to
decrease algebraically as € is increased:

fore < e,
fore > €,

(D

constant,
@~{

where a > 0 and €, = 1.0.
The observation that the average synchronization time
starts to decrease with € for € > €., where €, corresponds
to the magnitude of random fluctuations of about 1% of the
carrying capacities, has a significant consequence. As the
desynchronization bursts become more often, the fast-
dispersing species experiences more frequent episodic in-
creases, resulting in an increase in its population. Indeed,
we find that the average frequency p,(e) =
limy_(1/T) Y, pi(¢) starts to increase for e > e,
while it remains approximately constant for e <e,.

2 4 0 1 2
log1 o€
FIG. 3 (color online). For r = 3.0, (a) distributions P(7) for

four noise levels and (b) average synchronization time {7) vs the
noise amplitude e.
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FIG. 4 (color online). For the Holt-McPeek model for r = 3.0,
stochastic resonance in coexistence as characterized by R (e),
the degree of coexistence as a function of noise amplitude.

Suppose, in the absence of noise, the population of the
dispersing species falls below that of the relatively sta-
tionary species, i.e., p;(0) < p,(0). As € is increased
through €., p,(€) increases, but this means a simultaneous
reduction in the average frequency of the stationary species
[pi(e) + p,(e) = 1]. That is, coexistence is enhanced by
noise. We can imagine that, for a higher level of noise, an
equilibrium point may be reached where the average fre-
quencies of the two species become equal, signifying an
optimal state of coexistence. As the noise level is increased
further, p,(€) exceeds p,(€) so that the trend is reversed:
coexistence tends to be weakened for very large noise. All
these point to a phenomenon similar to stochastic reso-
nance [1-4]: coexistence can be optimized by noise. To
enable a quantitative characterization, we introduce the
following quantity R, to measure the degree of coexis-
tence: Rc(€) = Puin(€)/ Pmax(€), Where prin (Pmax) is the
smaller (larger) of p; and p,. There can be no coexistence
if R- = 0, but a maximally possible degree of coexistence
occurs if R- = 1. Figure 4 shows, for the Holt-McPeek
model for » = 3.0, such a stochastic resonance. We see that
there indeed exists an optimal noise level for which the
degree of coexistence becomes maximal in the sense that
both species appear equally frequently in the course of
dynamical evolution.

Theoretically, the scaling law (1), which is key to the
observed stochastically resonant behavior in coexistence,
can be derived based on a canonical model for on-off
intermittency, under both symmetry breaking and noise.
In fact, a simplified version of the Holt-McPeek model,
which is a two-dimensional noninvertible map and ame-
nable to analysis to some extent, can be obtained [8]. This
map can be written in a form that models a typical on-off
intermittent dynamical system with symmetry breaking
[17]. Under noise, the system can be analyzed by using
the Fokker-Planck (FP) equation [18]. A unique feature
that is not present in previous analyses is the choice of
proper boundary conditions when solving the FP equation.
In particular, the noise amplitude or a symmetry-breaking

parameter determines the location of a reflecting barrier in
the domain where the FP approximation holds. The com-
mon feature between noise and asymmetry is that they both
can induce desynchronization bursts. If the effect of noise
is shadowed by that of asymmetry, the reflecting boundary
condition is determined by the degree of asymmetry, oth-
erwise it is determined by the noise amplitude. Analysis of
the first-passage time leads to the scaling law (1), from
which the stochastic-resonance behavior in Fig. 4 can be
understood.

In summary, our computations and analysis suggest that
noise can be beneficial for the coexistence of species with
distinct compatibilities in a spatiotemporal, patchy envi-
ronment. At a quantitative level, we discovered a
stochastic-resonance phenomenon displaying the power
of random noise to optimize coexistence. The conclusion
that noise can promote and significantly enhance coexis-
tence could be insightful for answering the fundamental
questions concerning species diversity in nature through
the nonlinear-dynamical-system approach.
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