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Inducing Chaos by Resonant Perturbations: Theory and Experiment
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We propose a scheme to induce chaos in nonlinear oscillators that either are by themselves incapable of
exhibiting chaos or are far away from parameter regions of chaotic behaviors. Our idea is to make use of
small, judiciously chosen perturbations in the form of weak periodic signals with time-varying frequency
and phase, and to drive the system into a hierarchy of nonlinear resonant states and eventually into chaos.
We demonstrate this method by using numerical examples and a laboratory experiment with a Duffing
type of electronic circuit driven by a phase-locked loop. The phase-locked loop can track the instanta-
neous frequency and phase of the Duffing circuit and deliver resonant perturbations to generate robust

chaos.
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It has been recognized that chaotic dynamics can be
beneficial in natural systems and in practical applications
as well. For instance, there are biological situations where
inducing and maintaining chaotic motion are desirable [1],
and previous works demonstrated that these can be
achieved by applying small perturbations to an available
parameter or dynamical variable of the system [1-3].
There are also practical applications where it is desirable
to induce chaos in nonlinear oscillators operating in a
stable regime, which could be far away from any transient
chaotic behavior. For instance, if the goal is to disable a
hostile device whose operation relies on stable dynamics of
some embedded nonlinear oscillators (e.g., electronic cir-
cuits), inducing chaos in them can potentially ‘“‘confuse”
the device so that it will fail in its intended mission. For
simple nonlinear oscillators such as the Duffing system,
resonant perturbations can be used to drive the system in
and out of chaotic motion [4,5], provided that the system
equations are known so that the external excitation can be
designed accordingly.

To our knowledge, in all existing works on inducing or
maintaining chaos, either the system is in a transiently
chaotic regime with some externally accessible parameter
or state variable or the system equations are available [1—
5]. For instance, in the experimental work on chaos main-
tenance by In ef al. [3], it is required that the system exhibit
intermittency between chaotic and periodic phases, i.e.,
that there be transient chaos, and that an accessible system
parameter or variable be available. In another general
theoretical work on chaos maintenance using weak har-
monic perturbations [5], both system equations and tran-
sient chaos are required. Our interest is in situations where
the system can be far away from any chaos, transient or
permanent, the system equations are not known, and no
parameter or variable of the system can be accessed for
direct adjustment. Under the circumstance, a viable ap-
proach to disturb the system is to apply external excita-
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tions. In this Letter we present a general approach for
inducing chaos by using small, resonant perturbations,
and demonstrate its feasibility numerically and experimen-
tally. In particular, we apply judiciously chosen perturba-
tions to drive the oscillator into higher and higher resonant
states. The perturbations can be a sinusoidal signal with
time-varying frequency and phase, and how they vary is
determined by a real-time measured signal emitted from
the oscillator. Our goal is to control the perturbing field so
as to maximize its effect on the system, thereby driving the
system as far away from its equilibrium as possible, even-
tually generating chaotic dynamics. For experimental im-
plementation, we use the principle of phase-locked loop
(PLL), which is capable of continuously tracking the in-
stantaneous frequency and phase of a target circuit and
delivering proper resonant perturbations. We use an ex-
perimental Duffing circuit, which feeds a signal to a PLL,
and demonstrate that an excitation of amplitude from the
PLL of about 10% of the maximum circuit voltage oscil-
lation can induce robust chaotic motion in the circuit.
(Here “robust” means that when a system parameter is
changed, such as the driving frequency, there are no peri-
odic windows [6] amid the induced chaotic attractors.)

To gain insight, we imagine a simple, linear Hamiltonian
system: the harmonic oscillator. Without any external per-
turbation, the system exhibits simple stable motion; it
fundamentally prohibits any chaotic motion. Thus, show-
ing that chaos can be induced in such a system by small
resonant perturbations demonstrates the power of our
method. The dynamics of the unperturbed Hamiltonian
system is described by d’x/dt* = —dV(x)/dx, where
V(x) is a potential function. In general, V(x) can be any
differentiable function. We assume, however, that V has a
minimum and a maximum. Although our method works for
any potential satisfying these constraints, we focus on the
pendulum potential given by V(x) = — cos(x). The max-
ima at x = = define hyperbolic orbits at energy E = 1.
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The hyperbolic orbits separate regions of confined and
unconfined motion. Widespread chaos arises in the vicinity
of the hyperbolic orbits due to homoclinic or heteroclinic
intersections caused by arbitrarily small perturbations [7].
The oscillating frequency of the unperturbed system is a
function of the energy: w = w(E), where w is defined
within the region of the confined motion (— 1 = E = 1).
The frequency at the minimum is w(—1) =1, and it
decreases toward O as E approaches 1, because it takes
an infinite amount of time for a trajectory to go from one
hyperbolic orbit to another. We stress that this last feature
is not particular of the pendulum potential, but it is true of
all hyperbolic orbits: they have an infinitely long period.
As the energy for hyperbolic orbit is approached, the
period diverges, and the frequency goes to zero. This is
important for our method.

Consider now that the system is set up with an initial
energy Ey < 1. In the absence of perturbations, it will keep
oscillating with this constant energy. Our goal is to apply a
small perturbation so that the energy is increased toward
E ax, Where the homoclinic orbits lie, around which there
is sustained chaos. The key observation is that the system’s
natural frequency changes with the energy. We must there-
fore change the frequency of the perturbation so that it
always matches the natural frequency, thus ensuring that
the resonant condition is satisfied at all times. The fre-
quency of the external excitation thus changes with time,
and we write v(z). The form of () cannot be written down
explicitly, because it is adjusted in response to the time
variation of the natural frequency of the system. The
equation of motion of the perturbed system is d’x/dt* =
—dV(x)/dx + Fsin[v()t + ¢(1)], where ¢(7) is a time-
dependent phase. Although for the particular case of the
pendulum potential, the frequency as a function of the
energy is a known analytical function (expressed in terms
of the elliptical functions), we want to keep our method as
general as possible, and so we assume such a dependency is
not known. In fact, we do not assume any knowledge of the
potential, other than the fact that it has a minimum (with a
region of confined, oscillating motion) and a hyperbolic
orbit. In other words, we require only that the underlying
system be oscillatory. Therefore a feasible way to deter-
mine the natural frequency of the system at a given time is
through the observed dynamics, for instance, through the
observation of the dynamical variable x(f). We cannot
measure the period directly from the dynamics, since the
forcing term makes the motion aperiodic. However, since
the perturbation is small (¥ < 1), at any given time the
motion is almost periodic, meaning that the energy changes
only very slowly with time. Typically, the system oscillates
many times with only a small change in E and, hence, the
resonant frequency changes very little as well. Using this
fact, we define v for a given time ¢ as the average over the
past An oscillations, where An is small enough so that the
energy does not change appreciably in the corresponding
time interval. In this way » is defined purely in terms of the
observed quantities of the system, and knowledge of the

potential and/or the equations of motion are not assumed.
The only requirement is that the average oscillating fre-
quency of the system as a function of time be measured. In
principle, the forcing term involves a time delay because
the forcing is equivalent to a memory term. In our simula-
tions, we consider only one oscillation in the past. The
results we present are independent of An, to within the
constraint mentioned.

Since we want the energy to increase in time so that the
system approaches the hyperbolic orbit, we have to adjust
the phase ¢ so that the forcing term is always in phase with
the system’s oscillation. We do so by making adjustments
in discrete times: every time x crosses 0 in the positive
direction, we change ¢(r) so that the forcing term is in
phase with x(z). For a real circuit, this could be achieved
continuously by a phase-locking scheme. Imposing this
phase-adjusting mechanism, we ensure that energy is al-
ways transferred from the perturbing force to the system,
and not the other way around. (Otherwise, the phase would
drift in time, and the energy would not increase monotoni-
cally in time as we wish, but would instead oscillate more
or less randomly.)

We now consider dissipative systems. For a given en-
ergy, call the average energy input rate due to the forcing
K;, and the energy output rate due to dissipation k. Then,
Koy Usually increases the farther the system is from the
equilibrium point, which could be a stable fixed point or a
stable cycle. The total energy of the system will stop
increasing when k,, equals «;,. There are two possible
scenarios: (1) If this happens for an energy above the
energy of the hyperbolic orbit E .., we will be able to
achieve the goal of exciting the system to near E,,, and
therefore inducing chaos. (2) If, however, «,, becomes
equal to k;, for an energy E less than E,,,, the system will
saturate at that energy, and we will not be able to push it to
the neighborhood of the hyperbolic orbit. We can expect
that, for a fixed forcing amplitude, as the dissipation in-
creases from 0, a transition from case (1) to case (2) will
occur. Thus, for a given amount of dissipation, the pertur-
bation strength needs to be larger than a minimum value to
ensure that the system can be driven to chaos. Another
feature in dissipative systems is that, when chaos is in-
duced, in order to maintain it, the frequency of the external
excitation may need to be adjusted continuously to keep
the energy of the system at about E,,,. The reason is that,
when the system is driven to chaos, external energy is still
needed to be delivered to the system to keep it in the
chaotic state due to the dissipation.

We have tested our method using the following periodi-
cally forced Duffing’s oscillator (in a dimensionless form):

d*x dx

- _ 3 — ;
o +a o + x° = Asin(vt + ¢)), (1)

where a = 0.05, A = 1, v = 4500, and ¢; = 0. For this
parameter setting the system exhibits a period-1 attractor,
and, hence, it can be regarded as being far from chaos. To
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induce chaos, we apply resonant perturbation of the form
Fsin[v,(0)t + ¢,(r)] to the right-hand side of Eq. (1),
where v,(¢) and ¢,(¢) are estimated from the measured
time series x(¢), as we have described. Figure 1(a) shows
the evolution of the relative frequency »,(¢)/v, as chaos is
being generated, together with a few representative phase-
space plots of the attractor at different stages. We see that
the frequency of the required resonant perturbation is
decreased and remains approximately at a constant when
chaos is induced, as predicted by our theory. Because of
dissipation, the final frequency is finite. Figure 1(b) shows
the evolution of the energy of the system: E(f) = (x)?/2 +
x%/2 — x*/4, relative to its maximum value E,,,, = 0.37.
The initial energy assumes a negative value, but it becomes
approximately constant with small fluctuations after chaos
sets in. Again, due to dissipation, the average final energy
cannot reach its maximum possible value.
Experimentally, a convenient device that is capable of
tracking both the frequency and the phase of a nonlinear
oscillator is PLL [8,9]. To demonstrate the feasibility of
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n

FIG. 1. For the periodically forced Duffing oscillator described
by Eq. (1) that exhibits a period-1 attractor, (a) change in the
frequency in the external resonant perturbation and three repre-
sentative attractors [in the (x, dx/dt) plane] during the induction
of chaos. (b) Evolution of the energy of the oscillator. Here time
n denotes the number of cycles of the periodic forcing.

our method, we have constructed a prototype system con-
sisting of a Duffing type of circuit as the target oscillator to
be driven into chaos and a PLL circuit that delivers reso-
nant perturbation. An implementation of the Duffing cir-
cuit was proposed by Silva and Young [10], which is
capable of chaos-based information processing in fre-
quency up to 150 MHz. Our circuit is a low-frequency
version of their circuit and is built using a quad-opera-
tional-amplifier TLO84 chip and IN4004 diodes, as shown
in Fig. 2. The circuit is powered by a voltage source of
+9 V. The outputs are the voltage across the resistor R7
and that from the operational amplifier U2. The signals are
digitally recorded using a digitizer (National Instrument)
and analyzed using a LabView Virtual Instrument. In order
to obtain the phase-space plot of the outputs for visual-
ization, a differential amplifier was added to generate a
voltage proportional to the potential across R7. The output
signal from Y is fed into a standard PLL circuit (LM565
integrated circuit), which tracks the frequency and phase of
the output signal and provides resonant driving to the
Duffing circuit through point X in Fig. 2.

The Duffing circuit is driven by a square-wave signal of
amplitude 2 V and frequency 4 kHz to X1 in Fig. 2. To
emphasize the point that the chaotic attractor can be in-
duced by our method when the system is far away from
chaos, we show in Fig. 3 an experimentally obtained
bifurcation diagram, where the parameter value indicated
by the vertical arrow is used for the experimental test. At
this setting, the circuit exhibits a stable periodic attractor,
as shown in Fig. 4(a), phase-space plot from two outputs of
the circuit. The largest Lyapunov exponent is estimated to
be A; = 0 using a standard time series method [11]. There
is apparently no transient chaos associated with the period-
1 attractor. When the PLL delivers a resonant perturbation
to the circuit, it goes into chaos, as desired. Figure 4(b)
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FIG. 2. Young-Silva circuit implementation of the Duffing
oscillator. A differential amplifier (US) was added to generate
a single output proportional to the voltage across (R7) in order to
visualize the phase plot of the voltage at Y1 versus that at Y2 on
an oscilloscope.
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FIG. 3. Experimental bifurcation diagram for the Duffing cir-
cuit. The vertical arrow indicates the initial period-1 state of the
system that is to be brought into chaos using a resonant pertur-
bation.

shows the phase-space plot of the Duffing circuit under
resonant driving of the amplitude of 0.75 V from the PLL.
The attractor is apparently chaotic. A histogram of the
largest Lyapunov exponent estimated from the time series
is shown in Fig. 4(c), the center of whichis A; = 0.01 > 0,
indicating that the attractor is indeed chaotic. To show the
effectiveness of the resonant driving in inducing chaos, we
replace the resonant driving by a noisy signal of larger
amplitude (6 V) through a series resistor of 1 k() to point
X. The resulting phase-space plot is shown in Fig. 4(d),
which is only a smeared version of the periodic attractor in
Fig. 4(a). The largest Lyapunov exponent is estimated to be
/\1 = (.

In summary, we have demonstrated that a regular system
far away from any complicated motion, can be driven to
chaos through external, time-dependent, small resonant
perturbations. We conceive the following situation of ap-
plication: a signal is measured from the system that is to be
driven to chaos and the instantaneous frequency and phase
of the system are estimated using the signal, based on
which continuous-time resonant perturbations are deliv-
ered to the system. As the frequency and phase of the
system are changing, those of the perturbations are
changed accordingly to maintain the resonant condition.
As a result of the continuous resonant excitations, the
system can be driven to and maintained in a chaotic state.
The system can be, for example, an electronic circuit, and
the external perturbations are from a microwave source
whose frequency and phase can be continuously adjusted.
We expect our method be useful for a variety of applica-
tions where chaos is desired.

We thank Dr. M. Harrison from AFRL for his insight and
for suggesting the problem of inducing chaos and A. Young
and C. P. Silva for generously providing us with the design
of the Duffing circuit. This work was supported by AFOSR
under Grant No. F49620-03-1-0290.
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FIG. 4. (a) Phase-space plot of a periodic attractor from the

Duffing circuit, (b) induced chaotic attractor under resonant
driving, (c) histogram of the largest Lyapunov exponent from
the induced chaotic attractor, and (d) attractor due to noisy
driving, which is nonchaotic. The units of Y; and Y, in (a),

(b), and (d) are in volts.
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