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Whether strange nonchaotic attractors (SNAs) can occur typically in dynamical systems other than
quasiperiodically driven systems has long been an open question. Here we show, based on a physical
analysis and numerical evidence, that robust SNAs can be induced by small noise in autonomous
discrete-time maps and in periodically driven continuous-time systems. These attractors, which are
relevant to physical and biological applications, can thus be expected to occur more commonly in

dynamical systems than previously thought.
DOI: 10.1103/PhysRevLett.92.074102

The subject of strange nonchaotic attractors (SNAs) has
attracted continuous interest in the nonlinear and statis-
tical physics community [1-13]. Here ‘““strange” refers to
the nontrivial, complicated geometry of the attractor, and
“nonchaotic’ indicates that the maximum Lyapunov ex-
ponent of the attractor is nonpositive and there is thus no
sensitive dependence on initial conditions. In principle,
strange nonchaotic attractors occur in all dissipative dy-
namical systems that exhibit the period-doubling route to
chaos, where the attractors formed at the accumulation
points of period-doubling cascades are fractal sets with
zero Lyapunov exponent. Such attractors are, however, not
physically observable because the set of parameter values
for them to arise has Lebesgue measure zero in the
parameter space. Situations where SNAs can arise typi-
cally were described by Grebogi et al. [1], who discovered
that quasiperiodically driven dynamical systems admit
SNAs in parameter regions of positive Lebesgue measure.
Since then, there have been many studies on SNAs in
quasiperiodic systems [2—-7,9-13], including the experi-
mental observations of these attractors [8]. Of particu-
lar physical interest is the study that SNAs can occur
in quantum systems with a quasiperiodic potential [2].
SNAs are also relevant to biological situations [4].
Mathematical issues concerning SNAs have begun to be
addressed recently [12,13]. In this regard, it is useful
to note that SNAs in quasiperiodic systems can be typi-
cal (in the sense of positive Lebesgue measure), but they
can be either robust or nonrobust, depending on whether
they persist under small perturbations or not, respec-
tively. A robust SNA is typical but not vice versa. For
instance, SNAs arising in quasiperiodic quantum sys-
tems are typical but not robust because they occur on a
positive Lebesgue measure Cantor set in the parameter
space [2,3]. Robust SNAs appear, however, to be quite
common [5-11].

So far, robust SNAs have been identified and studied
exclusively in quasiperiodically driven dynamical sys-
tems. Since many physical, biological, and engineering
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systems do not fall in this category, it is natural to ask
whether SNAs can arise in situations where the under-
lying system is autonomous or periodically driven.
Identification of possible SNAs there would be of great
interest because such dynamical systems are extremely
common in many applications. There has been some
(unsuccessful) attempt in this regard [14], which makes
the problem even more intriguing and appealing.

In this Letter, we report robust SNAs in both autono-
mous and periodically driven dynamical systems. Our
interest is in discrete-time, autonomous maps such as
the logistic map, and continuous-time, periodically
driven systems such as the kicked Duffing’s oscillator.
These systems are representative and well studied in non-
linear dynamics. The key feature that leads to our success
in uncovering SNAs in these systems is that we consider
small noise. The situation we study is therefore highly
physically relevant, as small noise is inevitable in experi-
mental or realistic applications. In particular, we consider
maps and periodically driven systems in periodic win-
dows and show that, for any such window, under noise
robust SNAs must necessarily arise in a finite range of the
noise amplitude. The notion that periodic windows occur
commonly in nonlinear systems is well accepted. Our
results thus indicate that SNAs can be expected to be
observable and robust in very general settings in non-
linear dynamical systems that are not quasiperiodically
driven. To be more specific, let p be a bifurcation parame-
ter varying, which leads to the occurrences of various
periodic windows, and let D be the noise amplitude. We
are able to argue, based on a physical analysis, that there
exist open sets of finite areas in the two-dimensional
parameter space (p, D) for which the asymptotic attractor
is strange but nonchaotic. Extensive numerical evidence
will be provided to support our analysis.

We consider general discrete-time maps X,4; =
f(x,, p) and periodically driven systems described by
differential equations of the following form: dx/dt =
f(x,7 p) and dz/dt = @, where x € RN and p is the
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bifurcation parameter. For the continuous-time system, z
is a time variable and the velocity field f depends peri-
odically on z. We choose p such that the system is in a
periodic window of period m and the asymptotic attractor
of the system is a periodic attractor of period 2¥m, where
k=20,1,.... Let p,, be the parameter value for the be-
ginning of the window, which is triggered by a saddle-
node bifurcation that creates a period-m stable orbit, and
let p,,. be the parameter value for the end of the period-
doubling cascade of the original stable period-m orbit. We
focus on the parameter interval p,, < p < p,,. in which
the attractor is periodic. Note that the intervals {Ap,, =
| P« — Pm| > 0}, are open and dense on the parameter
axis [15]. In such a setting, for maps the maximum
Lyapunov exponent is negative, except for a set of pa-
rameter values of Lebesgue measure zero where the
period-doubling bifurcations occur. For periodically
driven systems, there is a null Lyapunov exponent gen-
erated by dz/dt = w, but in a periodic window the maxi-
mum nontrivial exponent is negative. Now consider
additive, bounded noise of amplitude D (for simplicity).
Our goal is to show that for p,, < p < p,.«, there exists a
range of the noise amplitude AD,, > 0 for which the
asymptotic attractor [16] is nonchaotic but strange, and
robust with respect to small perturbations.

In a periodic window, a periodic attractor and a non-
attracting chaotic invariant set (chaotic saddle) coexist.
Trajectory from a random initial condition typically
moves toward the chaotic saddle along its stable mani-
fold, stays near the saddle for a finite time, and leaves the
saddle along its unstable manifold before finally ap-
proaching the periodic attractor. There is thus transient
chaos for p,, < p < p,... In the absence of noise, the
asymptotic attractor is periodic, despite transient chaos.
If noise is not strong enough to kick a trajectory on the
attractor to a nearby region where the stable manifold of
the chaotic saddle lies, the final attractor is still approxi-
mately periodic with a negative maximum Lyapunov
exponent. Only when the noise amplitude D exceeds a
critical value D,, is the probability finite for a trajectory
on the original periodic attractor to be perturbed to the
vicinity of the stable manifold of the chaotic saddle and
move toward the chaotic saddle. Because the saddle is
nonattracting, the trajectory can spend only a finite
amount of time near it before approaching the original
periodic attractor again, and so on. For D = D,,, a tra-
jectory switches intermittently between the original peri-
odic attractor and the chaotic saddle. There is then a
sudden change in the structure of the asymptotic attractor
at D,,: for D = D,, the attractor contains both a periodic
and a chaotic component, in contrast to the perturbed
periodic attractor for D < D,,,.

For discrete maps, the maximum Lyapunov exponent of
the periodic attractor is AY < 0. As a trajectory begins to
visit the chaotic saddle for D = D,,, the maximum ex-
ponent A; of the new attractor starts to increase from A.
It has been shown recently [17] that the increase in A,
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obeys the following universal algebraic scaling law: A; —
AP ~(D — D,,)%, where the scaling exponent & > 0 de-
pends on the phase-space dimension of the system and the
dynamical invariants of the chaotic saddle such as its
average lifetime and the Lyapunov spectrum [17]. We
see that A; can remain negative for a range of the noise
amplitude above D,,: D,, < D < D,,,, where D,,, is the
noise amplitude for which A; = 0. We thus have AD,, =
D.,, — D,, ~ I)\’fll/‘* > 0. In this noise range, the attrac-
tor of the system may be geometrically complicated but
its maximum Lyapunov exponent remains negative. The
same consideration [18] applies to periodically driven
systems for which a null Lyapunov exponent always ex-
ists but the maximum nontrivial Lyapunov exponent of
the periodic attractor remains negative for D < D,,.
Thus, for D, <D <D,,,, the asymptotic attractor of
the system can have a strange geometry because it con-
tains a chaotic component (the original chaotic saddle in
the periodic window), yet the maximum Lyapunov ex-
ponent is nonpositive.

We now argue that the attractors created for D,, < D <
D, possess the fundamental properties of SNAs. We first
consider the finite-time behavior of the maximum
Lyapunov exponent. It is known [7,9-11] that an SNA,
while having a nonpositive maximum Lyapunov expo-
nent, possesses regions in the phase space in which in-
finitesimal vectors in fact grow in length. That is, in any
finite-time interval, there is a finite probability that the
maximum exponent is temporally positive. The asymp-
totic exponent can be regarded as the weighted sum of the
temporally positive exponent when the trajectory visits
the expanding regions and the temporally negative expo-
nent when the trajectory is in regions in which vectors
contract [9-11]. The asymptotic exponent becomes nega-
tive when the negative component weighs over the posi-
tive one [19]. Here the existence of the two sets with
distinct behaviors for the evolution of infinitesimal vec-
tors is apparent: for D > D,, a trajectory visits both the
original periodic attractor for which tangent vectors con-
tract and the chaotic saddle for which the vectors expand.
The maximum Lyapunov exponent can then be written as

AL = fp(D)AY + fg(D)A], (N

where A7 > 0 is the maximum Lyapunov exponent of the
chaotic saddle, fp(D) and fg(D) are the frequencies of
visit to the original periodic attractor and the saddle,
respectively. For D,, < D < D,,,, the first term weighs
over the second term in Eq. (1), giving rise to a possible
SNA. For D > D.,,,, the second term begins to dominate,
leading to a chaotic attractor. It is useful to note that, since
both the periodic attractor and the chaotic saddle are
dynamically invariant in the noiseless situation, the ex-
ponents AL and A are well defined with respect to their
respective invariant measures [20] and, hence, we expect
relation (1) to be meaningful, at least for D = D,, (after
the transition to a possible SNA).
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Another key characteristic of an SNA lies in its Fourier
spectrum. It is well established that an SNA necessarily
possesses a singular-continuous spectrum that contains
both discrete and continuous components [6]. For the
attractors for D,, < D < D, their spectra naturally con-
tain these distinct components for an apparent reason:
such an attractor consists of a periodic component for
which the spectrum is discrete and a chaotic component
for which the spectrum is broadband. Thus, we expect the
attractors for D,, < D < D,,, to have singular-continuous
Fourier spectra.

Our analysis thus establishes that, in the parameter
plane (p, D), there are open areas of the various sizes
(Ap,,, AD,,), where m denotes the period of every pos-
sible periodic window, in which the attractors are SNAs.
These are induced by noise, and they are typical in the
parameter space. In addition, since the nonpositivity of
the Lyapunov exponent for D, <D <D,, and the
strangeness of the noise-induced attractors, as character-
ized by fluctuations of the finite-time Lyapunov exponent
into the positive side and the singular-continuous spec-
trum, are statistical properties of the attractors under
random perturbations, they are robust. The noise-induced
SNAs are thus physically observable.

We now provide numerical support. Our first example is
the logistic map x,.; = rx,(1 — x,), perhaps the best
studied autonomous, discrete-time chaotic system. We
choose r = 3.8008 so that there is a period-8 window
and the maximum Lyapunov exponent is A’ = —0.127.
When additive noise is present and its amplitude D is
increased from zero, the asymptotic attractor remains
periodic until D = Dg = 8.3 X 1076, where we observe
that the Lyapunov exponent A starts to increase from A”.
The attractor becomes chaotic for D above D,g = 1.1 X
1073, for which A is positive. Thus, for Dg < D < D,q,
the attractor has a negative Lyapunov exponent. To pro-
vide evidence for the strangeness of the attractor, we show
in Fig. 1(a) the finite-time Lyapunov exponent A(i) com-
puted from trajectory segments of length 1000. We see
that A({) remains negative for most of the time but it can
be positive intermittently. Figure 1(b) shows a histogram
of A(i), where its fluctuations into the positive side are
apparent. To examine the spectral characteristics of the
attractor, we note that for a singular-continuous spec-
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FIG. 1. For the logistic map in a period-8 window under noise

of amplitude D = 107>: (a) evolution and (b) distribution of
the finite-time Lyapunov exponent.
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trum, the number N(§8) of discrete peaks with intensity
larger than & obeys the following scaling law [6]: N(5) ~
6%, where 1 < k < 2. Figures 2(a) and 2(b) show, for
D = 107, Fourier spectrum of the attractor and N(§)
versus 6 on a logarithmic scale, respectively. From
Fig. 2(b) we obtain « = 1.2. To provide more solid evi-
dence for the singular-continuous nature of the spectrum,
we compute the time-dependent Fourier transform
X(Q,T)=3T_ x,e?™. For a proper frequency ()
[typically chosen to be the golden mean (/5 —1)/2],
the following scaling relation |X({,T)|*> ~T# holds
and, for SNAs the scaling exponent satisfies 1 < 8 <2
[6]. This behavior is shown in Fig. 2(c), where we observe
a relatively robust power-law behavior with 8 = 1.5. It
was also suggested [6] that for SNAs, the spectral trajec-
tory with respect to T in the complex plane (ReX, ImX)
should exhibit a fractal behavior (“fractal walk”). This is
indeed observed for the noise-induced attractor in the
logistic map, as shown in Fig. 2(d). Figures 1(a) and
1(b) and 2(a)-2(d) can arguably be regarded as strong
evidence for noise-induced SNAs in the logistic map.
We now consider the periodically driven Duf-
fing’s oscillator under noise: d’x/dt* + 0.1dx/dt +
(1.0 4+ 0.45 cost)x — x> + DE(1), where &(¢) is an effec-
tively bounded, Gaussian stochastic process of zero mean
and unit variance [21]. At the chosen set of parameter
values, for D = 0 the system is in a period-4 window
with the maximum nontrivial Lyapunov exponent Al =~
—0.047. The range of noise amplitude for which SNAs
can possibly occur is D,(= 0.03) < D < D, (= 0.08).
Figure 3(a) shows, for D = 0.06, a trajectory of
10000 iterations on the stroboscopic surface of section
defined by ¢, = 2nw(n = 1,2, ...). The attractor appears
to be geometrically strange, although its nontrivial maxi-
mum Lyapunov exponent is A; = —0.03. Figures 3(b) and
3(c) show the evolution of the finite-time exponent A,(7),
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FIG. 2 (color online). For the logistic map in a period-8
window under noise of amplitude D = 107°: (a) Fourier spec-
trum, (b) spectral intensity distribution of discrete peaks on a
logarithmic scale, (c) finite-time Fourier power |X(Q,T)|?
versus T on a logarithmic scale, and (d) fractal walk of the
spectral trajectory in the complex plane (ReX, ImX).
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FIG. 3 (color online). For the periodically driven Duffing’s
oscillator under additive noise of amplitude D = 0.06:
(a) attractor on a stroboscopic surface of section, (b) evolution
of the finite-time exponent A;(#), (c) histogram of A;(¢), and
(d) power-law scaling of |X(Q, T)|?> with T, where the scaling
exponent is 1 < 8 = 1.6 < 2. The inset in (d) shows a fractal
walk in the complex plane (ReX, ImX).

computed using time window of length 200, and histo-
gram of the exponent, respectively. There are apparently
fluctuations of the finite-time exponent into the positive
side. Figure 3(d) shows log;o|X(Q, T)|> versus log;,7T,
where we observe approximately a power-law behavior
with the scaling exponent 8 = 1.6. The behavior of frac-
tal walk of a spectral trajectory in the complex plane of
X(Q, T) is shown in the inset in Fig. 3(d). All behaviors in
Figs. 3(a)-3(d) indicate strongly that the noise-induced
attractor is an SNA for the Duffing’s system.

In summary, we have shown that robust SNAs can
occur in autonomous or periodically driven, random dy-
namical systems. This is contrary to the presently ac-
knowledged belief that such attractors can be observed
only in quasiperiodically driven systems. SNAs are inter-
esting not only dynamically, but they are also physically
relevant. Our study indicates that the interplay between
noise and deterministic dynamics can lead to unexpected,
yet important phenomenon.
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