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Superpersistent Chaotic Transients in Physical Space: Advective Dynamics
of Inertial Particles in Open Chaotic Flows under Noise
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Superpersistent chaotic transients are characterized by an exponential-like scaling law for their
lifetimes where the exponent in the exponential dependence diverges as a parameter approaches a
critical value. So far this type of transient chaos has been illustrated exclusively in the phase space of
dynamical systems. Here we report the phenomenon of noise-induced superpersistent transients in
physical space and explain the associated scaling law based on the solutions to a class of stochastic
differential equations. The context of our study is advective dynamics of inertial particles in open
chaotic flows. Our finding makes direct experimental observation of superpersistent chaotic transients
feasible. It also has implications to problems of current concern such as the transport and trapping of
chemically or biologically active particles in large-scale flows.
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from the upper stream must necessarily go out of the
region of interest in finite time. However, the inertia of the

of the fluid. Consider a spherical particle of radius a and
mass mp, and fluid of dynamic viscosity � and element
A superpersistent chaotic transient is characterized by
the following scaling law for its lifetime:

�� exp��jp� pcj
���; (1)

where p is a system parameter, � > 0 and � > 0 are
constants. As p approaches the critical value pc, the
transient lifetime � becomes superpersistent in the sense
that the exponent in the exponential dependence diverges.
This type of chaotic transient was first conceived to occur
through the dynamical mechanism of unstable-unstable
pair bifurcation, in which an unstable periodic orbit in
the boundary of a chaotic invariant set coalesces with
another unstable periodic orbit preexisted outside the set
[1]. The same mechanism was shown to cause the riddling
bifurcation [2]. The transients were also identified in a
class of coupled-map lattices, leading to the speculation
that asymptotic attractors may not be relevant for turbu-
lence [3]. The mathematical models [1,2] used to analyze
superpersistent chaotic transients were discrete-time
maps. Recently, this type of transient chaos was demon-
strated in systems described by differential equations [4],
making indirect experimental observation of the tran-
sient possible [5]. In all the existing works, superpersis-
tent chaotic transients occur in the phase spaces of
dynamical systems.

In this Letter, we present evidence of noise-induced
superpersistent chaotic transients in the physical, or con-
figuration space. The context of our study is advection of
particles with inertia in open chaotic flows. It has been
known that ideal particles with zero mass and size simply
follow the velocity of the flow and, as such, the advective
dynamics can be described as Hamiltonian [6,7] in the
physical space for which chaos can arise but not attrac-
tors. In an open Hamiltonian flow, ideal particles coming
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advective particles can alter the flow locally [8]. As a
result, the underlying dynamical system becomes dissi-
pative for which attractors can arise and, hence, particles
can be trapped permanently in some region in the physi-
cal space [9]. This phenomenon has been demonstrated
recently in a model of two-dimensional flow past a cy-
lindrical obstacle [10]. As the authors of Ref. [10] pointed
out, this result has implications in environmental science
where forecasting aerosol and pollutant transport is a
basic task, or even in homeland defense where the spill
of a toxin or biological pathogen in large-scale flows is of
critical concern. The possibility that toxin particles can
be trapped in physical space is particularly worrisome.We
are thus motivated to study the structural stability of such
attractors [11]. In particular, we ask, can chaotic attractors
so formed be persistent under small noise? We find that, in
general, the attractor is destroyed by small noise and
replaced by a chaotic transient, which is typically super-
persistent as characterized by the scaling law (1), with the
parameter variation jp� pcj replaced by the noise am-
plitude. For small noise, the extraordinarily long trapping
time makes the transient particle motion practically
equivalent to an attracting motion with similar physical
or biological effects. Our finding suggests a way to di-
rectly observe superpersistent chaotic transients in labo-
ratory experiments [12].

For an ideal, passive particle of zero inertia and zero
size advected in a flow, the particle velocity v is the flow
velocity u which, in a two-dimensional physical space,
is determined by a stream function ��x; y; t�: ux �
@�=@y and uy � �@�=@x. The dynamical system in
the five-dimensional phase space is thus conservative
(Hamiltonian). For particles of finite size, viscous fric-
tion arises and, as such, their velocities differ from those
2003 The American Physical Society 224101-1



FIG. 1 (color). Basins of attraction of two chaotic attractors
(light blue and yellow, respectively) in the absence of noise.
The blank region denotes the basin of the attractor at x � 1.
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mass mf, the equation of motion of the advective particle
is [8],mpdv=dt � mfdu=dt� �mf=2��dv=dt� du=dt� �
6�a��v� u�, where on the right-hand side, the first term
is the fluid force from the undisturbed flow field, the
second term is the force due to the added mass effect,
and the third represents the Stokes drag. While in prin-
ciple, the fluid velocity u is disturbed by the particle
motion, if the particle sizes are relatively small and their
concentration is low, u can be considered as unchanged
[10]. For convenience, one can introduce the mass ratio
parameter R � 2�f=��f � 2�p� and the inertial parame-
ter A � R=�29 �a=L�

2Re	, where �p and �f are the densi-
ties of the particle and the fluid, respectively, L is a
typical large-scale mixing length, and Re is the
Reynolds number (Re 
 UL=�, where U is a typical
large-scale velocity and � is the kinematic viscosity of
the fluid). The equation of motion can then be cast
into a dimensionless form. To simulate random forcing
due to the flow disturbance or other enviromental fac-
tors, we add terms ��x�t� and ��y�t� to the force compo-
nents in the x and y directions, where �x�t� and �y�t� are
independent Gaussian random variables of zero mean and
unit variance, and � is the noise amplitude. The final
equation of motion under random perturbations is
dv=dt��3R=2�du=dt��A�v�u�����t�, where ��t��
��x�t�;�y�t�	

T . Inertial particles are aerosols if 0<R<
2=3 and they are bubbles if 2=3<R< 2. The limit
A! 1 corresponds to the situation of ideal particles
(passive advection).

Following Ref. [10], we use the open flow model of the
von Kármán vortex street in the wake of a cylinder of
radius r, located at �x; y� � �0; 0�, where a time-periodic
stream function ��x; y; t� (period Tf � 1 in a standard
dimensionless form) governing the motions of vortices in
a background flow of velocity u0 can be constructed
explicitly from the solutions of the two-dimensional vis-
cous Navier-Stokes equations for the geometry of a circle
of radius r in the middle of an infinite channel of width
w � 4r [16]. The Reynolds number is Re 
 250. The flow
velocity u�x; y; t� can be obtained from ��x; y; t�, allow-
ing the particle motions to be computed [17].

It has been shown in Ref. [10] that attractors can be
formed in the bubble regime.We then focus on this regime
and fix R � 1:47 and A � 30. There are three attractors
[10]: two chaotic and one at x � 1. The chaotic attrac-
tors are located near the cylinder (but not stuck on it):
one in y > 0 and another in y < 0. To gain insight as to
what might happen to the attractors under noise, we
examine the basins of attraction of these attractors. To
do so we choose a 1000� 1000 grid of initial conditions
in the region ��2:0 � x�t0� � 1:5;�1:5 � y�t0� � 1:2	
covering the cylinder, and set the initial velocities to be
vx�t0� � ux�x; y; t0� and vy�t0� � uy�x; y; t0�, and then
compute toward which attractor every initial particle is
attracted. Figure 1 shows the basins of attraction of the
two chaotic attractors (light blue and yellow, respec-
tively), where the blank region denotes the basin of the
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attractor at infinity. Note that the phase space is five
dimensional, so what is shown in Fig. 1 is in fact a two-
dimensional slice of the basin structure in the full phase
space, which corresponds to the physical space. Near the
cylinder, the basin boundaries among the three attractors
are apparently fractal [18]. Because of the explicit time
dependence in the stream function and therefore in the
flow velocities, the attractors and their basins move os-
cillatorily around the cylinder. The remarkable feature is
that in the physical space, there are time intervals during
which the attractors come close to the basin boundaries.
Thus, under noise, we expect permanently trapped mo-
tion on any one of the two chaotic attractors to become
impossible. In particular, particles can be trapped near
the cylinder, switching intermittently on the two origi-
nally chaotic attractors, but this can last only for a finite
amount of time: eventually all trajectories on these at-
tractors escape and approach the x � 1 attractor. That is,
chaos becomes transient under noise [20].

To understand the nature of the noise-induced transient
chaos, we distribute a large number of particles in the
original basins of the chaotic attractors, and examine the
channel(s) through which they escape to the x � 1 at-
tractor under noise. Figures 2(a)–2(c) show, for three
instants of time (t, t� Tf=4, and t� Tf=2, respectively),
locations of an ensemble of particles in the physical space.
Because of the symmetry of the flow [16], the particle
trajectories at t and t� Tf=2 are symmetric to each other
with respect to the x axis, as can be seen from Figs. 2(a)
and 2(c). While there are particles still trapped in the
original attractors, many others are already away from
the cylinder. Since this is a two-dimensional projection of
a five-dimensional dynamics, some fractal-like features
overlap. The channels through which they escape are a set
of thin openings surrounding the cylinder and extending
to one of the vortices in the flow. After wandering near
224101-2
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FIG. 3. Scaling of the average lifetime of the trapped chaotic
particles versus the noise amplitude.

FIG. 2. (a)–(c) At three different instants of time, Tf=4
apart, locations of the temporally trapped and escaping par-
ticles in the physical space.
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the vortex, particles go to the x � 1 attractor. Because of
the time-dependent nature of the flow, in the physical
space the locations of these openings vary in time, but
the feature that they are narrow is common. For a fixed
noise amplitude, numerically we find that the lifetimes of
the particles near the cylinder obey an extremely slow,
exponentially decaying distribution, from which the aver-
age lifetime � is obtained. Figure 3 shows � versus the
noise amplitude � on a proper scale. A least-squares fit
gives � 
 exp�3:3��0:55	. Note that for � � 0, there is an
attracting motion so that � diverges. Figure 3 suggests,
however, the way that � diverges follows the superpersis-
tent transient scaling law as � is decreased (mathemati-
cally, �! e�1 as �! 0).

We now provide a physical theory for the scaling of
noise-induced superpersistent chaotic transients. Previ-
ous works suggest unstable-unstable pair bifurcation as
the generic mechanism for the transients [1,2]. One can
imagine two unstable periodic orbits of the same periods,
one on the chaotic attractor and another on the basin
boundary. In a noiseless situation, as a bifurcation pa-
rameter passes through a critical value, the two orbits
coalesce and disappear simultaneously, leaving behind a
narrow ‘‘channel’’ in the phase space through which
trajectories on the chaotic attractor can escape. In our
flow problem, transient chaos is induced by noise. The
closeness of the attractor to the basin boundary implies
that noise can induce an unstable-unstable pair bifurca-
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tion, creating a narrow, escaping channel. For small noise,
the probability for the channel to open is small. Particles
can move, however, to the location of the channel and
remain there for a finite amount of time to escape through
the channel while it is open. Suppose on average, it takes
time T for a particle to travel through the channel. We
expect T to increase as the noise amplitude � is decreased,
because the probability for channel to remain open is
smaller for weaker noise. In fact, as we will argue below,
we expect T to increase at least algebraically as � is
decreased and, T ! 1 as �! 0.

Suppose the largest Lyapunov exponent of the chaotic
attractor is # > 0. After an unstable-unstable pair bifur-
cation the opened channel is locally transverse to the
attractor. In order for a trajectory to escape, it must spend
at least time T at the location of the opening on the
attractor. The trajectory must come to within distance
of about exp��#T���	 from the location of the channel.
The probability for this to occur is proportional to
exp��#T���	. The average time for the trajectory to
remain on the attractor, or the average transient lifetime,
is thus �� exp�#T���	. To obtain the dependence of T
on �, we consider a small region about the ‘‘root’’ of
the channel, or the location of the mediating periodic
orbit. Let q and p be the local coordinates on the attractor
and in the channel, respectively. We consider the follow-
ing model: dq=dt � f�q� and dp=dt � ���t� � g�q�p�
h�p�, where f�q� is a vector field that generates a chaotic
attractor, g�q�< 0 for q � 0, g�0� � 0, ���t� is noise, and
the lowest order of the function h�p� is p2. For � � 0, we
have p�t� ! 0 for p small so that the channel is closed and
no trajectory can escape.

In order to construct a model that captures the essen-
tial transient dynamics, which at the same time is ame-
nable to analysis, we assume that the escaping channel is
approximately one dimensional and the length of the
channel is l� �. This one-dimensional picture can be
justified for typical cases where the periodic orbit at the
opening of the channel in the original attractor is strongly
224101-3
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unstable in the direction of channel so that the escaping
dynamics in the channel is approximately one dimen-
sional. Once a trajectory on the chaotic attractor falls
into the opening of the channel, i.e., q � 0, its mo-
tion is governed by a stochastic differential equation of
the form dz=dt � h�z� � ���t�. The probability den-
sity function (�z; t� of the stochastic process obeys
the Fokker-Planck equation @(=@t � �@�h�z�(	=@z�
��2=2�@2(=@z2, where �2 is the diffusion coefficient.
For z small we consider the lowest order of h�z� and
write h�z� 
 azk�1, where a > 0 and k � 3. The aver-
age time required for a trajectory to travel through
the channel is roughly the mean first passage time [21],
T � �2=�2�

R
l
0 dy exp��H�y�=�

2	 �
Ry
0 exp�H�z�=�

2	dz,

where H�z� �
R
2h�z�dz � 2azk=k,

Ry
0 exp�H�z�=�

2	dz �
P

1
n�0b

nykn�1=�n!�kn�1�	, and b��2a�=�k�2�. We otain

T��2=�2�
R
l
0

P
1
n�0f�by

k�n=�n!�kn�1�	gyexp��byk�dy &

��2�4=k
P

1
n�0�n!�kn�1�k	�1��n�2=k�. It can be shown

[22] that the infinite series converges. We thus have T &

��2�4=k which, when substituted into �� exp�#T���	,
gives the scaling law (1) that is characteristic of super-
persistent chaotic transients. We see that the exponent is
� � 2� 4=k. In general, we have 0< �< 2.

In summary, we have reported superpersistent chaotic
transients in physical space, where particles of finite
inertia are advected in noisy flow with a cylindrical
obstacle, behind which vortices form. We have presented
numerical results and analysis for the noisy scaling law
that defines the transient behavior. A similar flow set-
ting was used to demonstrate chaotic scattering [15] in
laboratory experiments, and we believe this could be a
candidate for direct experimental observation of super-
persistent chaotic transients in physical space. Another
candidate is the experimental system studied in Ref. [23].
The possibility that realistic particles with inertia can be
trapped in regions behind structures for long time can be
of serious concern if the particles are chemically or bio-
logically active.
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Johansson, and H. M. Nagib, Phys. Fluids 12, 2360
(2000).

[14] G. I. Barenblatt, A. J. Chorin, and V. M. Prostokishin,
Phys. Fluids 12, 2159 (2000).

[15] J. C. Sommerer, H.-C. Ku, and H. E. Gilreath, Phys. Rev.
Lett. 77, 5055 (1996).

[16] C. Jung, T. Tél, and E. Ziemniak, Chaos 3, 555 (1993).
[17] P. E. Kloeden and E. Platen, Numerical Solution of

Stochastic Differential Equations (Springer-Verlag,
Berlin, 1992).

[18] Note that Fig. 1 represents a plot of initial conditions. For
both Hamiltonian and inertial particles, those with long
lifetime belong to the stable foliation of the nonattracting
chaotic set. It is known that, for a general Hamiltonian
system, under weak dissipation, the stable foliations are
converted into the basin boundaries between the coex-
isting attractors [19], which are fractals.

[19] A. E. Motter and Y.-C. Lai, Phys. Rev. E 65, 015205
(2002).

[20] Physically, trajectories on the attractors start to escape
only when the noise exceeds a critical value, say �c. In
principle, the scaling law (1) holds only for � > �c. We
suspect that the minimum noise amplitude for which the
transient lifetime can still be computed already far
exceeds �c.

[21] C.W. Gardiner, Handbook of Stochastic Methods
(Springer-Verlag, New York, 1997).

[22] The detailed mathematical analysis will be published
elsewhere.

[23] T. Shinbrot, M. M. Alvarez, J. M. Zalc, and F. J. Muzzio,
Phys. Rev. Lett. 86, 1207 (2001).
224101-4


