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Inability of Lyapunov Exponents to Predict Epileptic Seizures
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It has been claimed that Lyapunov exponents computed from electroencephalogram or electro-
corticogram (ECoG) time series are useful for early prediction of epileptic seizures. We show, by
utilizing a paradigmatic chaotic system, that there are two major obstacles that can fundamentally
hinder the predictive power of Lyapunov exponents computed from time series: finite-time statistical
fluctuations and noise. A case study with an ECoG signal recorded from a patient with epilepsy is
presented.
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containing a seizure, to illustrate how these fluc- distinguishing the spurious exponents from the true
Increasingly, concepts from nonlinear dynamics such
as Lyapunov exponents and fractal dimensions are being
applied to biomedical time series for detection, predic-
tion, or control of critical system states. In the area of
epilepsy, nonlinear time series techniques have been
utilized to analyze brain wave data collected through
the electroencephalogram (EEG) or electrocorticogram
(ECoG) [1–14] for early prediction of epileptic seizures
[4,6,7,10], which affect about 1% of the population in
the United States. This is one of the most important, yet
still outstanding, problems in this field, requiring an
interdisciplinary approach among biomedical and physi-
cal sciences, engineering, and applied mathematics. There
has been much effort in this direction [4,6], with claims
that seizures can be predicted minutes or tens of minutes
in advance of their clinical onset by monitoring the
evolution of the Lyapunov exponents. Our central concern
is that there has been no systematic analysis about the
predictive power of Lyapunov exponents from nonsta-
tionary time series such as ECoG in the existing litera-
ture. Without such analysis, any claim of prediction may
be misleading. While Lyapunov exponents are funda-
mental invariant quantities characterizing a dynamical
system, estimating them from time series is sophisti-
cated and nontrivial.We thus devise an approach by which
the evolution of the estimated exponents can be moni-
tored and analyzed in a controllable way on nonsta-
tionary time series. Our idea in this Letter is to construct
a paradigmatic deterministic dynamical system in
which there is parameter drift through a crisis, in order
to determine whether the finite-time Lyapunov expo-
nents can detect this drift in advance of the crisis. Even
for this low-dimensional chaotic system, our analysis
indicates that statistical fluctuations due to finite-time
computation and the presence of small additive noise
have a significantly deleterious effect on the Lyapunov
exponent’s ability to detect or predict a critical system
state. We then present results with a segment of ECoG
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tuations impair even the ability to detect the seizure
itself.

We construct a model consisting of a deterministic
chaotic system with parameter variations, in order to
mimic nonstationary ECoG data with seizure. Our choice
is the Ikeda-Hammel-Jones-Moloney (IHJM) map,
which models the dynamics of a nonlinear optical cav-
ity [15]: zn�1 � 1� 0:85zn exp�i0:4� ipn=�1� j znj

2��,
where z � x� iy is a complex number and pn is a time-
varying parameter. We choose p from an interval about
the nominal value pc 	 7:27, at which there is an interior
crisis [16]. For p & pc, there is a chaotic attractor of
relatively small size in the phase space. At p � pc, the
small attractor collides with a preexisting, nonattracting
chaotic set to form a larger attractor. For p * pc, a
trajectory spends most of time in the phase-space region
where the original small attractor resides, with occasional
visits to the region in which the original nonattracting
chaotic set lies. A typical time series then consists of
behavior of smaller amplitude most of the time, with
occasional random bursts of relatively larger amplitude
(e.g., random motion of larger amplitude, as in the ictal
phase in ECoG). To be concrete, we focus on a long time
interval (tf � 50 000 iterations) and assume pn � p0,
for n < ti � 20 000, pn � p0 � n�p1 � p0�=5000 for
ti 
 n < tm � 25 000, pn � p1 � n�p1 � p0�=5000 for
tm 
 n < tf � 30 000, and pn � p0 for n > tf, where
p0 � 7:25 and p1 � 7:55.

We compute the Lyapunov spectrum from time series
by using the standard method [17]. When an
m-dimensional embedding space is used on a
d-dimensional invariant set, where m > 2d [18], there
will be m� d spurious Lyapunov exponents. For con-
venience, we call �e

i (i � 1; . . . ; m), all m exponents
computed from the time series, the pseudo-Lyapunov
spectrum. For low-dimensional dynamical systems in
the absence of noise and with some specific choices
of the embedding dimension, there are criteria for
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exponents [19]. In particular, for a one-dimensional
chaotic map with a positive Lyapunov exponent �, the
�m� 1� spurious exponents are 2�; . . . ; m�. For a two-
dimensional map (or equivalently, a three-dimensional
flow) with a positive and a negative exponent, �1 > 0 >
�2. For m � 5 the pseudo-Lyapunov spectrum is �e

1 	
2�1, �e

2 	 �1, �e
3 	 �1 � �2, �e

4 	 �2, and �e
5 	 2�2

(three spurious exponents are then 2�1, �1 � �2, and
2�2). For instance, for stationary time series fxng

n�10 000
n�1

from the IHJM map for p � 7:25, the two true exponents
are �1 	 0:357 and �2 	 �0:568. Using m � 5 and delay
time � � 1 to reconstruct phase-space, our algorithm
yields �e

1 	 0:712 	 2�1, �e
2 	 0:331 	 �1, �e

3 	
�0:176 	 �1 � �2, �e

4 	 �0:586 	 �2, and �e
5 	

1:112 	 2�2, which are the correct ones for two-
dimensional maps [19]. For general systems, spurious
exponents cannot be identified a priori in this manner,
so we use the pseudo-Lyapunov spectrum for detecting or
predicting seizures, regardless of whether or not a par-
ticular exponent is a true exponent.

It is necessary to use a moving window for detection or
prediction of characteristic changes in the system. For a
finite data set such as this, a key concern is statistical
fluctuations of the pseudo-Lyapunov exponents. If the
number of data points N in the moving window is small,
the computed pseudo-Lyapunov exponents will have
large fluctuations, as shown in Figs. 1(a)–1(f) for m � 5
and N � 630, where Fig. 1(a) shows the nonstationary
time series and Figs. 1(b)–1(f) are the evolutions of �e

i
(i � 1; . . . ; m). The vertical dashed line indicates ti, the
time at which the control parameter p starts to change.
Let �t be the time from the beginning of the drift to the
time the drift is detected. We see that the change in p is
somewhat reflected in �e

1. For the change in �e
1 to be

statistically significant, it should be greater than the
average amount of fluctuations. This occurs at about �t 	
700. Other exponents show no statistically discernible
changes after ti. Extensive numerical computations using
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FIG. 1. For the Ikeda-Hammel-Jones-Moloney (IHJM) map,
m � 5 and N � 630, (a) nonstationary time series,
(b)–(f) temporal evolution of �e

i for i � 1; . . . ; 5, respectively.
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many values of N indicate that �t does not change
appreciably as N is increased.

We can argue theoretically that increasing the size of
the moving window will in general not reduce the detec-
tion time �t. We imagine choosing a large number of
initial conditions and computing the Lyapunov spectra
for all the resulting trajectories of length N, where N is
large, for a system with a chaotic attractor. For trajecto-
ries on a chaotic attractor, the typical distribution of a
finite-time Lyapunov exponent �N is [20] P��N;N� 	
�NG00� ����=2��1=2 exp�� N

2 G
00� ������� ����2�, where ��� is the

value of �N in the limit N ! 1, G�x� is a function that
satisfies G� ���� � 0, G0� ���� � 0, and G00� ���� > 0. Thus, for
large N, the standard deviation of �N is ��N

� 1=
����
N

p
. If

the moving time window is located completely in t < ti,
the average Lyapunov exponent is �N � 1

N

PN
i�1 �

�1��i�,
where ��1��i� is the time-one Lyapunov exponent for
t < ti. Now consider a moving time window across the
critical time ti, where N1 points are before ti, N2 points
are after ti, and N1 � N2 � N. The computed exponent
is �0

N � 1
N �

PN1
i�1 �

�1��i� �
PN2

i�1 �
�2��i��, where ��2��i� is the

time-one Lyapunov exponent for t > ti. Let ����1� and ����2�

be the asymptotic values of the Lyapunov exponent for
t < ti and t > ti, respectively. If N1 � 1, N2 � 1,
N1 � N, and N2 � N, we can write

PN
i�1�

�1��i��N ����1��

O�1=
����
N

p
�,

PN1
i�1�

�1��i��N1
����1��O�1=

������
N1

p
�	N1

����1��

O�1=
����
N

p
�, and

PN2
i�1 �

�2��i� � N2
����2� �O�1=

������
N2

p
� 	

N2
����2� �O�1=

����
N

p
�, where O�1=

����
N

p
� is a number on the

order of 1=
����
N

p
. The change in the computed time-N

exponent is thus ��N � �N � �0
N 	 1

N �N ����1� � N1
����1� �

N2
����2�� �O�1=

����
N

p
� � N2

N � ����1� � ����2�� � O�1=
����
N

p
� � N2

N .
For the change in the Lyapunov exponent to be statisti-
cally significant and thus detectable, we require ��N *

��N
, which gives the time required to detect the change:

�t � N2 *
����
N

p
. We see that increasing the size of the

moving window in fact increases the time required to
detect a change in the Lyapunov exponent. This increase
is, however, incremental compared with the increase in N
and therefore may not be easily observed. This is why in
numerical experiments we did not see an apparent in-
crease in �t when N was increased.

While our analysis suggests that the critical change of
the system state can be detected through the pseudo-
Lyapunov spectrum from time series, it is not clear
whether the change can be predicted in advance. We
thus ask whether any state change can be detected
through the pseudo-Lyapunov exponents before the criti-
cal point. To address this question, we consider the fol-
lowing: suppose a critical event occurs in which the
system bifurcates to a characteristically distinct state.
Before the event, the parameter drifts toward the critical
bifurcation, although not necessarily at the same rate as it
passes through the critical point. We thus consider a
scheme of parameter variation for the IHJM map, where
initially the parameter p is fixed at a constant value (7.1)
below the critical point pc. As p passes through pc at
068102-2
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about n * 20 000 a critical event (interior crisis) occurs.
Before this, we allow p to change at a slower rate for
10 000< n< 20 000. The entire time interval of interest
is taken to be 40 000 iterations. If one examines a time
series before the critical point, there is no apparent char-
acteristic change, despite the slow change in parameter.
We believe this setting represents a reasonable test bed for
the predictive power of pseudo-Lyapunov exponents.

We proceed by choosing a moving window containing
N data points and examining any changes in the pseudo-
Lyapunov spectrum. When N is small, the large fluc-
tuations in the exponents render undetectable the slow
parameter changes preceding the onset of crisis. This
indicates that the crisis cannot be predicted when N is
small. As N is increased, the fluctuations are reduced so
that the system change preceding the crisis can be de-
tected, as shown in Figs. 2(b)–2(f) for m � 5 and N �
3981. The change can indeed be detected at time n *

10 000, which precedes the crisis. While this seems to
indicate that the exponents have the predictive power for
crisis, our key point is that the presence of small noise can
wipe out this power completely.

To simulate noise, we add two terms D�x
n and D�y

n to
the x and y equations of the IHJM map, respectively,
where �x

n and �y
n are independent random variables uni-

formly distributed in ��1; 1�, and D is the noise ampli-
tude. Figures 3(b)–3(f) show, for m � 5 and N � 3981,
the temporal evolutions of the five pseudo-Lyapunov ex-
ponents for noise level D � 10�2:0. Since the range of the
time series is about 2.0, this noise level roughly corre-
sponds to 0.5% of the variation of the dynamical variable.
We observe a deterioration of the predictive power of the
exponents, since the parameter change preceding the
crisis can no longer be detected at the small noise level
of about D � 10�2:0. We find that for relatively larger
noise such as D � 10�1:0 (but still small in amplitude
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FIG. 2. (a) Scheme of parameter variation with time,
(b)–(f) in the absence of noise, temporal evolutions of �e

i (i �
1; . . . ; 5) for m � 5 and N � 3981. In this case, the parameter
change preceding the crisis can be detected through the
pseudo-Lyuapunov exponents.
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comparing with the size of the chaotic attractor) even the
critical event (crisis) itself cannot be detected through the
variation of these exponents. These results suggest that, in
practical situations where small noise is inevitable, one
should not expect Lyapunov exponents computed from
time series to have any predictive power.

We now present results with a segment of ECoG sig-
nal containing a seizure to further illustrate our point.
Our data were collected from patients with pharmaco-
resistant seizures who underwent evaluation for epilepsy
surgery at the University of Kansas Comprehensive
Epilepsy Center. The data were recorded via depth elec-
trodes, sampled at the rate of 240 Hz, amplified, and
digitized to 10 bit precision using commercially available
devices (Nicolet, Madison, Wisconsin). For convenience,
we normalize the data to the unit interval. The time delay
used in the embedding was chosen to be � � 1=12 s,
according to the autocorrelation criteria in Ref. [21].
The size of the linear neighborhood used in the
Lyapunov exponent algorithm is about 2% of the signal
amplitude. Fixing the embedding dimension at m � 5,
we compute the five Lyapunov exponents versus time in
Fig. 4 for windows of approximately 13.18 s long. Because
of the large fluctuations before, during, and after seizure,
there is little indication of any ability to even definitively
detect this epileptic seizure. Similar behavior was found
with systematic choices of the embedding dimension
ranging from 5–25 and with various window sizes.

Our analysis and computations thus indicate that the
Lyapunov exponents estimated from time series of low-
dimensional and noisy chaotic systems cannot be effec-
tive for detecting critical events after they occur, let alone
for predicting them in advance. The brain dynamical
system responsible for the epileptic seizures is much
more complicated than low-dimensional chaotic systems
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FIG. 3. (a) Scheme of parameter variation with time,
(b)–(f) temporal evolutions of �e

i (i � 1; . . . ; 5) for m � 5, N �
3981, and noise amplitude D � 10�2:0 (corresponding to about
0.5% of the amplitude of the measured data). At this noise level
the crisis cannot be predicted in advance because the parameter
change preceding the crisis cannot be detected.
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FIG. 4. (a) A segment of electrocorticogram (ECoG) time
series containing a seizure which starts at approximately t �
300 s and lasts for about 80 s, (b)–(f) for m � 5 and �t 	
13:18 s (corresponding to N � 103:5 � 3162), the five com-
puted Lyapunov exponents versus time.
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or even idealized high-dimensional systems such as
coupled map lattices. In epilepsy, all information is
from a few dozen probes, each sensing approximately
105–108 neurons [22], into the corresponding neuron en-
semble in the brain about which relatively little is known.
The signals so obtained (ECoG) are inevitably noisy.
These considerations suggest that it should be reasonable
that the Lyapunov exponents do not appear to have any
predictive or detective powers for epileptic seizures.

In summary, we have addressed the inability of the
Lyapunov exponents computed from time series to predict
or detect critical events. Our analysis and computations
indicate that there are two major factors that can prevent
the exponents from being effective tools to predict char-
acteristic system changes: statistical fluctuations and
noise. The basic message is that for low-dimensional,
deterministic chaotic systems the predictive power of
Lyapunov exponents holds only in noiseless or extremely
low-noise situations. In realistic situations where an ap-
preciable but reasonable amount of noise is present, the
utility of Lyapunov exponents is questionable, especially
in a system as high dimensional and noisy as the brain’s.
We feel that this is an important point to keep in mind in
light of repeated claims in the literature of seizure pre-
diction with Lyapunov exponents [4]. It is also clear that
our result is relevant to many other applications where the
temporal evolutions of the Lyapunov exponents estimated
from time series are intended for prediction or detection.
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