
P H Y S I C A L R E V I E W L E T T E R S week ending
25 APRIL 2003VOLUME 90, NUMBER 16
Experimental Characterization of Transition to Chaos in the Presence of Noise
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Transition to chaos in the presence of noise is an important problem in nonlinear and statistical
physics. Recently, a scaling law has been theoretically predicted which relates the Lyapunov exponent to
the noise variation near the transition. Here we present experimental observation of noise-induced chaos
in an electronic circuit and obtain the fundamental scaling law characterizing the transition. The
experimentally obtained scaling exponent agrees very well with that predicted by theory.
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�1 obeys the following scaling law with respect to noise
variations:

discontinuity in the derivative of the current-voltage re-
lation is typically smoothed out due to the finite-time
An important problem in nonlinear and statistical
physics is to understand the transition to chaos in dynami-
cal systems under the influence of noise [1–15]. The
problem is fundamental because it concerns the interplay
between deterministic and stochastic dynamics. Some
pioneering works in this direction are the following.
The effect of noise on period-doubling transition to
chaos was studied by Crutchfield et al. [1,2], where a
renormalization-group approach was used to analyze the
scaling behavior of the Lyapunov exponent near the tran-
sition [2]. The effect of noise on type-I intermittency was
investigated by Hirsch et al. [3]. The influence of noise on
periodic attractors for the Lorenz system was studied by
Fedchenia et al. [11]. Noise-induced chaos in a system
with homoclinic points was discussed by Anishchenko
and Herzel [5], and the opposite phenomenon of noise
stabilization of chaotic dynamics was studied by Herzel
[6]. The problem of noise-induced chaos also has similari-
ties with the problem of noise activation of excitable
systems [12].

Transition to chaos in the presence of noise is important
and relevant to problems in, for instance, laser physics
[14] and biology [15]. Often, the following questions are
asked: Suppose the system is originally in a nonchaotic
state and it becomes chaotic under the influence of noise,
what are the characteristic features of the transition to
chaos? Are these features universal (in the sense that they
can be observed in different systems regardless of the
system details)?

Recently, the above questions have been addressed
theoretically and numerically [16] in the general setting
where a periodic attractor coexists with a nonattracting
chaotic invariant set (chaotic saddle), as can be expected
in any periodic window of a nonlinear dynamical system.
Under sufficiently large noise, the attractor of the system
becomes chaotic, which is characterized by the appear-
ance of a positive Lyapunov exponent. It is argued [16]
that, near the transition, the largest Lyapunov exponent
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�1 � �D�Dc�
�; (1)

where D is the noise amplitude, Dc is the critical ampli-
tude at which the transition to chaos occurs (i.e., the
attractor of the system is not chaotic for D<Dc but
chaotic for D > Dc), and � > 0 is the scaling exponent
determined by the properties of the coexisting chaotic
saddle. In particular, for three-dimensional flows (or
equivalently two-dimensional Poincaré maps), the expo-
nent is given by

� � 1�
1

2�S1	
; (2)

where �S1 > 0 and 	 are the positive Lyapunov exponent
and the lifetime of the chaotic saddle, respectively, in the
absence of noise. The scaling law (1) is subsequently
argued to hold for any dimension, and explicit expres-
sions for the scaling exponent have been obtained in all
dimensions [17]. At a fundamental level, the dynamical
mechanism underlying the transition can be related to
the phenomenon of noise-induced unstable dimensional
variability [16,17], a severe type of nonhyperbolicity
that occurs commonly in multidimensional chaotic sys-
tems [18].

The purpose of this Letter is to provide direct experi-
mental evidence for noise-induced chaos and the scaling
law (1) associated with the transition. By utilizing a
nonlinear electronic circuit, the Chua’s circuit [19], we
are able to obtain experimentally the algebraic scaling
law over about 1.5 orders of the magnitude of the noise
variation, with the scaling exponent in excellent agree-
ment with the theoretical prediction.

We emphasize that, in principle, the nonlinear element
(resistor) in the Chua’s circuit has a piecewise-linear
current-voltage relation [19]. The circuit is therefore a
nonsmooth dynamical system, whose bifurcation scenar-
ios are quite different from those in smooth systems.
Nonetheless, in actual implementation, the theoretical
2003 The American Physical Society 164101-1
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FIG. 1. Our experimental system: (a) Chua’s circuit; (b) noise
divider.
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response behavior in the operational amplifiers that con-
stitute the nonlinear resistor. Thus, the experimental cir-
cuit is suitable for testing the noise-scaling law observed
in smooth dynamical systems.

We begin by describing briefly the theoretical argument
that leads to the scaling law (1). Assuming that, in the
absence of noise, there exist a periodic attractor and a
coexisting chaotic saddle on a two-dimensional Poincaré
plane. Under noise of amplitude D, the periodic attractor
can be found in a disk of radius D around the original
attractor. For small noise (D<Dc), there is no overlap
between the disk and the stable manifold of the chaotic
saddle, so the attractor of the system is nonchaotic. For
D > Dc, a subset of the stable manifold of the chaotic
saddle overlaps with the disk, giving rise to a nonzero
probability that a trajectory near the periodic attractor is
kicked out of the disk and moves toward the chaotic
saddle along its stable manifold. Since the chaotic saddle
is nonattracting, the trajectory will stay in its vicinity for
only a finite amount of time before escaping along its
unstable manifold. The trajectory will then enter the disk
containing the original periodic attractor again, and so
on. ForD * Dc, the probability for the trajectory to leave
the disk is small, leading to an intermittent behavior
where the trajectory spends long stretches of time near
the original periodic attractor, with occasional bursts out
of it, wandering near the chaotic saddle.

Now consider the Lyapunov spectrum of the noisy
attractor of the three-dimensional flow. Let �P3 � �P2 <
�P1 � 0 and �S3 < �

S
2 � 0< �S1 be the Lyapunov spectra of

the periodic attractor and of the chaotic saddle, respec-
tively, in the absence of noise. Let �3 < �2 < �1 be the
Lyapunov spectrum of the noisy attractor. For D<Dc,
the noisy attractor is only a fattened version of the origi-
nal periodic attractor. Thus, we have �i � �Pi (i � 1; 2; 3)
and, in particular, �1 � �P1 � 0, indicating that the at-
tractor is nonchaotic, in spite of the noise. For D > Dc,
there is an intermittent hopping of the trajectory between
regions that contain the original periodic attractor and
the chaotic saddle. Let fP and fS be the fractions of time
that the trajectory spends in the corresponding regions
asymptotically. We have �1 � fP�

P
1 � fS�

S
1 � fS�

S
1 > 0,

indicating that the intermittent attractor is now chaotic.
To obtain the scaling law (1), note that the probability fS
is proportional to the natural measure of the stable mani-
fold of the chaotic saddle in the disk containing the
original periodic attractor, which is determined by the
dimension of the stable manifold. For a two-dimensional
disk of size � on a Poincaré plane, the natural measure of
the stable manifold in it [20] is �Ds � ��2�Ds=2, where �2 is
proportional to the area of the disk, Ds is given by Ds �
2� 1=��S1	�, and 	 is the lifetime of the chaotic saddle of
the Poincaré map (	 is thus in the unit of T, the average
time that a typical trajectory crosses the Poincaré sec-
tion). For D * Dc, the area in which the stable manifold
of the chaotic saddle overlaps with the disk is propor-
164101-2
tional to �D2 �D2
c�. We thus have fS � �D2 �D2

c�
Ds=2 �

�D�Dc�
1�1=�2�S1	�, which is the scaling law (1).

The above consideration can be readily extended to all
dimensions, yielding similar scaling laws of the largest
Lyapunov exponent with respect to the noise [17].
Dimension formulas for chaotic saddles in high dimen-
sions [21] can be utilized to give explicit expressions for
the scaling exponents. It can also be argued [16,17] that
an intermittent chaotic trajectory forD * Dc necessarily
possesses unstable dimension variability, rendering the
corresponding noisy chaotic attractor severely nonhyper-
bolic. Consequently, the chaotic attractor of the noisy
flow possesses no neutral direction, in sharp contrast to
attractors in deterministic flows or nonchaotic attractors
in noisy flows [16,17].

Our experimental system is shown in Fig. 1, where 1(a)
is the Chua’s circuit [19] and 1(b) is the noise divider that
we design to obtain controllable noisy signals with fine
resolution in amplitude from a commercial noise genera-
tor. The differential equations describing the noiseless
Chua’s circuit are C1dVC1=dt � G�VC2 � VC1� � g�VC1�,
C2dVC2=dt � G�VC1 � VC2� � iL, and LdiL=dt � �VC2,
where G � 1=R and g�	� is the following piecewise-
linear function: g�x� � m0x� �m1 �m0�
jx� Bpj �
jx� Bpj�=2, and m0, m1, and Bp are parameters. The
164101-2
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FIG. 2. For the period-3 window, the projection of the attrac-
tor on the VC1 � VC2 plane for (a) D � 0, (b) D � 4:0 mV,
(c)D � Dc � 6:0 mV, and (d)D � 40:0 mV. The attractors for
(a) and (b) are nonchaotic, while that for (d) is apparently
chaotic. VC1 and VC2 are measured in volts.
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FIG. 3. (a) Estimated largest Lyapunov exponent �1 versus
the noise voltage log10D. (b) Algebraic scaling of �1 with
D�Dc.
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nonlinear resistor and the noise divider are implemented
on two integrated circuit chips, each containing two
operational amplifiers (JM08AK TL082 CP), with
properly selected resistors. The whole circuit (including
the noise divider) is soldered on a high-quality circuit
board (Vector Electronic Co.). The TL082 chips are pow-
ered by a low-ripple dc power supply (Hewlett Packard
E3631A) of 
9 V. Gaussian white noise with variable
amplitude is provided by a noise generator (SRS DS345
with output resistance of 50 �). We choose the resistance
R to be the bifurcation parameter to set the system in a
period-3 window of relatively large size in the parameter
space so that, in the absence of the controllable noise,
the system can be maintained stably in the window, in
spite of the presence of the uncontrollable noises in the
laboratory. Voltage signals from the capacitors C1 and C2

are recorded using a 12-bit data acquisition system
(KPCI3110, Keithley) at the sampling rate of 200 kHz.
The standard routine for computing the Lyapunov expo-
nents from time series [22] is utilized. For a reliable
computation of the exponents, roughly the amount of
data required is on the order of d�W=��d1 , where d is
the embedding dimension, d1 is the information di-
mension of the attractor, W is the size of the attractor in
the phase space, and � is the minimal distance between
two points in the reconstructed phase space. To satisfy
this requirement while at the same time having a man-
ageable data set, we choose the size of the data set to be
106 points at the given sampling rate. From the com-
putation of the largest Lyapunov exponent, we find that
the critical noise voltage for transition to chaos is Dc �
6:0 mV. [The resolution of a commercial noise gen-
erator is typically about 10.0 mV. That is why we utilize
two voltage buffers (TL082) and a voltage divider to
construct the circuit in Fig. 1(b). This divider yields
noise signals with finer resolution of about 1.0 mV.]

Note also that the Lyapunov exponent has the dimen-
sion of reciprocal time. Our estimated value of the largest
Lyapunov exponent thus has the unit of inverse of the
sampling time, which is 5  s. The magnitude of the
exponent also depends on the logarithm used in its evalu-
ation. Here we use the standard natural logarithm. Thus,
for instance, given an estimated value of � > 0, the factor
that an infinitesimal distance is magnified in time, say
t � 10 (which corresponds to the actual physical time of
50  s), is exp��t� � exp�10��.

The projection of the period-3 attractor on the VC1 �
VC2 plane in the absence of the controllable noise is shown
in Fig. 2(a). For noise voltage D<Dc � 6:0 mV, the
attractor appears to be slightly smeared, but it remains
nonchaotic as its largest Lyapunov exponent is estimated
to be approximately zero. Such a nonchaotic attractor is
shown in Fig. 2(b) for D � 4:0 mV. The attractor near
the transition is shown in Fig. 2(c) for D � 6:0 mV, and
an apparently chaotic attractor is shown in Fig. 2(d) for
D � 40:0 mV.
164101-3
Figure 3(a) shows the estimated largest Lyapunov ex-
ponent �1 versus the noise voltage D. The precision of the
estimated exponent is on the order of 10�2, which is
assessed from the value �01 obtained from the period-3
attractor, in the absence of controllable noise. As the noise
is increased from about 6.0 mV, �1 starts to increase from
zero. To obtain the scaling, we fine-tune the noise voltage
in the range 6.0–80.0 mVand obtain the value of �1, using
�01 as the reference point. The algebraic noisy-scaling law
of �1 is shown in Fig. 3(b) on a logarithmic scale, where a
robust algebraic relation between �1 and �D�Dc� is
observed. The experimental scaling exponent is estimated
to be 0:98
 0:02.

To obtain the theoretical scaling exponent, it is neces-
sary to estimate the quantities �S1 and 	 of the chaotic
saddle in the period-3 window, in the absence of noise.We
use the following straightforward procedure: We turn off
164101-3
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noise and collect 1000 trajectories from the circuit, which
are transiently chaotic. From the chaotic parts of the
trajectories, we compute N�t�, the number of trajectories
that remain chaotic at time t, which typically decays
exponentially with time, as shown in Fig. 4(a). The
inverse of the exponential decay rate is taken to be the
estimated value of 	. We obtain 	 � 54, in the unit of T,
the average time interval for successive crossings of a
typical trajectory through a Poincaré plane. To measure
�S1 , we compute the largest Lyapunov exponents associ-
ated with the chaotic parts of these trajectories, and
construct a histogram of the calculated exponents, as
shown in Fig. 4(b). The central value of the histogram
is taken to be �S1 . We obtain �S1 � 0:28. These estimates
give the theoretical scaling exponent [via Eq. (2)] � �
0:97, which agrees very well with the experimental result.

In summary, we present experimental observation of
transition to chaos as induced by the noise, and character-
ize the scaling behavior governing the transition. Our
careful estimates of the relevant dynamical quantities
provide a solid verification of the theoretically predicted
scaling law. We believe this scaling law is universal and it
can be observed in other experimental systems as well.

This work is supported by AFOSR under Grant
No. F49620-98-1-0400 and by NSF under Grant
No. PHY-9996454.
164101-4
[1] J. P. Crutchfield and B. A. Huberman, Phys. Lett. 77A,
407 (1980); J. P. Crutchfield, J. D. Farmer, and B. A.
Huberman, Phys. Rep. 92, 45 (1982).

[2] J. Crutchfield, M. Nauenberg, and J. Rudnick, Phys.
Rev. Lett. 46, 933 (1981).

[3] J. E. Hirsch, B. A. Huberman, and D. J. Scalapino, Phys.
Rev. A 25, 519 (1982).

[4] J. M. Deutsch, Phys. Rev. Lett. 52, 1230 (1984); J. Phys. A
18, 1449 (1985).

[5] V. S. Anishchenko and H. Herzel, Z. Angew. Math. Mech.
68, 317 (1988).

[6] H. Herzel, Z. Angew. Math. Mech. 68, 582 (1988).
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