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Coherence Resonance in Coupled Chaotic Oscillators
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Existing works on coherence resonance, i.e., the phenomenon of noise-enhanced temporal regularity,
focus on excitable dynamical systems such as those described by the FitzHugh-Nagumo equations. We
extend the scope of coherence resonance to an important class of dynamical systems: coupled chaotic
oscillators. In particular, we show that, when a system of coupled chaotic oscillators is under the in-
fluence of noise, the degree of temporal regularity of dynamical variables characterizing the difference
among the oscillators can increase and reach a maximum value at some optimal noise level. We present
numerical results illustrating the phenomenon and give a physical theory to explain it.
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The phenomenon of noise-induced enhancement of the
temporal regularity of a physical signal was first noticed
by Sigeti et al. [1]. Recently, this phenomenon was redis-
covered and renamed as coherence resonance in excitable
nonlinear dynamical systems [2–4] and in certain one-
dimensional stochastic systems [5]. Typically, in such
systems, the time traces of dynamical variables of physi-
cal interest consist of an infinite sequence of bursts occur-
ring at random times. Coherence resonance is referred to
the fact that noise can actually be utilized to improve the
temporal regularity of the bursting time series [2–5]. In
particular, at both small and large noise levels, the time se-
ries appears random in the sense that its Fourier spectrum
is broadband and apparently exhibits no pronounced peaks.
At some intermediate noise levels, the bursting time series
appears more regular, which is characterized by the appear-
ance of a finite set of peaks at certain frequencies. If one
defines a measure, say, the ratio of the height of the most
pronounced peak in the Fourier spectrum to its half width,
to quantify the temporal regularity of the bursting time se-
ries, then one finds that the measure tends to increase as
the noise level is raised and reaches a maximum value at
some optimal noise level. Coherence resonance is differ-
ent from the extensively studied phenomenon of stochastic
resonance [6], as the former concerns the temporal aspect
of the signal while the latter deals with quantities related
to the amplitude such as the signal-to-noise ratio. Another
difference is that coherence resonance usually does not re-
quire an external periodic driving [2,7] versus stochastic
resonances that do.

Most existing works on coherence resonance address
excitable systems [7] such as those described by the
FitzHugh-Nagumo equations [8] in which the dynamics
typically consists of a slow motion near some fixed point
and rapid excursions away from it. In such systems, the
measured time series usually consists of a silent phase and
a bursting one, corresponding, respectively, to motions
near the fixed point and the excursions. The temporal
regularity of the bursting time series and, consequently,
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coherence resonance are of great physical or biological
importance. The purpose of this Letter is to point out
that coherence resonance can actually be expected in
another important class of dynamical systems: coupled
nonlinear oscillators, which are relevant to a variety of
physical and biological situations [9,10]. In particular, we
argue that, when identical or slightly nonidentical chaotic
oscillators are coupled together, the temporal regularity
of some measured signal characterizing the degree of the
synchronization among the oscillators can be modulated
by external noise in the sense of coherence resonance.
Such signals, for example, can simply be the difference
among, or the function of, the corresponding dynamical
variables of the oscillators. We give numerical examples
and a quantitative analysis elucidating the dynamical
mechanism for the coherence resonance. Because of the
ubiquity of the occurrence of coupled nonlinear oscillators
in nature and in engineering systems, the correct identifi-
cation of coherence resonance will be both theoretically
interesting and practically useful for applications such as
signal processing.

We begin by presenting numerical results from the fol-
lowing system of two coupled Lorenz oscillators:

�x1,2 � s1,2�y1,2 2 x1,2� 1 K�x2,1 2 x1,2� 1 Djx�t� ,

�y1,2 � g1,2x1,2 2 y1,2 2 x1,2z1,2 1 Djy�t� , (1)

�z1,2 � 2b1,2z1,2 1 x1,2y1,2 1 Djz�t� ,

where s1,2, g1,2, and b1,2 are the parameters of the Lorenz
oscillator [11], K is the coupling parameter, jx,y,z�t� are
independent Gaussian random processes that simulate the
external noise, and D quantifies the noise strength. We
first consider the case where the two Lorenz oscillators are
identically chaotic: we set s1,2 � 10.0, g1,2 � 28.0, and
b1,2 � 8�3 so that each Lorenz oscillator, when uncou-
pled, exhibits a chaotic attractor. This identity stipulates
that the asymptotic synchronization state x1�t� � x2�t�,
where x � �x, y, z�, is a solution of Eq. (1). A stability
© 2001 The American Physical Society 4737
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analysis through the calculation of the transverse Lyapunov
exponent [10] indicates that, in the noiseless situation, the
synchronization state is unstable for K , Kc and stable
for K . Kc, where Kc � 3.92. Our point is that, for K
near Kc under the influence of noise, the coupled system
exhibits dynamical characteristics required for coherence
resonance. In particular, for K & Kc, the synchroniza-
tion state is weakly unstable so that the difference between
the dynamical variables Dx�t� � x1�t� 2 x2�t�, exhibits
on-off intermittency [12], regardless of whether noise is
absent or present. For K * Kc, the synchronization is
stable so that Dx�t� ! 0 asymptotically when D � 0
(noiseless situation), but, for D fi 0, Dx�t� exhibits, again,
on-off intermittency. The dynamical mechanism for on-off
intermittency for both K & Kc (with or without noise) and
K * Kc (with noise) can be understood by analyzing the
transverse stabilities of the infinite set of unstable periodic
orbits embedded in the attractor [13]. The characteristic
feature of on-off intermittency is the existence of two dis-
tinct states: the “off” state, in which Dx�t� � 0, and the
“on” state, where Dx�t� deviates significantly from the off
state. Typically, the system tends to reside in the off state
for a certain amount of random time that is exponentially
distributed [14], with intermittent bursts away from the off
state (the on state). Roughly, the off and on states here
correspond to the motion near the fixed point and the ex-
cursion away from it, respectively, in an excitable system.
Thus, qualitatively, under the influence of noise, we expect
coherence resonance to occur in coupled chaotic systems.

To characterize the degree of the temporal regularity of
the bursting signals at different noise levels, we compute
the Fourier power spectra. Figures 1(a)–1(c) show the
power spectra of Dy�t� for D � 1023, D � 3 3 1022,
and D � 0.3, respectively. For small noise [Fig. 1(a)], the
spectrum exhibits no peak, except for the one at v � 0,

0 0.1 0.2 0.3 0.4 0.5
0

0.04

0.08

P
(ω

)

0 0.1 0.2 0.3 0.4 0.5
0

0.04

0.08

P
(ω

)

0 0.1 0.2 0.3 0.4 0.5
0

0.04

0.08

ω

P
(ω

)

(a)  D=0.001 

(b)  D=0.03 

(c)  D=0.3 

ω
P
 

FIG. 1. For a pair of two coupled identical Lorenz chaotic
oscillators at coupling K � 4.0 . Kc. Fourier power spectra
of Dy�t� at the following noise levels: (a) D � 1023, (b) D �
3 3 1022, and (c) D � 0.3.
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indicating a lack of temporal regularity in the bursting time
series. The situation is similar for large noise [Fig. 1(c)].
A pronounced peak at v fi 0 does exist at the inter-
mediate noise level [Fig. 1(b)], indicating the existence
of a strong time-periodic component in the time series.
The apparent temporal regularity seen in Fig. 1(b) can be
quantified by the characteristics of the peak at a nonzero
frequency vp in the spectrum. In particular, we utilize the
quantity bS � HQs, where H is the height of the spec-
tral peak, Qs � vp�Dv, and Dv is the half width of the
peak [2–5]. By its definition, a high value of bS indicates
a strong temporal regularity in the bursting time series.
Figures 2(a) and 2(b) show, for Eq. (1) at K � 4.0 . Kc

and K � 3.5 , Kc, respectively, bS versus the noise am-
plitude D. We see that bS is small at small noise levels,
increases as the noise is increased, reaches a maximum
at an optimal noise level, and decreases as the noise is in-
creased further. These are features that are associated with
stochastic resonance, where, typically, a signal-to-noise
ratio is plotted against the noise level [6], but here the
relevant quantity concerns the time regularity.

When the oscillators are not identical, the synchroniza-
tion state is no longer invariant. If the mismatch between
the oscillators is small, on-off intermittency persists, even
in a wider parameter regime in a noiseless situation [14].
With the intermittency, noise will effectively regulate the
temporal characteristics of the bursting time series and,
consequently, coherence resonance will arise. We have ob-
tained numerical results that are similar to these in Fig. 2.
This is of practical importance: in laboratory experiments
small mismatches among the coupled oscillators are in-
evitable, but coherence resonance in such systems appears
to be a robust phenomenon against the mismatches.

We now give a physical theory for coherence resonance
in coupled chaotic systems. Consider the following
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FIG. 2. Coherence-resonance measure bS vs the intensity of
noise for the pair of coupled identical Lorenz chaotic oscillators
with coupling strengths (a) K � 4.0 . Kc and (b) K � 3.5 ,
Kc, where the solid lines are the polyfit curves.
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system of two coupled chaotic oscillators: �x1,2 �
f1,2�x1,2� 1 K ? �x2,1 2 x1,2�, where x1,2 [ RN , f1 and
f2 are the velocity fields of the chaotic oscillators when
uncoupled, and K is the coupling matrix. If f1 � f2,
the oscillators are identical so that the synchronization
state x1 � x2 is invariant [10]. For simplicity, we con-
sider the situation where the two oscillators are slightly
nonidentical, f1 � f2, and explore the dynamics near the
approximate synchronization state: x1 � x2. By introduc-
ing two new variables, u � �x1 1 x2��2 and v � �x1 2

x2��2, we obtain, near the approximate synchronization
state v � 0, the following equations:

�u �
1
2

�f1�u� 1 f2�u�	 1
1
2

µ
≠f1

≠u
2

≠f2

≠u

∂
? v , (2)

�v �
∑

1
2

µ
≠f1

≠u
1

≠f2

≠u

∂
2 2K

∏
? v 1

1
2

�f1�u� 2 f2�u�	 ,

� �2l 1 N�t�	 ? v 1 ji�t� , (3)

where ≠f1,2�≠u are the Jacobian matrices of the veloc-
ity fields f1,2, l is a matrix whose elements are the av-
erage values of the corresponding elements of the matrix
in front of v in Eq. (3), N�t� is a zero-mean random ma-
trix, and ji�t� stands for the small chaotic modulation term
in Eq. (3) which vanishes if the oscillators are identical.
Since both oscillators are chaotic, we see from Eq. (2) that
the variables u can typically be chaotic because they are
the approximate average of x1 and x2 under a small chaotic
modulation term proportional to v . The variable v , on the
other hand, obeys an equation that describes on-off inter-
mittency under “noise” because u is chaotic [14].

To make the analysis feasible, we consider one scalar
variable that exhibits on-off intermittency. That is, we
consider the one-dimensional version of Eq. (3). Under
the influence of external noise je�t�, we have

�y � �2l 1 N�t�	y 1 ji�t� 1 je�t�
� �2l 1 N�t�	y 1 j�t� , (4)

where j�t� now stands for the combination of internal
chaotic modulation and external noise. Note that Eq. (4) is
similar to the paradigmatic model for analyzing on-off in-
termittency under the influence of noise [15]. To quantify
how the temporal regularity of y�t� is modulated by noise,
we use the following measure, introduced in Ref. [2], for
convenience: bT � 
T ��

p
Var�T �, where T is the interval

between the bursts, and 
T � and Var�T � are the average
value and variance of T �t�, respectively. We note that the
measure bT is in fact equivalent to the bS that we use in
numerical experiments [16]. To obtain 
T � and Var�T �, we
consider the following Fokker-Planck equation associated
with Eq. (4), which describes, approximately, the evolu-
tion of the probability distribution function P�y, t� of the
random variable y�t�:
≠P
≠t

� 2
≠

≠y

∑µ
2ly 1

1
2

ey

∂
P

∏

1
1
2

≠2

≠y2 ��ey2 1 D�P	 , (5)

where D is the noise strength and e is the strength of
N�t�. Noting that the intermittent interval T is in fact
the first-passage time, we solve Eq. (5) for quantities that
are required for characterizing the time regularity of y�t�
under the conditions that there is an absorbing boundary
at y � a and a reflecting boundary at y � b. We obtain
[17], for the first and second moments of T , the following:


T � � 2
Z a

y0

dy �ey2 1 D�l�e21�2

3
Z y

b
�ez2 1 D�21�22l�e dz ,


T2� � 4
Z a

y0

dy �ey2 1 D�l�e21�2

3
Z y

b
�ez2 1 D�21�22l�e
T �z�� dz ,

(6)

where y0 is the initial value of y�t�. The quantity bT

can then be obtained from Eq. (6). Figure 3 shows a typi-
cal behavior of bT as a function of D that we obtain
numerically by evaluating the integrals in Eq. (6) under
the following parameters (arbitrary): y0 � 25, a � 1,
b � 220, and l � e � 1024. The signature of coher-
ence resonance can be seen clearly from Fig. 3, where bT

attains a maximum value at some optimal noise strength.
The theoretical prediction [Fig. 3] thus agrees, qualita-
tively, with the numerical results from the system of two
coupled Lorenz chaotic oscillators [Fig. 2].

We summarize by listing the set of necessary condi-
tions for coherence resonance: (1) there exists a reference
state near which a trajectory can spend long time spans;
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FIG. 3. Theoretical prediction of the measure of coherence
resonance bT versus noise strength for a general system of
coupled chaotic oscillators.
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(2) the system has the potential to temporally burst out
of the reference state; (3) the system is nonlinear. Under
these conditions, it is possible for a signal characterizing
the bursting behavior to become temporally more regular
under the influence of noise. Excitable systems apparently
satisfy these conditions [2–4]. The analysis and numeri-
cal computations presented in this Letter indicate that cou-
pled chaotic oscillators, a class of dynamical systems of
intense recent interest, also satisfy these conditions and,
hence, they can generically exhibit coherence resonance.
Such systems can be readily constructed in the laboratory,
say, by using electronic circuits, for experimentally verify-
ing the theoretical prediction of this Letter (in fact we are
currently pursuing this). Since coupled chaotic oscillators
occur in many different contexts of natural sciences [9],
we expect our finding to be important [18].
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