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Experimental Observation of Superpersistent Chaotic Transients
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We present the first experimental observation of superpersistent chaotic transients. In particular, we
investigate the effect of noise on phase synchronization in coupled chaotic electronic circuits and obtain
the scaling relation that is characteristic of those extremely long chaotic transients.
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Transient chaos is ubiquitous in nonlinear dynamical
systems [1,2]. In such a case, dynamical variables of the
system behave chaotically for a finite amount of time be-
fore settling into a final state that is usually not chaotic.
A common situation for transient chaos to arise is where
the system undergoes a crisis at which a chaotic attrac-
tor collides with the basin boundary separating it and an-
other coexisting attractor [1]. After the crisis, the chaotic
attractor is destroyed and converted into a nonattracting
chaotic saddle. Dynamically, a trajectory then wanders in
the vicinity of the chaotic saddle for a period of time be-
fore asymptoting to the other attractor. Chaotic transients
of this sort are not superpersistent in the sense that their
average lifetimes scale with the system parameter only al-
gebraically. Specifically, let p be a system parameter and
assume that as p is increased a crisis occurs at the criti-
cal parameter value p.. There is thus transient chaos for
p > p.. It is well established both theoretically [3] and
experimentally [4] that the average lifetime 7 of the chaotic
transients scales with the parameter variation, as follows:
T~ (p — p)”Y, p> pe, where y > 0 is the algebraic
scaling exponent.

There exists, however, a distinct class of chaotic tran-
sients that are superpersistent in the following sense of
scaling [5]:

T~explA(p = p) Pl p>pe. (D
where A > 0 is a constant, 8 > 0 is the scaling exponent,
p. is a critical parameter value, and transient chaos occurs
for p > p.. We see that as p — p,, the lifetime of the
transient behaves like e¢™*; henceforth it is called super-
persistent. Physically, the scaling relation (1) means that
as p approaches p., the transient lifetime is significantly
longer than that associated with “regular” chaotic transient
characterized by an algebraic scaling law. Because of the
scaling (1), the asymptotic attractor of the system is prac-
tically unobservable for p = p.. While “regular” chaotic
transients have been observed in experiments, so far there
has been no direct experimental verification of superper-
sistent chaotic transients. Because of the extremely long
nature of these transients, it is highly nontrivial to observe
and quantify them in laboratory experiments.
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In this Letter, we present the first direct experimental
evidence and characterization of these transients. Our ex-
perimental study is motivated by a recent theoretical dis-
covery [6] that such transients can occur in the context of
phase synchronization in coupled chaotic oscillators [7].
Generally, when two chaotic oscillators are coupled to-
gether, synchronization in their dynamical variables (com-
plete synchronization) can occur, but phase synchroniza-
tion usually occurs at coupling strength much smaller than
that required for complete synchronization. Briefly, if tra-
jectories in each chaotic oscillator can be regarded as a
rotation, then the phase angle of the rotation increases
steadily with time: ¢(f) = wt + 6(t), where w is the
average rotation frequency and 6(¢) is a term character-
izing chaotic fluctuations. In the absence of coupling,
the phase angles of the two oscillators ¢(¢) and ()
are uncorrelated. That is, if one measures the difference
Ap(t) = |p1(t) — ¢(2)], one finds that A (¢) increases
steadily with time. However, when a small amount of cou-
pling is present, A¢(¢) can be confined within 277, while
the amplitudes of the rotations are still completely uncorre-
lated. The bifurcation that leads to phase synchronization
is subsequently investigated [8].

Our experimental study is built upon the following in-
tuition [6]: under the influence of noise, phase synchro-
nization between two weakly coupled chaotic oscillators
cannot be sustained forever, but the time that temporal
phase synchronization lasts can be extremely long. In
particular, it is predicted [6] that additive white noise can
induce phase slips in units of 277 between the coupled os-
cillators which would otherwise be synchronized in phase
in the absence of noise. The average time duration between
successive phase slips appears to obey the following scal-
ing law with the noise amplitude e, which is typical of the
superpersistent chaotic transients:

T~ exp(Ke %), (2)

where a > 0 is the scaling exponent that depends on
system parameters such as the coupling strength, and
K >0 is a constant. An implication is that in the
presence of only small noise, the average time duration
to observe phase synchronization can be extremely long.
Phase synchronization is robust in this sense. Since phase
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synchronization occurs in general for continuous-time
dynamical systems (flows) only [7], it provides a natural
setting for observing and quantifying superpersistent
chaotic transients in laboratory experiments, as we will
describe in this Letter.

Before we detail our experimental results, we briefly
describe the theoretical background for superpersistent
chaotic transients. It is argued in Ref. [5] that such a
transient is dynamically due to the unstable-unstable pair
bifurcations. Briefly, suppose there is an unstable periodic
orbit on the chaotic attractor and there is another orbit of
the same period on the basin boundary. As p is increased
towards p., the two orbits coalesce and are destroyed
simultaneously, leaving behind a “channel” in the phase
space through which trajectories on the chaotic attractor
can escape. Because of the opening of the channel, the
chaotic attractor is converted into a chaotic transient, but
the channel created by the mechanism of unstable-unstable
pair bifurcation is typically supernarrow, which can be
seen as follows. Let T be the time required for a trajectory
to pass through the channel. For p = p., T is large and
scales with (p — p.) as T ~ (p — p.) B. In order for

dx; 1 dx;

- = G — — s =

dr C, [ (yl x1) f(xl)] dr
dy 1 dz
_d;,z =c [G(xi2 — y12) + 212], —dlt’z

such a tunneling to occur, a trajectory on the chaotic set
has to stay near the location of the channel for a time 7.
Because of ergodicity, the probability for a trajectory to
stay near the particular location of the unstable periodic
orbit for time T is proportional to e *, where A > 0 is
the Lyapunov exponent of the chaotic set. The average
lifetime of the transient is the inverse of this probability,
which is thus proportional to e*”. Substituting the scaling
of T with (p — p.) gives the scaling relation (1). Thus, a
trajectory initiated in the basin of the original attractor can
spend a tremendous amount of time in the region where the
original attractor lives, leading to a superpersistent chaotic
transient. Another context where these transients occur is
riddling in chaotic systems [9]. In Ref. [6], it is argued that
the same mechanism is responsible for the extremely long
duration of the temporary phase synchronization between
weakly coupled chaotic oscillators under the influence of
noise, with the noise amplitude’s playing the same role as
the parameter difference (p — p.).

Our experimental setup consists of a pair of unidirec-
tionally coupled Chua’s circuits [10], as shown schemati-
cally in Fig. 1. The differential equations that describe the
circuits are

1 X] — X
= C—b[G()Q —x) — flx)] + 1Tz
1 3)
=~ (yip + RY5z10).

where x, y, and z are proportional to the voltages across |
the capacitors Cp and C,, and the current through the in-
ductor L, respectively, G = 1/R, R} = R{R'/(R! + R'),
RY=R} + R,and f(x) = Gpx + (G4 — Gp)[|x + E| —
|x — E|]/2 is the piecewise linear function that describes
the current-voltage relation of the nonlinear diodes in the
circuit. The one-way coupling from circuits 1 to 2 is
realized by an operational amplifier (LM741, Harris) and
a resistor R, where the value of R, controls the coupling
strength. External white noise is injected to the driving
circuit. All parameters in the two circuits, except R{ and
R7, are set at approximately equal values. Nonidentity be-
tween the two circuits is stipulated by setting Rf = 10 Q
and RY = 6 (), which corresponds to about 8.2% of dif-
ference in the parameters R?,z in Eq. (3). Both circuits are
assembled on a high-quality printed-circuit board, and the
whole system is enclosed in an electromagnetic shielding
box to minimize the influence of uncontrollable external
disturbances. The entire system is powered by a low-ripple
and low-noise power supply (HPE3631A, HP), and a
synthesized functional generator (DS345, SRS) is used as
the white noise source whose amplitude can be controlled
digitally. The oscillating frequencies of the circuits are in
the audiorange, and the signals [dynamical variables in
Eq. (3)] are measured by using a 12-bit data acquisition
board (KPCI-3110, Keithley) with sampling frequency
2 orders of magnitude higher than those of the circuits.
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In order to be able to define and observe the phase
variables from both circuits, we choose the parameters
such that both circuits generate chaotic attractors with a
well defined center of rotation (single scroll) in the three-
dimensional phase space [7,11]. Figures 2(a) and 2(b)
show the projections in the (x,y) plane of the two attrac-
tors from the driving and driven circuits, respectively, in
the absence of coupling. The phase angles ¢(¢) are
obtained by measuring time series of a single dynamical
variable, say y(r), from both circuits and constructing the
corresponding analytic signals [12]: Wy (7)) = y;2(7) +
iH[ y12(t)] = A12(2) explih12(2)], where H[ y12(t)] are
the Hilbert transforms of y;,(¢) and Aj,(¢) are the am-
plitudes of the chaotic rotations in the two circuits, re-
spectively. There exist also other methods for defining the
phase [7], but due to the finite sampling rate of the data
acquisition device, we find it desirable to choose the one
based on the analytic signal, as only two time series, one
from each circuit, are necessary.

To see the effect of noise on phase synchronization,
we choose the coupling resistence Rc as the bifurcation
parameter and first locate, in the absence of noise, an ap-
proximate range of its values in which the phase difference
Ap = ¢y(t) — ¢p1(¢) is bounded within 277. An example
of phase synchronization is shown by the lower trace in
Fig. 3, where time is in units of T, the sampling interval
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FIG. 1. Schematic diagram of the system of pair of unidirec-
tioanally coupled Chua’s circuits and parameters of the circuit
components.

of the data acquisition device (approximately 6.67 us
[13]). Additive white noise clearly induces phase jumps in
units of 277, as shown by the upper trace in Fig. 3, where
the noise voltage is € = 0.8 V. We see that phase synchro-
nization can now be maintained only temporarily in time
intervals between successive phase jumps. The durations
of these time intervals are apparently random. The tempo-
ral phase synchronization observed can thus be regarded
as a transient chaotic phenomenon, as the dynamics from
both circuits are chaotic, despite the phase coherence.
The phase jumps are typically rare and become extremely
infrequent at smaller noise voltages. A relevant question
is then how the transient time intervals are distributed.
Figure 4 shows such a distribution at € = 0.8 V. We find
that the distribution is apparently exponential, indicating
that an average transient time 7 can be defined. In Fig. 4,
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FIG. 2. Chaotic attractors from the driving (a) and driven
(b) Chua’s circuits.
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FIG. 3. Phase synchronization in the absence of noise (lower
trace) and phase jumps in units of 27 (upper trace) under the
influence of noise of voltage € = 0.8 V. The chaotic phase
synchronization is transient only under noise.

we obtain 7 =~ 1.67 X 10* in units of T. Physically, it
is more convenient to use the average period of rotations
on the chaotic attractors. We find that roughly, the average
period is about 13.7 sampling time intervals. The transient
lifetime for € = 0.8 V is thus about 1217 in units of the
average number of the chaotic rotations.

We now report the experimental measurement of the
scaling law between the transient lifetime and the noise
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FIG. 4. Probability distribution of the lifetime of chaotic tran-
sients at noise voltage € = 0.8 V.
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FIG. 5. Experimental scaling of superpersistent chaotic tran-

sients.

amplitude. As the noise voltage is reduced, the lifetime
increases extremely significantly. We find that for € =
0.3 V, the average lifetime approaches 107 cycles [14] of
the chaotic rotation, which corresponds to about 40 min of
real time. As such, it is practically impossible to obtain
a consistent measurement of the lifetimes for lower noise
levels. On the other hand, the size of the basin of attrac-
tion of the chaotic attractor imposes an upper bound for
the noise level. We find that applying noise voltage greater
than, say, 2.0 V, causes frequent collapse of the chaotic ro-
tations. In fact, in order to obtain a reliable value of the
lifetime at the larger end of the noise level via repetitive
measurements, it is necessary to restrict the noise voltage
to less than 2.0 V. We are thus forced to work with a range
of noise level that is slightly less than 1 order of magnitude.
Changing the circuit configuration does not seem to im-
prove the situation. Nonetheless, the scaling obtained sug-
gests a clear signature of superpersistent chaotic transients,
as shown in Fig. 5, where the average lifetime (in units
of rotation) versus € ¢ is plotted on a semilogarithmic
scale. To obtain the scaling, we choose 16 levels of noise
in the range 0.3 V < € < 2.0 V, and for each noise level,
we measure time series with 5 to 100 phase-synchronized
time intervals to obtain 7. The confidence intervals at each
measurement of 7 are obtained by repeating the whole
process for 10 times. The scaling exponent is o = 0.91
for Fig. 5. The relatively large fluctuations of the experi-
mental data about the theoretical fitting for e ™% > 2.0
(equivalently € < 0.47) come from the fact that many
independent, long runs are necessary to accumulate enough
numbers of 27r-phase jumps at small noise levels versus
cases of € * < 2.0 where typically only a few, shorter
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runs are enough to yield sufficient numbers of phase jumps
for statistical analysis. During the long runs, small drifts
in the parameters of the circuits can occur. In addition,
the influence of uncontrollable changes in the experimen-
tal environment becomes relatively significant for small
noise levels. We believe that these factors contribute to the
fluctuations. Nonetheless, Fig. 5 suggests a robust scaling
Eq. (2), despite the extremely challenging task of main-
taining stable operation of the circuit system in a controlled
noisy environment for long periods of time and manipu-
lating huge data files from the measurement. We are thus
confident that we have observed, for the first time, super-
persistent chaotic transients in laboratory experiments.
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