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A practical and popular technique to extract the symbolic dynamics from experimentally measured cha-
otic time series is the threshold-crossing method, by which an arbitrary partition is utilized for determining
the symbols. We address to what extent the symbolic dynamics so obtained can faithfully represent the
phase-space dynamics. Our principal result is that such a practice can lead to a severe misrepresentation
of the dynamical system. The measured topological entropy is a Devil’s staircase-like, but surprisingly
nonmonotone, function of a parameter characterizing the amount of misplacement of the partition.

PACS numbers: 05.45.Vx, 05.45.Tp, 89.70.+c

Symbolic dynamics is a fundamental tool available to
describe complicated time evolution of a chaotic dynami-
cal system, the Smale horseshoe [1] being the most famous
prototype. Symbolic dynamics also provides a natural link
between chaotic dynamics and information theory [2], on
which the recent idea of utilizing chaotic systems to en-
code digital information, or communicating with chaos, is
based [3]. A good symbolic dynamical representation re-
quires that a one-to-one correspondence be established to
the phase-space dynamics; the partition that defines dis-
tinct symbols has to be generating [4]. Specification of
the generating partition for chaotic systems in general is,
however, a challenging problem [5—8] which is still open
for most dynamical systems.

On the experimental side, there appears an increasing in-
terest in chaotic symbolic dynamics as well [9,10]. A com-
mon practice is to apply the threshold-crossing method,
i.e., to define a rather arbitrary partition, so that distinct
symbols can be defined from measured time series [9].
There are two reasons for the popularity of the threshold-
crossing method: (i) it is extremely difficult to locate the
generating partition from chaotic data and (ii) threshold
crossing is a physically intuitive and natural idea. Consider,
for instance, a time series of temperature 7 (¢) recorded
from a turbulent flow. By replacing the real-valued data
with symbolic data relative to some threshold 7, say a 0 if
T(t) < T.andalif T(z) > T,, the problem of data analy-
sis can be simplified. A well chosen partition is clearly
important: for instance, T, cannot be outside the range
of T(z) because, otherwise, the symbolic sequence will be
trivial and carry no information about the underlying dy-
namics. It is thus of paramount interest to understand how
misplaced partitions affect the goodness of the symbolic
dynamics such as the amount of information that can be
extracted from the data.

In this Letter, we investigate the consequence of mis-
placed partitions in chaotic systems. Specifically, we ad-
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dress how the topological entropy, perhaps one of the most
important dynamical invariants that one intends to com-
pute from symbolic dynamics, behaves as a parameter, d,
which characterizes the amount of misplaced partition, is
changed. We find that the topological entropy as a function
of d to be devil’s staircase-like, but surprisingly nonmono-
tone. We establish our results by performing numerical
computations for one- and two-dimensional maps and by
rigorous analyses for the tent map which is a good topologi-
cal model for one-dimensional one-hump maps. The main
implication of our results is that the threshold-crossing
technique typically yields misleading conclusions about
the dynamics generating the data, and therefore one should
be extremely cautious when attempting to understand the
underlying system from a misrepresented symbolic dy-
namics. Similar topological entropy figures have appeared
previously [11], but our combinatorial and topological ex-
planations of the phenomenon and application are new.
We begin by studying the tent map: f : [0,1] — [0, 1],
x — 1 — 2|x — 1/2]| for which the generating partition for
symbolic dynamics is the critical point x, = 1/2. The dy-
namics of f is semiconjugate to the Bernoulli full 2-shift,
meaning that there are no forbidden binary symbolic se-
quences, by the surjection & : [0,1] — 2{20’1}. This gives a
unique symbolic itinerary o = o - 0103 ... for each
x €[0,1], where o;(x) = 0(1) if fi(x) < x.(>x.) for
i =0, and 2{20’1} is the semi-infinite full shift on two sym-
bols: 0 and 1 [12,13]. The topological entropy of 2{20’1}
is In2. Now misplace the partition at p = x. + d, where
d € [—1/2,1/2] is the misplacement parameter. In this
case, the symbolic sequence corresponding to a point
x €[0,1] becomes ¢ = ¢g * P1d>..., where ¢;(x) =
a(b) if fi(x) < p(>p), as shown in Fig. 1. The shift so
obtained, E{za’b}, will no longer be a full shift because, as
we argue later, not every binary symbolic sequence is pos-
sible. Thus, E{za’b} will be a subshift on two symbols a
and b when d # 0 (p # x.). The topological entropy of
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FIG. 1. Tent map and a misplaced partition at x = p.

the subshift E{za’b}, denoted by hr(d), will typically be less
than h7(0) = In2. Numerically, h7(d) can be computed
by using the formula [13]

InN,,

hr(d) = lim sup (1)

n

where N, = 2" is the number of (a, b) binary sequences
(words) of length n. In our computation, we choose 1024
values of d uniformly in the interval [—1/2,1/2] and for
each value of d, we count N, in the range 4 = n = 18
from a trajectory of 22° points generated by the tent map.
The slopes of the plots of InN,, versus n gives approximate
values of hr. Figure 2(a) shows hr(d) versus d for the tent
map, where we observe a complicated, devil’s staircase-
like, but clearly nonmonotone behavior. For d = 0, we
have h7(0) = In2, as expected. For d = —1/2 (1/2), from
Fig. 1, we see that the grammar forbids the letter a (b) and,

a

hence, 2{2 ’b}(—l /2) [Ega’b}(l /2)] has only one sequence:
¢ = bbb ... (¢ =aaa...). Hence, hy(*1/2) = 0.

< 06
= 0
= 0.4r
02
2) Y504 03 0201 0 01 02 03 0703
LN L
%0.6_
= 04
02"
Y504 03 02 01 0 01 02 03 0405
b) d

FIG. 2. For the tent map: (a) numerically computed hr(d)
function by following sequences of a chaotic orbit and (b) ex-
actly computed entropy function hr(d).

Can a similar behavior in the topological entropy occur
in more complicated and nonhyperbolic systems? Con-
sider, for instance, the Hénon map: (x,y) — (1.4 — x> +
0.3y, x). Because of nonhyperbolicity, the generating par-
tition has been conjectured to be a complicated zigzag
curve connecting all primary tangency points between the
stable and the unstable manifolds [5,14]. Precisely locat-
ing the partition curve is highly nontrivial, so the idea of
threshold crossing becomes more tempting. Suppose we
simply set the partition at y = ¢ and define, for each
measurement y; from the time series {y;}'_o, the follow-
ing 2n-bitword: wy, = 0—,...0-1 * 0¢...0,—1, Where
n =i =N — n and the symbols are chosen according
to the rule o; = a(b) if y;+; < c(>c). By numerically
counting the number of distinct 2n-bit words, we obtain
Fig. 3, plot of hr(c) versus the misplaced partition pa-
rameter ¢. Features similar to those in Fig. 2(a) are ob-
served. Computations using experimental time series such
as the Belousov-Zhabotinskii reaction data [15] reveal a
similar behavior depicted in Fig. 4.

Our experimental and numerical results are justified by
the following rigorous analysis [16]. The basic mathe-
matical tool we employ is the graphic presentation of the
symbolic dynamics. Consider, for instance, the familiar
Bernoulli shift map in the symbolic space, which is the

full shift 2;0’1}. It can be presented, naturally, by a di-
rected graph describing all possible transitions between the
2" words of 0’s and 1’s, as shown in Fig. 5 for n = 4.
The sixteen 4-bit words are arranged from left to right
by the Gray-code order: 0000 < 0001 < 0010 < 0110 <
-+ <1011 < 1001 < 1000, so that corresponding inter-
vals in the phase space are monotonically ordered, accord-
ing to the kneading theory [17]. It is important to realize
that the graph in Fig. 5 with the particular labeling char-
acterizes the full shift, i.e., when the partition is gener-
ating. When the partition is misplaced, the labeling of
the graph changes. The associated topological entropy can
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FIG. 3. For the standard Hénon map, the topological entropy
hr versus c, the parameter characterizing the misplaced partition
at y = c. Features similar to those in Fig. 2 are seen.
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FIG. 4. (a) Topological entropy versus partition place-
ment hy(d) for experimentally collected chemical reaction
[Belousov-Zhabotinsky (BZ)] data. (b) Time series of the data.

then be computed from the transition matrix of the rela-
beled graph [16,18]. This is the main idea of our analysis.
Also of particular importance in our analysis are the situa-
tions where the partition is misplaced at dyadic positions:
d = q/2" = q/r, where d € [0,1] and ¢q, r,n are inte-
gers. Several such cases are shown in Fig. 5.

More specifically, let G = (G, L) denote a labeled graph,
where each edge carries a label index L. Consider a mis-
placement which occurs at a dyadic d; then the partition
of the tent map can be described in the symbolic space by
relabeling the set of edges of an appropriate graph (G, L)
presentation of the full shift. Placing the partition at any
such d is equivalent to relabeling the set of edges in the
graphic presentation, to be either a or b, according to
the Gray-code order. In particular, if d X v;, where v;
(i = 1,...,2")is the ith n-bit word labeling a vertex, then
all edges pointed into that vertex are relabeled as an a,
and otherwise a b. Such a relabeling can be considered
to be a factor code ¢, that pr J}ects surjectively, the full

shift 22 ! into the subshift 22 . Each relabeled graph
then defines a new subshift w1th grammar (because there
are now forbidden words) by considering all walks through
the graph and all resulting infinite sequences of a’s and b’s.
To understand better why a misplaced partition changes
the labeling of the graph, we consider the following simple
examples. If n = 4 and d = —1/8, it can be shown [16]
that the relabeled word abbba is allowed which is gener-
a b b b a
ated by the path: ﬁ—»ﬁﬁ—»%—»ﬁﬂ?—»ﬁm.
This is, in fact, the only such labeled path through the
graph, as shown in Fig. 5. If the partition is further mis-
placed to d = —3/16, then that path becomes relabeled:
bbbba, since we have, by relabeling the vertex 0111 to a
b b b b a
b, the following: ﬁﬁ — ﬁﬁ — ﬁm — rl_(;ﬁ — m
For d = —1/8, it is straightforward to show [16], by con-
sidering the short list of all possible 5-bit paths out of all
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FIG. 5. Graphic presentation for the Bernoulli full shift and
some dyadic misplacements.

16 vertices, that this is the only path that gives abbba and,
hence, when d = —3/16, abbba can label no other paths,
and as such the word becomes forbidden. A key point
to notice is that the word abbba will not be forbidden
when the partition is even further misplaced to d = —1/4:

a b b b a
663—»@—»@—»%—»66@, which was for-
merly named aabba. These examples thus give some in-
tuitive illustration that s7(d) as a function of d can be
nonmonotone, because words that disappear can reappear,
by different paths, as |d| is increased.

We can now explain our procedure to rigorously com-
pute the entropy function hr(d). First, the following two
definitions are essential: (i) A sophic shift X is defined
to be [18] a shift space generated by all possible walks
through a labeled graph G = (G, L), where each edge car-
ries a label index L, and a particular element of X is defined
by the labels of the set of edges followed during a particular
infinite walk. (ii) A sophic shift is right resolving if each
vertex has all of its exiting edges labeled uniquely [18].
Figure 5 is, for example, a right resolving presentation of
a sophic shift that is conjugate to the full 2-shift. We then
recall two important theorems from Ref. [18]: (i) If X is
a sophic shift and G = (G, L) is a right resolving presen-
tation of X, then hr(X) = Inp[A(G)], where p[A(G)] is
the spectral radius of the transition matrix A corresponding
to G. (ii) Every sophic shift has a right resolving presen-
tation. We are then able to prove that a right resolving

presentation of these misplaced sophic shifts E{za’b}(d ) can
be so constructed for any dyadic misplacement, d = ¢q/2".
Then E{Qa’b}
nodes in the graphic presentation of the full shift 2{20’1}, as
we have discussed in the preceding paragraphs.

Our proof is equivalent to the subset construction in
Ref. [18], which proceeds as follows. Define the graph that
generates Xg = E{za’b}(d) to be G = (G, L). Now index
each of the N verticesof G: G; (i = 1,...,2") and define
a new set of vertices: H = {H j}?Nzl, where each H; de-
fines specific and unique on/off states for each vertex. For
convenience, we label each H; by N X’s and O’s, each

(d) can be presented by relabeling the N = 2"
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giving an on/off state for each G;. In this notation, if only
G; is “turned on,” then H; = OO ---OXO --- O has an X
(on) only in the ith position. Considering all on/off states
of {G; ¥\~ requires 2" vertices H;. The next step is to de-
fine edges E to go with the vertices H. Each H; labels
on/off positions of N, G; vertices of G. Consider all of
those vertices G, which can follow each of these G; such
that each Gy has the label a, to be turned on, and all other
Gy to be “turned off.” If none of these G; transition to an
a label Gy, then no edge will be defined. Thus, for each
nonempty transition, a vertex H; is defined to follow H;
with an a. Similarly, we can define b edges from H;. Fol-
lowing these rules, we construct a graph H = (H, E) that
generates a sophic shift X sr. We advance the following
two propositions [16]:

Proposition 1: X 41 is conjugate to E{za’b}(d) and, hence,
hr(Xae) = hr[35" ()]

Proposition 2: H = (H, E) is a right resolving presen-
tation of E{za’b}(d).

Our algorithm to computer a7 (d) consists of (i) for each
d = q/2", find the corresponding transition graph G,
(ii) generate a right resolving presentation J{ , and its tran-
sition matrix A(JH), and (iii) compute topological entropy
by the largest eigenvalue of A(JH). These exact results
are shown in Fig. 2(b).

In summary, we have presented numerical and rigorous
results concerning the behavior of the topological entropy
when the partition for symbolic dynamics is misplaced,
which has been a common practice utilized to extract the
symbolic dynamics from experimentally measured chaotic
data. Our principal result is that the entropy can be a
nonmonotone and devil’s staircase-like function of the
misplacement parameter. As such, the consequence of a
misplaced partition can be severe, including significantly
reduced topological entropies and a high degree of non-
uniqueness which we will rigorously elaborate elsewhere
[16]. We wish to convey the message in this Letter that
interpreting any results obtained from threshold-crossing-
type analysis should be exercised with extreme caution.
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