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Controlling transient chaos in deterministic flows with applications
to electrical power systems and ecology
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Transient chaos is a common phenomenon in nonlinear dynamics of many physical, biological, and engi-
neering systems. In applications it is often desirable to maintain sustained chaos even in parameter regimes of
transient chaos. We address how to sustain transient chaos in deterministic flows. We utilize a simple and
practical method, based on extracting the fundamental dynamics from time series, to maintain chaos. The
method can result in control of trajectories from almost all initial conditions in the original basin of the chaotic
attractor from which transient chaos is created. We apply our method to three problems:~1! voltage collapse in
electrical power systems,~2! species preservation in ecology, and~3! elimination of undesirable bursting
behavior in a chemical reaction system.@S1063-651X~99!04902-8#
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I. INTRODUCTION

Transient chaos is a ubiquitous phenomenon in nonlin
dynamical systems. In such a case, a trajectory typically
haves chaotically for a finite amount of time before settli
into a final ~usually nonchaotic! state. The dynamical origin
of transient chaos is known: it is due to nonattracting cha
saddles in phase space@1–4#. A chaotic saddle is a bounde
set, and it has fractal structures in both stable and unst
directions, in contrast to a chaotic attractor which exhibit
fractal structure only in the stable direction. Due to the fra
tal structure in the unstable direction, an infinite number
gaps of all sizes exists along the unstable manifold of
chaotic saddle. An initial condition is typically attracted t
ward the chaotic saddle along the stable direction, stays i
vicinity for a finite amount of time, and then leaves the ch
otic saddle through one of the gaps in the unstable direct
It is known that chaotic saddles and transient chaos are
sponsible for important physical phenomena such as cha
scattering@5# and particle transport in open hydrodynamic
flows @6#. They are also speculated to be the culprit for ca
strophic phenomena such as voltage collapse in ele
power systems@7,8# and species extinction in ecology@9#.
The aim of this paper is to address how to control trans
chaos in flows, that is, systems described by autonom
ordinary differential equations. Our goal is to apply sm
and infrequent perturbations to the system so that trans
chaos can be forced to become sustained chaos or per
motion. Our motivation comes from the fact that transie
chaos can be quite disastrous, as in situations of voltage
lapse and species extinction. By converting transient ch
into sustained chaos using only small control, the natu
dynamics of the system can be preserved, but with no ca
trophes. This can be of significant interest in the areas
electrical engineering and environmental studies.

While there has been a tremendous amount of work
controlling chaos following the seminal work of Ott, Gre
bogi, and Yorke@10#, there have been only a few papers
controlling transient chaos@11–14#. A problem in the exist-
ing methods is that only a fraction of initial conditions can
PRE 591063-651X/99/59~2!/1646~10!/$15.00
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controlled. To address this problem, consider the typi
route by which transient chaos is created: crisis@1#. At a
crisis, a chaotic attractor collides with its own basin boun
ary and becomes a chaotic saddle. After the crisis, almos
trajectories in the original basin of the chaotic attractor e
the basin. With the existing control method,~e.g., Refs.@11#
and @12#!, trajectories from a fraction of these initial cond
tions can be controlled. There are trajectories which can
be controlled.

In this paper, we propose a simple and practical metho
control transient chaos in general deterministic flows. F
lowing the general ideas of Schwartz and Triandaf@13# and
Kapitaniak and Brindley@14#, we identify small regions nea
a chaotic saddle through which trajectories escape and
search for a set of ‘‘target’’ points in these regions whi
yield trajectories that can stay near the chaotic saddle
relatively long time~long lifetime!. By perturbing the trajec-
tory, when it falls into one of the escaping regions, to one
the nearest target points, the trajectory can live near the
otic saddle for an additional long period of time. Keepin
doing this, a transient chaotic trajectory can be sustain
The difference between our method and previous o
@13,14# is that we obtain all the control information includin
the set of target points through the return map construc
from local maxima or minima of a measured time series. W
find that we can control almost all initial conditions usin
small and very rarely applied perturbations. We apply o
method to three practical problems:~1! the voltage-collapse
problem@7,8#, ~2! the species extinction problem@9#, and~3!
elimination of undesirable bursts in a chemical reaction s
tem @15,16#. Since all information required for the contro
can be obtained from time series, we expect our metho
be accessible for experimental implementation.

The rest of the paper is organized as follows. In Sec.
we describe our general method. In Sec. III, we apply
method to the voltage-collapse problem. In Sec. IV, t
problem of controlling transient chaos to prevent species
tinction is investigated. In Sec. V, we study a chemical re
tion system to eliminate undesirable bursts in time series
Sec. VI, we present a discussion.
1646 ©1999 The American Physical Society
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II. METHOD OF CONTROL

We consider the followingN-dimensional autonomou
flow:

dx

dt
5F~x,p!, ~1!

where xPRN and p is a system parameter. Letpc be the
crisis value at which a chaotic attractor forp,pc is con-
verted into a chaotic saddle forp.pc . Let B denote, in the
phase space, the basin of attraction for the chaotic attra
before the crisis (p,pc). As p passes throughpc , we expect
the volume of the original basinB to change smoothly. Fo
simplicity we still useB to denote the phase-space regi
after the crisis that evolves from the basin of the origin
chaotic attractor before the crisis. Forp.pc , there is tran-
sient chaos. That is, a trajectoryx(t) starting from a random
initial condition x0 in B typically stays inB in a chaotic
manner but only for a finite amount of time. The avera
time for a typical trajectory to behave chaotically is the a
erage lifetime of the chaotic saddle, or the inverse of
escape rate of the chaotic saddle@4#.

In an experimental situation involving transient chao
usually one or several time series are measured. In con
to situations of chaotic attractors, these time series consi
short segments of chaotic oscillations exhibiting a numbe
local maxima and minima. Letxn (n51,...,L) be the set of
maxima ~or minima! from one segment of measurement
one dynamical variablex(t) which exhibitsL maxima ~or
minima!. A plot of xn11 versusxn thus yields only a few
points. In order to detect the underlying dynamics, an
semble of transient chaotic trajectories from a large num
of random initial conditions are used, each yielding a num
of points in thexn11 versusxn plot. As a result, we obtain a
crude representation of the discrete map:

xn115M ~xn!. ~2!

If the underlying dynamics is approximately one dime
sional, then the mapM (x) is roughly a one-dimensiona
smooth curve. For higher-dimensional dynamics, the p
M (x) typically exhibits complicated structure such as frac
or even random patterns. In all cases, it is possible to iden
regions ofxn5(xn ,xn11) in which the chaotic saddle lie
and regions where escaping from the chaotic saddle occ
The key observation is that a typical trajectory must en
one of the escaping regions to escape fromB and then, pos-
sibly, becomes nonchaotic. Thus, by applying small per
bations to an accessible set of dynamical variables at a
when the trajectory is in an escaping region to ‘‘kick’’
back intoB, chaotic motion can be maintained for a fini
period of time.

To compute the perturbations, we follow the ideas
Refs. @13# and @14# to preselect a set of target points in th
vicinity of the escaping regions inB. Due to the fractal struc-
tures in the stable and unstable foliations of the cha
saddle, lifetimes of trajectories from points inB are highly
nonuniform. It is thus possible to choose target points n
the escaping regions such that trajectories starting from t
can stay inB for relatively long times, comparing with th
average lifetime of the chaotic saddle. The difference
tor
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tween our method and those in Refs.@13# and@14# is that, in
our case, the escaping regions are identified only in the t
dimensional plane ofM (x), whereas in Refs.@13#, and@14#
these are identified in the full phase space. In this se
information about target points in our method is not co
plete. Control may be lost if one simply perturbs the varia
x(t). The situation can be improved if more dynamical va
ables are experimentally accessible. In particular, letxm be a
subset of dynamical variables that can be observed in
experiment, wherexPxm . For each target point selecte
from the plot ofM (x) @which makes use ofx(t) only#, we
also store the corresponding values of all the remaining
namical variables in the subsetxm . These are the only infor-
mation required for control, which are all experimentally a
cessible. To realize the control, one waits until the traject
falls into an escaping region, at which time a target poin
selected under the criterion that the difference between
real-time subset of variablesxm and those of the target poin
be made minimum. As such, only small perturbations
needed most of the time.

III. EXAMPLE 1: PREVENTION OF VOLTAGE
COLLAPSE IN ELECTRICAL POWER SYSTEMS

Electrical power systems are essentially nonlinear
namical systems. Most of major power-system failures in
past years have been reported to be caused by the dyn
response of the system to disturbances@7#. One type of in-
stability is voltage collapses which occur when the system
heavily loaded. In such a case, dynamical variables of
system, such as various voltages, fluctuate in a random m
ner for a period of time before collapsing to zero sudden
leading to a complete blackout of the system@17#. Due to an
ever-increasing demand for electrical power nowadays, th
is a tremendous interest in operating the power system v
near the edge of its stability boundary. As a consequence
system becomes highly nonlinear and can exhibit cha
behaviors. One possible mechanism for voltage collaps
then as follows: the system is operating in a parameter reg
where there is a chaotic attractor. A disturbance or a tem
ral overload causes a shift in a system parameter so th
boundary crisis occurs, after which the system exhibits tr
sient chaos, leading to a voltage collapse.

To understand the phenomenon of voltage collapse, D
son and Chiang@7# introduced a model power system co
sisting of a generator, an infinite bus, a nonlinear load, an
capacitor in parallel with the nonlinear load. Subsequen
Wang and Abed pointed out that the presence of the cap
tor could cause an increase of the voltage magnitude and
reactive power demand of the load to almost practically
reachable value even in normally encountered paramete
gimes @8#. A modified model was then proposed@8#, as
shown in Fig. 1. The model consists of two generators w
voltagesE0 and Em , and a load consisting of an inductio
motor and aPQ load in parallel. The system dynamics a
governed by four differential equations in terms of dynam
cal variables:~1! dm , the generator phase angle which
closely related to the mechanical angle of the rotor;~2! v,
the angular speed of the rotor;~3! d, the load voltage phase
angle; and~4! V, the magnitude of the voltage provided
the load. The dynamics between the two generators are
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1648 PRE 59MUKESHWAR DHAMALA AND YING-CHENG LAI
erned by the following swing equation:

M d̈m1dmv5Pm1EmVYm sin~d2dm2um!

1Em
2 Ym sinum , ~3!

whereM is generator inertia,dm is the damping factor, and
Pm is the mechanical power. The load model includes a
namic induction motor and a constantPQ load in parallel.
The induction motor model specifies the real and reac
power demandsP andQ of the motor in terms of load volt-
age and frequencyd. The combined model for the motor an
the PQ load is:

P5P01P11Kpwḋ1Kpv~V1TV̇!, ~4!

Q5Q01Q11Kqwḋ1KqvV1Kqv2V2, ~5!

whereP0 andQ0 ~real! are reactive powers of the motor, an
P1 andQ1 are the powers for thePQ load. We chooseQ1 to
be the bifurcation parameter@8# for a practical reason: in
creasing Q1 corresponds to increasing the load react
power demand. Rearranging those equations withum50 and
u050, we obtain four first-order, autonomous different
equations for the model:

ḋm5v,

M v̇52dmv1Pm2EmVYm sin~dm2d!,
~6!

Kqwḋ52Kqv2V22KqvV1Q~dm ,d,V!2Q02Q1 ,

TKqwKpvV̇5KpwKqv2V21~KpwKqv2KqwKpv!V

1Kqw@P~dm ,d,V!2P02P1#

2Kpw@Q~dm ,d,V!2Q02Q1#.

The real and reactive powers supplied to the load by
network are

P~dm ,d,V!52E0VY0 sind1EmVYm sin~dm2d!,
~7!

Q~dm ,d,V!5E0VY0 cosd1EmVYm cos~dm2d!

2~Y01Ym!V2.

In our numerical simulation, the load, the network, and
generator parameter values are chosen to be@8# Kpw50.4,
Kpv50.3, Kqw520.03, Kqv522.8, Kqv252.1, T58.5,
P050.6, Q050.3, P150.0, Y053.33, Ym55.0, Pm51.0,
dm50.05,M50.014 64,Em51.05,u050, andum50.

FIG. 1. The modified electric power-system model of Wang a
Abed. The model consists of two generators with voltagesE0 and
Em , and a load consisting of an induction motor and aPQ load in
parallel.
-
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We first study the dynamical properties of Eq.~6!. Figures
2~a! and 2~b! show bifurcation diagrams of Eq.~6!, where
100 successive local maximaVmax(a) and minimaVmin(b) of
V(t) are plotted for each of 1000 values ofQ1 ~after disre-
garding an initial transient!. There is a period-doubling cas
cade to chaos and a crisis occurs atQ1c'2.560 378 33 after
which the chaotic attractor is converted into a chaotic sad
Notice the range for the attractor is relatively small. Say n
the system operates at some value of the loadQ1 before the
crisis. A small change inQ1 can then shift the system int
the parameter regime after the crisis where there is only t
sient chaos. A voltage collapse can then occur. Figur
shows a time seriesV(t) for Q152.560 378 4.Qc , where
V(t) goes to zero suddenly after about 80 time units.

d

FIG. 2. Bifurcation diagrams of the power-system model E
~6!: asymptotic values of~a! local maxima and~b! local minima of
the voltage.

FIG. 3. ForQ152.560 378 4.Qc , an example of voltage col-
lapse in the power system@Eq. ~6!#.
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PRE 59 1649CONTROLLING TRANSIENT CHAOS IN . . .
How to prevent voltage collapse? From Fig. 2, we see
a possible approach is to reduce the loadQ1 to bring the
system back into the parameter regime where there is
attractor. It is, however, not practical to change the load
relatively short time. Our strategy is thus to construct a
turn map based on previously measured time series an
apply our method of control. Figure 4~a! shows the return
map obtained from the local minima ofV(t) for Q1
52.560 378 4.Q1c . There is an apparently escaping wi
dow below whichV(t) goes to zero quickly, as shown i
Fig. 4~b!, a blowup of part of Fig. 4~a!. The vertical lines
denote the regions from which target points are chosen
particular, these regions are the one between line I and
II, and the one between line III and line IV. The escapi
window is the primary gap on the chaotic saddle, which i
Cantor-like set. In contrast, before the crisis, there is no s
a gap in the return map, as shown in Fig. 5 forQ1
52.560 37. In this case, there is a chaotic attractor and th
is no escaping window. To achieve control in the regime
transient chaos, we select a set of 3000 target points in
vicinity of the escaping window with long lifetime. Figure
shows the lifetime versus the value of local minima. The p
is apparently not smooth, and in fact it contains an infin
number of singularities corresponding to points on the c
otic saddle. This singular structure renders possible selec
of desired target points. Each target point contains the va
of four dynamical variables in Eq.~6!, althoughV(t) is al-
ways at a local minimum. The set of target points is th

FIG. 4. The return maps constructed from the local minima
V(t): ~a! after the crisis atQ152.560 378 4; and~b! a blowup part
of ~a! near the cusp. There is an escaping gap, enclosed bet
lines II and III, in the middle through which a trajectory asymptot
to the state withV50 ~voltage collapse!. Two regions to the left
~I–II ! and the right~III–IV ! of the gap are the regions from whic
a set of target points are chosen for control.
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stored for computing the control perturbation. When an
tual trajectory falls into the escaping gap, the computer
lects a target point such that the required perturbation to k
the trajectory onto the target point is minimum. Perturbatio
can be applied to the dynamical variablesx directly. Or, if
there is an accessible system parameterp that can be easily
adjusted, perturbations can be applied to the parameter b
on the difference between the trajectory point in the escap
window and the target point:Dp5(]x/]p)u targetDx. In this
case, more information is needed: the partial derivati
(]x/]p)u target. In the power system model@Eq. ~6!#, since all
four dynamical variables can be perturbed, it may be con
nient to apply control directly to these variables. As an e
ample of control, Fig. 7~a! shows a controlled time serie
V(t). The required control perturbations are shown in F
7~b!. In the time interval shown, only four small perturb
tions are required to sustain transient chaos. In general,
average time interval for applying perturbations is appro
mately the average lifetime of the chaotic saddle. We str
that, for Eq.~6!, perturbations are required only when th
system drifts into regime of transient chaos, because t
sient chaos is the culprit for voltage collapse in this mod
No control is required when disturbances occur so that
system drifts back into the region with an attractor~either
chaotic or periodic!.

f

en

FIG. 5. The return map forQ152.560 37,Q1C ~before the cri-
sis!.

FIG. 6. Lifetime vs the local minima ofV(t) in the return map.
The plot contains an infinite number of singularities correspond
to points on the chaotic saddle.
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A key question in any scheme of controlling transie
chaos concerns the probability for an initial condition in t
original basinB to be controlled@18#. Since the system per
forms normally before collapse and since control is activa
only whenV(t) falls into the escaping gap, we expect almo
all trajectories to be controlled. To test this numerically,
choose a two-dimensional region (V,dm) in the four-
dimensional phase space and locate the cross section o
original basin with theV-dm plane, as shown in Fig. 8. W
then uniformly distribute 25 000 initial conditions in th
cross section and examine how many of them can be c

FIG. 7. ForQ152.560 378 4:~a! a controlled time seriesV(t);
and ~b! required control perturbations. Apparently, only infreque
perturbations are needed to prevent voltage collapse.

FIG. 8. ForQ152.560 378 4 after the crisis, a two-dimension
cross section of the basin of the original attractorB. We find nu-
merically that almost all initial conditions chosen from this regi
can be controlled.
t

d
t

the

n-

trolled for Q1.Q1c . We find that all 25 000 initial condi-
tions can be controlled. In practice, this implies that volta
collapse can be effectively prevented by using our con
method.

IV. EXAMPLE 2: SPECIES PRESERVATION
IN ECOLOGY

Extinction of species has been one of the biggest mys
ies in nature@19#. A common belief about local extinction i
that it is typically caused by external environmental facto
such as sudden changes in climate. For a species of
small population size, small random changes in the pop
tion ~known as ‘‘demographic stochasticity’’! can also lead
to its extinction. Clearly, the question of how species extin
tion occurs is extremely complex, as each species typic
lives in an environment that involves interaction with ma
other species~e.g., through competition for common foo
sources, predator-prey interactions, etc.! as well as physical
factors such as the weather and disturbances~e.g., land-
slides!. From a mathematical point of view, a dynamic
model for the population size of a species is complex,
volving temporal and spatial variations, external driving, a
random perturbations. Such a system should, in genera
modeled by nonlinear partial differential equations with ra
dom and/or regular external driving forces. A difficulty a
sociated with this approach is that the analysis and nume
solution of stochastic and/or driven nonlinear partial diffe
ential equations present an extremely challenging problem
mathematics.

Nonetheless, in certain situations the problem of spec
extinction may become simpler. Specifically, it was recen
suggested by McCann and Yodzis@9# that deterministic
chaos in very simple but plausible ecosystem models, m
ematically described by a set of coupled ordinary differen
equations, can provide a hint to how local species extinct
can occur without the necessity to consider temporal or s
tial variations and external factors. The key observation
that population dynamics of a large class of ecosystems
be effectively modeled by deterministic systems@20–23#,
and that the behavior of transient chaos is often typica
such systems@1,4#. For an ecosystem that exhibits transie
chaos, the implication is that the population size of so
species may behave chaotically for a~long! period of time
and then decrease to zero in a relatively short period of ti
It was shown by McCann and Yodzis@9# that such a tran-
sient chaotic behavior, which is responsible for species
tinction, can indeed occur in a simple three-species fo
chain model which incorporates biologically reasonable
sumptions about species interactions. We mention that
phenomenon of extremely long chaotic transients can a
occur in other ecosystems, typically systems that invo
both temporal and spatial variations@24#. Our idea is that if
species extinction is caused by transient chaos, then
possible for human being to intervene externally by apply
perturbations so as to effectively prevent species from
coming extinct. The magnitude of the applied perturbat
can be made arbitrarily small, and the perturbations nee
be applied only occasionally. As such, the natural dynam
of the species population is hardly influenced, and yet,
population, though still exhibiting chaotic behavior, w

t
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PRE 59 1651CONTROLLING TRANSIENT CHAOS IN . . .
never become zero. The implication is that in a realistic e
logical environment, a very small amount of artificially im
posed change to population sizes or some small disturb
to the environment, only very rarely applied, can prev
species extinction over long time scales. Potentially, our i
can be of paramount interest to the significant and grow
environmental problem of species preservation.

We consider the following model of a simple thre
species food chain by McCann and Yodzis@9#: a resource
species, a prey~consumer!, and a predator. The populatio
densities of these three species, denoted byR, C, andP for
resource, consumer, and predator, respectively, are gove
by the following equations:

dR

dt
5RS 12

R

K D2
xCyCCR

R1R0
,

dC

dt
5xCCS yCR

R1R0
21D2

xPyPPC

C1C0
, ~8!

dP

dt
5xPPS 211

yPC

C1C0
D ,

whereK is the resource carrying capacity, andxC , yC , xP ,
yP , R0 , andC0 are parameters that are positive. The mo
carries the following biological assumptions:~1! The life his-
tories of each species involve continuous growth and ov
lapping generations, with no age structure~this permits the
use of differential equations!. ~2! The resource population
~R! grows logistically.~3! Each consumer species~immedi-
ate consumerC, top consumerP! without food dies off ex-
ponentially. ~4! Each consumer’s feeding rate@e.g.,
xCyCR/(R1R0)#, saturates at high food levels.

The resource population, growing alone, equilibrates
carrying capacityK. The resource population and intermed
ate consumer, without the top consumer, either settle
stable equilibrium, or to a stable limit cycle, a kind of ‘‘bio
logical oscillator.’’ The oscillations are generated by t
saturating feeding response, which permits the resourc
periodically ‘‘escape’’ control by the consumer. With the to
consumer, there are in a sense two coupled oscillators in
food chain. It is well known that coupled oscillators can le
to complex dynamics~see, for example, Ref.@25#!. This pro-
vides an intuitive insight into why the model can give rise
chaotic dynamics.

Realistic values for parameters can be derived fr
bioenergetics. Following McCann and Yodzis@9#, in our
study we fixxC50.4, yC52.009,xP50.08, andyP52.876
so that both the consumer and the predator can be e
invertebrate or vertebrate ectotherms~e.g., fish!, with a rea-
sonable predator to prey~consumer to resource! body mass
ratio. We also fixR050.16129 andC050.5. Although the
above parameter choices are rather arbitrary, they are
logically meaningful@9#. The resource carrying capacityK,
however, can be different in different environments. Thus
vary K over some reasonable range to assess different
namical behaviors of the system.

To understand how species extinction can occur in
model Eq.~8!, it is insightful to look into the dynamics of the
predator population from the perspective of chaos. Figu
9~a! and 9~b! show bifurcation diagrams of local maxim
-
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Pmax and local minimaPmin versusK. There is a period-
doubling cascade to chaos and a crisis atK5Kc'0.999 76.
Figures 10~a! and 10~b! show, forK50.99,Kc , the projec-
tions of the chaotic attractor onto the~R,P! and~C,P! planes,
respectively. It is apparent from these plots that the traject
@R(t),C(t),P(t)# exhibits irregular and chaotic motion, bu
none of the populations will become extinct because the c
otic attractor is located in a phase-space region away f
the origin @(R,C,P)5(0,0,0)#. In this parameter range, no
all initial conditions yield motions on this chaotic attracto
there is in fact a second attractor, coexisting with the fi
one. This attractor is a limit cycle located in the plane ofP
50. Trajectories on this attractor thus correspond to the s
ation where the top predator population is extinct. Therefo
for a fixed K&Kc , depending on the choice of the initia
condition, the system either asymptotes to the chaotic att
tor or to the limit cycle withP50. As the carrying capacity
K increases passing through the critical valueKc , the preda-
tor eventually becomes extinct for almost all initial cond
tions. This is quite counterintuitive, but it can be easily u
derstood from the dynamics. AtK5Kc , a crisis occurs
where the tip of the chaotic attractor touches the ba
boundary@1#, after which there is transient chaos. Figure
shows a time seriesP(t) for K51.02*Pc . It can be seen
that P(t) remains finite initially but decreases rapidly
zero. Thus we see that a species extinction can indeed o
as a result of transient chaos.

One way to prevent extinction of the predator populati
is to decrease the resource carrying capacityK so that sus-
tained chaotic motion on the attractor is restored. But e
logically, it may not be easy to adjust the carrying capac
of an environment, and, if this can be done, it may take so

FIG. 9. Bifurcation diagrams of the ecological model from~a!
the local maxima and~b! the local minima ofP(t).
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time to do so after detecting that the predator population i
danger. It may occur that the predator will already have
come extinct before the carrying capacity is changed. T
we suggest the use of small but occasional adjustments to
population at appropriate times to prevent species extinct
From an ecological point of view, it may be more feasible
make tiny adjustments to the local populations than
change the carrying capacity of the environment.

To apply control, we first construct a return map from t
local minimaPmax and identify the escape region, as show
in Fig. 12. The box enclosed by the dotted lines is the pha
space region in which the chaotic saddle lies. The vert

FIG. 10. For the ecological model@Eq. ~8!# at K50.99 ~before
the crisis!, the projections of the chaotic attractor onto the~R,P!
plane~a! and the~C,P! plane~b!.

FIG. 11. A typical time seriesP(t) after the crisis. It can be see
that P(t) finite remains initially but decreases rapidly to zero, s
nifying species extinction.
in
-
s

the
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lines denote the regions from which target points are cho
~the regions between lines I and II, and between lines III a
IV !. The escaping gap lies in between lines II and III. W
then select a set of target points in both the right and
vicinities of the primary gap for computing the control pe
turbations. Figures 13~a! and 13~b! show a controlled time
seriesP(t) and the required magnitude of the perturbati
DX(t)[A@dR(t)#21@dC(t)#21@dP(t)#2. It can be seen

FIG. 12. For K51.02 ~after the crisis!, the return map con-
structed from the local minima ofP(t). The existence of an escap
ing region ~II–III ! through which species extinction occurs is a
parent. The arrow illustrates how a trajectory escapes from
chaotic saddle when falling into the escaping gap. The regions
tween lines I and II and between lines III and IV are the these fr
which target points are chosen.

FIG. 13. ForK51.02 ~after the crisis!: ~a! a controlled time
seriesP(t) for which extinction is prevented;~b! the required in-
frequent small control perturbations.
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that the required perturbations are indeed small@DX(t)
,0.015, compared with the size of the population which
about one# and rare@only three perturbations are applied in
time interval of ~0, 4000!#. Numerical computations revea
that the chaotic populationP(t) can be maintained practi
cally indefinitely through the use of occasional and sm
adjustments to all the populations, for almost all initial co
ditions chosen in the original basin of the chaotic attrac
Our approach can thus prevent species extinction effectiv

V. EXAMPLE 3: ELIMINATING UNDESIRABLE BURSTS
IN A CHEMICAL REACTION

The preceding two examples are for transient ch
caused by boundary crises. There is another important c
of crisis, the interior crisis, in which a chaotic attractor su
denly enlarges itself after a system parameter passes thr
a critical value. Dynamically, an interior crisis is triggered
the collision of a small chaotic attractor with a large chao
saddle near the attractor@1,26,27#. Interior crisis occurs ex-
tremely commonly in chaotic systems because there i
least one event of interior crisis in every periodic window~at
the end of the window!, which is believed to be dense i
parameter space. Physically, after an interior crisis, the
namical variables exhibit intermittency in that a typical tr
jectory switches between distinct chaotic states in an in
mittent fashion. In applications it may be desirable to ke
the trajectory in one chaotic state. The aim of this sectio
to present an example to demonstrate that our control me
can be employed to eliminate undesirable chaotic state f
intermittent chaotic time series.

Our strategy is as follows. First, we construct a retu
map by using local maxima~or minima! from a measured
time series. Second, we identify, on the return map, a crit
region through which a switch from one chaotic state to
other occurs. We then run the system to determine a se
target points near the critical region on the side of the de
able chaotic state. These target points are chosen such
trajectories originated from them can follow the desira
chaotic state for relatively long time, and they are the o
information needed to achieve control if perturbations are
be applied directly to the dynamical variables. In real tim
when a trajectory falls into the critical region, control pertu
bations are applied to force the trajectory onto one of
nearest target points. Desirable chaotic or periodic mo
can then be maintained for a long period of time.

To demonstrate our strategy for controlling interior cris
we consider the following model of a chemical reacti
@15,16#:

ẋ5k1xz2k2x2
k3xy

x1K
1k4d,

ẏ5k2x2k5y1k6 , ~9!

ż5k72k1xz2k8z,

where x, y and z are dynamical variables representing t
concentrations of chemicals in the reaction,k12k8 andK are
parameters, and we choosed to be the bifurcation paramete
Figure 14 shows a bifurcation diagram for 0.12,d,0.145,
s
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where other parameters are set to be@15,16#
(k1,k2,k3,k4,k5,k6,k7,k8,K)5(2,0.4,1.0,0.0001,0.5,0.0002
0.005,0.0068,0.002). Asd is decreased, an interior crisis oc
curs atd5dc'0.1356. Ford.dc , there is a small chaotic
attractor. At the interior crisis, this attractor collides with
chaotic saddle which already exists ford.dc . For d,dc ,
there is a larger attractor consisting of essentially the form
small chaotic attractor and the chaotic saddle@26,27#. A tra-
jectory after the crisis typically visits both parts in an inte
mittent fashion, leading to an intermittent time series,
shown in Fig. 15~a! for d50.135. Figure 15~b! shows the
return map constructed from the local maxima of the tim
series in Fig. 15~a!, where the critical regions through whic
switching of the trajectory between the two chaotic sta
occurs are denoted by thick solid lines, and the desira
chaotic state is confined between lines I and II. Assum
that the small amplitude chaotic state is the desirable one
determine from the return map a set of 3000 target po
from which trajectories can stay in the small amplitude ch
otic state for at least 200 time units. Figure 16~a! shows a
controlled trajectory that only stays in the desirable chao
state, and the required small perturbations are shown in
16~b!. The controlled trajectory is in fact a periodic one em
bedded in the desirable chaotic state, since we apply
small control periodically. These results thus demonstr
that interior crisis in deterministic flow can also be controll
to yield a sustained desirableperiodic motion @28,29#.

VI. DISCUSSION

In this work, we have studied a scheme to control tra
sient chaos in general deterministic flows. In principle, t
control strategy does not require detailed knowledge of
underlying dynamical equations: a time series and access
ity of dynamical variables are enough to achieve contr
Thus we expect our method, or some variants of it, to
applicable to practical situations where sustained periodic
chaotic motion is desired.

FIG. 14. For the chemical reaction model Eq.~9!, a bifurcation
diagram for 0.12,d,0.145. An interior crisis occurs atd5dc

'0.1356 asd is decreased.
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An important issue in any scheme of chaos control
noise. Typically noise can destabilize an already contro
trajectory @10#. In the case of transient chaos, noise can
devastating because a trajectory, when kicked out of the
gion of desirable chaotic motion by noise, can go to
undesirable state, e.g., voltage collapse or extinction o
species, in an irreversible manner. Our control strategy
however, robust against noise in so far as the magnitud
control perturbations can exceed the noise level. This is
cause under the influence of noise, the return map beco
fuzzy, but the fuzziness hardly affect the control as we a
vate the control whenever a dynamical variable falls into
escaping region, although a precise control of a target p
becomes difficult.

The issue of noise thus motivates us to consider an a
native way to sustain transient chaos. Specifically, we a
can control still be achieved if we randomly perturb the t
jectory to kick it back into the region of desirable chao
motion after a dynamical variable falls below a critic
value? Take Eq.~8!, for example: what if we simply apply
some small kick so that the trajectory falls back into t
region whereP.Pcrit50.56. To address this question, w
have undertaken the following numerical experiment. S
the populationP(t) falls slightly below the critical level at
time t. Let (R2 ,C2 ,P2) be the values of the state variabl
at this time, whereP2&Pcrit , and let (R1 ,C1 ,P1) be the
values of the state variables a little beforet, where P1

*Pcrit . The criteria for choosingPcrit are~1! ecologically it
is chosen with respect to a population that can become

FIG. 15. For the chemical reaction model Eq.~9! at d50.135
,dc ~after the crisis!: ~a! an intermittent chaotic time series; and~b!
the return map constructed from the local maxima of the time se
in ~a!. The desirable small-amplitude chaotic state lives in the
gion bounded by lines I and II.
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tinct, and~2! dynamically it should be sufficiently close t
the original basinB. The planeP5Pcrit thus represents a
critical level of the endangered population at which hum
intervention must be introduced to prevent the extinction
the speciesP @30#. At time t, arbitrarily smallrandomadjust-
ments@dR(t),dC(t),dP(t)# are made toall the populations
so that the trajectory falls into a point, in the phase spa
within a small ball centered at (R1 ,C1 ,P1). With a non-
zero probability, the trajectory will be close to one of th
points in the small ball with long lifetime so that sustain
chaotic motion can be resumed. Insofar as the trajectory
ecutes a recurrent chaotic motion forP.Pcrit no external
perturbations are necessary. The control is successful
further, we find that only small perturbations to the popu
tions are needed.

The procedure we have presented in this paper app
generally to controlling transient chaos in determinis
flows. The key feature of our method~or a variant of it,
discussed in the preceding paragraph! is that we set a contro
region based on the most relevant dynamical variable tha
experimentally accessible. Control is activated only when
variable falls into the region. As such, only infrequent sm
control perturbations are required, and we also overcome
difficulty caused by the more standard use of the discre
map-type of controlling procedure so that almost all transi
chaotic trajectories can be controlled. To our knowledge
previously purposed methods for controlling transient cha
only a fraction of trajectories can be controlled. Controllin

s
-

FIG. 16. Ford50.135 ~after the crisis!: ~a! a controlled time
series where the corresponding trajectory is periodic and restri
to the desirable small chaotic state; and~b! the required small per-
turbations. This example shows that our method can be rea
adapted to stablizing periodic motion from transient chaos.



tio
ig
a

-
o

os.
er
n-

PRE 59 1655CONTROLLING TRANSIENT CHAOS IN . . .
transient chaos and maintaining sustained chaotic mo
@31,32# have become an interesting area of recent invest
tion due to their potential relevance to problems such
biological health@33#, and our work may thus help to pro
vide broadly useful insights into this rapidly growing area
research.
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