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Transient chaos is a common phenomenon in nonlinear dynamics of many physical, biological, and engi-
neering systems. In applications it is often desirable to maintain sustained chaos even in parameter regimes of
transient chaos. We address how to sustain transient chaos in deterministic flows. We utilize a simple and
practical method, based on extracting the fundamental dynamics from time series, to maintain chaos. The
method can result in control of trajectories from almost all initial conditions in the original basin of the chaotic
attractor from which transient chaos is created. We apply our method to three prodgrmdtage collapse in
electrical power systemg?2) species preservation in ecology, af®) elimination of undesirable bursting
behavior in a chemical reaction systeff81063-651X99)04902-§

PACS numbd(s): 05.45-a

[. INTRODUCTION controlled. To address this problem, consider the typical
route by which transient chaos is created: cridi§ At a
Transient chaos is a ubiquitous phenomenon in nonlineagrisis, a chaotic attractor collides with its own basin bound-
dynamical systems. In such a case, a trajectory typically beary and becomes a chaotic saddle. After the crisis, almost all
haves chaotically for a finite amount of time before settlingtrajectories in the original basin of the chaotic attractor exit
into a final (usually nonchaoticstate. The dynamical origin the basin. With the existing control methae,g., Refs[11]
of transient chaos is known: it is due to nonattracting chaoti@and[12]), trajectories from a fraction of these initial condi-
saddles in phase spaik-4]. A chaotic saddle is a bounded tions can be controlled. There are trajectories which cannot
set, and it has fractal structures in both stable and unstablee controlled.
directions, in contrast to a chaotic attractor which exhibits a In this paper, we propose a simple and practical method to
fractal structure only in the stable direction. Due to the frac-control transient chaos in general deterministic flows. Fol-
tal structure in the unstable direction, an infinite number oflowing the general ideas of Schwartz and Triandi] and
gaps of all sizes exists along the unstable manifold of thé&apitaniak and Brindley14], we identify small regions near
chaotic saddle. An initial condition is typically attracted to- a chaotic saddle through which trajectories escape and we
ward the chaotic saddle along the stable direction, stays in itsearch for a set of “target” points in these regions which
vicinity for a finite amount of time, and then leaves the cha-yield trajectories that can stay near the chaotic saddle for
otic saddle through one of the gaps in the unstable directiorrelatively long time(long lifetime). By perturbing the trajec-
It is known that chaotic saddles and transient chaos are reery, when it falls into one of the escaping regions, to one of
sponsible for important physical phenomena such as chaotitie nearest target points, the trajectory can live near the cha-
scattering 5] and particle transport in open hydrodynamical otic saddle for an additional long period of time. Keeping
flows [6]. They are also speculated to be the culprit for catadoing this, a transient chaotic trajectory can be sustained.
strophic phenomena such as voltage collapse in electrithe difference between our method and previous ones
power system$7,8] and species extinction in ecolog®]. [13,14 is that we obtain all the control information including
The aim of this paper is to address how to control transienthe set of target points through the return map constructed
chaos in flows, that is, systems described by autonomousom local maxima or minima of a measured time series. We
ordinary differential equations. Our goal is to apply smallfind that we can control almost all initial conditions using
and infrequent perturbations to the system so that transiesimall and very rarely applied perturbations. We apply our
chaos can be forced to become sustained chaos or periodigethod to three practical problemd) the voltage-collapse
motion. Our motivation comes from the fact that transientproblem[7,8], (2) the species extinction probleff], and(3)
chaos can be quite disastrous, as in situations of voltage codlimination of undesirable bursts in a chemical reaction sys-
lapse and species extinction. By converting transient chaoem [15,16. Since all information required for the control
into sustained chaos using only small control, the naturatan be obtained from time series, we expect our method to
dynamics of the system can be preserved, but with no catabe accessible for experimental implementation.
trophes. This can be of significant interest in the areas of The rest of the paper is organized as follows. In Sec. II,
electrical engineering and environmental studies. we describe our general method. In Sec. Ill, we apply the
While there has been a tremendous amount of work irmethod to the voltage-collapse problem. In Sec. IV, the
controlling chaos following the seminal work of Ott, Gre- problem of controlling transient chaos to prevent species ex-
bogi, and Yorkg10], there have been only a few papers ontinction is investigated. In Sec. V, we study a chemical reac-
controlling transient chagd1-14. A problem in the exist- tion system to eliminate undesirable bursts in time series. In
ing methods is that only a fraction of initial conditions can beSec. VI, we present a discussion.
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Il. METHOD OF CONTROL tween our method and those in Rdfs3] and[14] is that, in

our case, the escaping regions are identified only in the two-
dimensional plane oM (x), whereas in Refd.13], and[14]
these are identified in the full phase space. In this sense,
dx information about target points in our method is not com-
—=F(x,p), (1) plete. Control may be lost if one simply perturbs the variable
dt X(t). The situation can be improved if more dynamical vari-
ables are experimentally accessible. In particularslebe a
subset of dynamical variables that can be observed in an
experiment, wherexe x,,,. For each target point selected
(;rrom the plot ofM(x) [which makes use ak(t) only], we

also store the corresponding values of all the remaining dy-
namical variables in the subse},. These are the only infor-
mation required for control, which are all experimentally ac-
cessible. To realize the control, one waits until the trajectory
falls into an escaping region, at which time a target point is
selected under the criterion that the difference between the
real-time subset of variables, and those of the target point
be made minimum. As such, only small perturbations are
needed most of the time.

We consider the followingN-dimensional autonomous
flow:

wherexe RN and p is a system parameter. Lt be the
crisis value at which a chaotic attractor fpp. is con-
verted into a chaotic saddle fpr>p.. Let B denote, in the
phase space, the basin of attraction for the chaotic attract
before the crisisff<p.). As p passes through., we expect
the volume of the original basif8 to change smoothly. For
simplicity we still useB to denote the phase-space region
after the crisis that evolves from the basin of the original
chaotic attractor before the crisis. Fprp., there is tran-
sient chaos. That is, a trajectoxyt) starting from a random
initial condition xq in B typically stays inB in a chaotic
manner but only for a finite amount of time. The average
time for a typical trajectory to behave chaotically is the av-
erage lifetime of the chaotic saddle, or the inverse of the

escape rate of the chaotic sadfHe. lll. EXAMPLE 1: PREVENTION OF VOLTAGE

In an experimental situation involving transient chaos, COLLAPSE IN ELECTRICAL POWER SYSTEMS
usually one or several time series are measured. In contrast

to situations of chaotic attractors, these time series consist of Electrical power systems are essentially nonlinear dy-
short segments of chaotic oscillations exhibiting a number ofi@amical systems. Most of major power-system failures in the.
local maxima and minima. Let, (n=1,...L.) be the set of Past years have been reported to be caused by the dynamic
maxima (or minima from one segment of measurement of "eésponse of the system to disturbanfep One type of in-
one dynamical variable(t) which exhibitsL maxima (or  Stability is voltage collapses which occur when the system is
minima). A plot of x,,, versusx, thus yields only a few heavily loaded. In s_uch a case, dynamlcal.varlables of the
points. In order to detect the underlying dynamics, an enSYysteém, such as various voltages, fluctuate in a random man-
semble of transient chaotic trajectories from a large numbep€r for a period of time before collapsing to zero suddenly,
of random initial conditions are used, each yielding a numbeté@ding to a complete blackout of the systgh]. Due to an

of points in thex,, 1 versusx, plot. As a result, we obtain a €ver-increasing demand for electrical power nowadays, there

crude representation of the discrete map: is a tremendous interest in operating the power system very
near the edge of its stability boundary. As a consequence, the
Xns1=M(Xp). 2) system becomes highly nonlinear and can exhibit chaotic

behaviors. One possible mechanism for voltage collapse is

If the underlying dynamics is approximately one dimen-then as follows: the system is operating in a parameter region
sional, then the maM(x) is roughly a one-dimensional where there is a chaotic attractor. A disturbance or a tempo-
smooth curve. For higher-dimensional dynamics, the plotal overload causes a shift in a system parameter so that a
M (x) typically exhibits complicated structure such as fractalboundary crisis occurs, after which the system exhibits tran-
or even random patterns. In all cases, it is possible to identifgient chaos, leading to a voltage collapse.
regions ofx,=(X,,X,+1) in which the chaotic saddle lies To understand the phenomenon of voltage collapse, Dob-
and regions where escaping from the chaotic saddle occurson and Chiang7] introduced a model power system con-
The key observation is that a typical trajectory must entesisting of a generator, an infinite bus, a nonlinear load, and a
one of the escaping regions to escape fiBrand then, pos- capacitor in parallel with the nonlinear load. Subsequently,
sibly, becomes nonchaotic. Thus, by applying small perturtWang and Abed pointed out that the presence of the capaci-
bations to an accessible set of dynamical variables at a timwr could cause an increase of the voltage magnitude and the
when the trajectory is in an escaping region to “kick” it reactive power demand of the load to almost practically un-
back into B, chaotic motion can be maintained for a finite reachable value even in normally encountered parameter re-
period of time. gimes [8]. A modified model was then proposd8], as

To compute the perturbations, we follow the ideas inshown in Fig. 1. The model consists of two generators with
Refs.[13] and[14] to preselect a set of target points in the voltagesg, andE,,,, and a load consisting of an induction
vicinity of the escaping regions i. Due to the fractal struc- motor and aPQ load in parallel. The system dynamics are
tures in the stable and unstable foliations of the chaotiggoverned by four differential equations in terms of dynami-
saddle, lifetimes of trajectories from points Bhare highly cal variables:(1) é,,, the generator phase angle which is
nonuniform. It is thus possible to choose target points neaclosely related to the mechanical angle of the rotéy; ,
the escaping regions such that trajectories starting from thette angular speed of the rotdB) &, the load voltage phase
can stay ins for relatively long times, comparing with the angle; and(4) V, the magnitude of the voltage provided to
average lifetime of the chaotic saddle. The difference bethe load. The dynamics between the two generators are gov-



1648 MUKESHWAR DHAMALA AND YING-CHENG LAl PRE 59

Y L(-0,0m2) VL8 Y,4(-8,-m/2) (a)
— 11— 0.6595
lfoad
OE,£0 ::' E.<58, O
0.658
é
FIG. 1. The modified electric power-system model of Wang and >
Abed. The model consists of two generators with voltaggsand 0.6565
E.,, and a load consisting of an induction motor anB@ load in
parallel.
. . . 0.655 :
erned by the following swing equation: 2.5594 25597, 25601 2.5604
1
M8+ Ao =P+ EpnV Y SiN(8— 8~ 6) (b)
) ) 0.59
+E;, Yy Siné,,, (3
whereM is generator inertiag,,, is the damping factor, and
P, is the mechanical power. The load model includes a dy- 0.5583
namic induction motor and a constaRQ load in parallel. £
The induction motor model specifies the real and reactive >
power demand® andQ of the motor in terms of load volt- 0.5267
age and frequency. The combined model for the motor and
the PQ load is:
0.495
- . 2.5594 2.5597 2.5601 2.5604
P=Po+P1+Kpd+ Ky, (V+TV), (4) Q,
Q=Qu+Q,+ qu'5+ qu\/_,_ vazvzy (5) FIG. 2. Bifurcation diagrams of the power-system model Eq.

(6): asymptotic values ofa) local maxima andb) local minima of

whereP, andQ, (rea) are reactive powers of the motor, and the voltage.
P, andQ, are the powers for thBQ load. We choos€); to

be the bifurcation parameté8] for a practical reason: in-
creasingQ; corresponds to increasing the load reactive
power demand. Rearranging those equations wjtk 0 and
0p,=0, we obtain four first-order, autonomous differential
equations for the model:

We first study the dynamical properties of E6). Figures
2(a) and Zb) show bifurcation diagrams of E¢6), where
100 successive local maximg,,(a) and minimaV ,,;,(b) of
V(t) are plotted for each of 1000 values @Qf (after disre-
garding an initial transieit There is a period-doubling cas-
cade to chaos and a crisis occurgat~2.560 378 33 after
which the chaotic attractor is converted into a chaotic saddle.
Notice the range for the attractor is relatively small. Say now
the system operates at some value of the IQadefore the
crisis. A small change i1Q, can then shift the system into
®  the parameter regime after the crisis where there is only tran-
sient chaos. A voltage collapse can then occur. Figure 3
shows a time serie¥(t) for Q;=2.5603784>Q., where

Sm=w,
Mo =—dmo+ Py— EqV Yo, Sin(,— 6),

Kqwd= —KguaV?—Kg,V+Q(87,8,V) —Qo— Qg

TKquK po V=K puKgp2V2+ (KpuK gy = KquKp, )V V(t) goes to zero suddenly after about 80 time units.
+ qu[P( 5m ’ 51V) - |:)0_ Pl]
—Kpw[Q(6m,8,V) = Qo—Q4]. 06
The real and reactive powers supplied to the load by the 0.5¢
network are
0.4f
P(8m,6,V)=—EgVYqysind+E,V Yy, sin(6,— 9), >
@ 0.3}
Q(6m,6,V)=EgVY,ycosd+ELVY,,cod 6y,— 0) ozl
—(Yo+ Y V2. ol
In our numerical simulation, the load, the network, and the 0 , ,
generator parameter values are chosen t¢8he<,,,=0.4, 0 20 40 . 60 80 100
Kpy=0.3, Kgqu=-0.03, Ko, =—2.8, Kg,,=2.1, T=8.5,
Py=0.6, Qy=0.3, P1=0.0, Y,=3.33, Y,=5.0, P,=1.0, FIG. 3. ForQ,=2.5603784>Q,, an example of voltage col-

d,,=0.05,M=0.01464E,=1.05,6,=0, andd,,=0. lapse in the power systefiEq. (6)].
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(a) 0.59
0.61
0.5733 0.56}
z T
> >c
0.5367
0.53}
0sp ‘ :
0.5 05367 ~ 05733 0.61
" 035 0.53 0.56 0.59
(b) . . vn - .
0.53
_ FIG. 5. The return map foR,=2.560 3K Q, (before the cri-
\ / sis).
7 . .
0515 h stored for computing the control perturbation. When an ac-
JE Ay tual trajectory falls into the escaping gap, the computer se-
{ lects a target point such that the required perturbation to kick
05 the trajectory onto the target point is minimum. Perturbations
Conomow can be applied to the dynamical variableslirectly. Or, if
there is an accessible system paramptérat can be easily
0.5588 0.5601 0.5615 adjusted, perturbations can be applied to the parameter based

o on the difference between the trajectory point in the escaping
FIG. 4. The return maps constructed from the local minima ofwindow and the target poinﬂpZ(c?xlap)hargeAx. In this
Vf(t():) @ aﬁ‘;: the C”s'? ﬁQl:_Z'5603784_; antﬂb)ablciwulodpsrttw case, more information is needed: the partial derivatives
of (g near the cusp. There IS an escaping gap, enclosed between,; . In the power system modgEq. (6)], since all
lines Il and III,'in the middle through which atrajeptory asymptotes?Our dF;/)rLtgﬁ"leitcal Variar;)les Car): be perturt%g, (it )r]r;ay be conve-
o the state withv=0 (voltage collapse Two regions to the left o144 2001y control directly to these variables. As an ex-
(I-11) and the right(lll-1V) of the gap are the regions from which ample of control, Fig. @ shows a controlled time series
a set of target points are chosen for control. ! ' - . -
getp V(t). The required control perturbations are shown in Fig.
(b). In the time interval shown, only four small perturba-
. . . ons are required to sustain transient chaos. In general, the
a possible approach is to reduce th? |d@g to bring the average time interval for applying perturbations is approxi-

system back into the parameter regime where there is .ar%ately the average lifetime of the chaotic saddle. We stress

attractor. It is, however, not practical to change the load Ny : ;
. o ’ X at, for Eq.(6), perturbations are required only when the
relatively short time. Our strategy is thus to construct a re-, a-(6), p 9 y

. ; : system drifts into regime of transient chaos, because tran-
turn map based on previously measured time series and ent chaos is the culprit for voltage collapse in this model.
apply our _method of control. F|gur_e(_@ shows the return No control is required when disturbances occur so that the
map_ obtained from the Ipcal minima_o¥(t) for Ql. system drifts back into the region with an attracteither
=2.5603784>Q,.. There is an apparently escaping win- chaotic or periodig
dow below whichV(t) goes to zero quickly, as shown in
Fig. 4b), a blowup of part of Fig. @&). The vertical lines 5000
denote the regions from which target points are chosen. In
particular, these regions are the one between line | and line
II, and the one between line Ill and line IV. The escaping
window is the primary gap on the chaotic saddle, which is a
Cantor-like set. In contrast, before the crisis, there is no such
a gap in the return map, as shown in Fig. 5 f@Qn
=2.560 37. In this case, there is a chaotic attractor and there ‘
is no escaping window. To achieve control in the regime of ‘ |
transient chaos, we select a set of 3000 target points in the ; ‘
vicinity of the escaping window with long lifetime. Figure 6 | A “ IR j \i Il
shows the lifetime versus the value of local minima. The plot ‘ 3“ i “ P
is apparently not smooth, and in fact it contains an infinite o LI
number of singularities corresponding to points on the cha- 05 052 054, 05 038 06
otic saddle. This singular structure renders possible selection i
of desired target points. Each target point contains the values FiG. 6. Lifetime vs the local minima o¢(t) in the return map.
of four dynamical variables in Ed6), althoughV/(t) is al-  The plot contains an infinite number of singularities corresponding
ways at a local minimum. The set of target points is thento points on the chaotic saddle.

How to prevent voltage collapse? From Fig. 2, we see thag

4000}

30001

lifetime




1650 MUKESHWAR DHAMALA AND YING-CHENG LAl PRE 59

trolled for Q;>Q;.. We find that all 25000 initial condi-
tions can be controlled. In practice, this implies that voltage
collapse can be effectively prevented by using our control
method.

IV. EXAMPLE 2: SPECIES PRESERVATION
IN ECOLOGY

Extinction of species has been one of the biggest myster-
ies in naturg19]. A common belief about local extinction is
o 00 200 300 400 500 that it is typically caused by ex';ernal envwonmental factors
t such as sudden changes in climate. For a species of very
small population size, small random changes in the popula-
tion (known as “demographic stochasticity’tan also lead

0.02 ' to its extinction. Clearly, the question of how species extinc-
o tion occurs is extremely complex, as each species typically
Ng°'°15 lives in an environment that involves interaction with many
o other speciede.g., through competition for common food
‘% 0.01 sources, predator-prey interactions, ets well as physical
Ny factors such as the weather and disturban@esg., land-
¥ slides. From a mathematical point of view, a dynamical
‘“3%005 model for the population size of a species is complex, in-
volving temporal and spatial variations, external driving, and
% 00 200 300 400 500 random perturba_tions. Suc_h a system should,_ in ge_neral, be
t modeled by nonlinear partial differential equations with ran-

dom and/or regular external driving forces. A difficulty as-
sociated with this approach is that the analysis and numerical
solution of stochastic and/or driven nonlinear partial differ-
ential equations present an extremely challenging problem in
o ) ~mathematics.

A key question in any scheme of controlling transient  Nonetheless, in certain situations the problem of species
original basinB to be controlled 18]. Since the system per- suggested by McCann and YodZi§] that deterministic
forms normally before collapse and since control is activateghaos in very simple but plausible ecosystem models, math-
only whenV(t) falls into the escaping gap, we expect almostematically described by a set of coupled ordinary differential
all tl’ajectories to be controlled. To test this numerica”y, Weequationsy can provide a hint to how local Species extinction
choose a two-dimensional regiorV () in the four-  can occur without the necessity to consider temporal or spa-
dimensional phase space and locate the cross section of thg| variations and external factors. The key observation is
original basin with theV- &, plane, as shown in Fig. 8. We that population dynamics of a large class of ecosystems can
then uniformly distribute 25000 initial conditions in the pe effectively modeled by deterministic systefizd—23,
cross section and examine how many of them can be corgnd that the behavior of transient chaos is often typical in

such system§l,4]. For an ecosystem that exhibits transient
0.8 : - - - chaos, the implication is that the population size of some
species may behave chaotically forlang) period of time
and then decrease to zero in a relatively short period of time.
It was shown by McCann and Yodzj9] that such a tran-
sient chaotic behavior, which is responsible for species ex-
tinction, can indeed occur in a simple three-species food
chain model which incorporates biologically reasonable as-
sumptions about species interactions. We mention that the
phenomenon of extremely long chaotic transients can also
occur in other ecosystems, typically systems that involve
0.4 1 both temporal and spatial variatiofiz4]. Our idea is that if
species extinction is caused by transient chaos, then it is
. . . . possible for human being to intervene externally by applying
-10 5 5 2 35 50 perturbations so as to effectively prevent species from be-
coming extinct. The magnitude of the applied perturbation

FIG. 8. ForQ,=2.560 378 4 after the crisis, a two-dimensional C&n be made arbitrarily small, and the perturbations need to
cross section of the basin of the original attrackrWe find nu-  be applied only occasionally. As such, the natural dynamics
merically that almost all initial conditions chosen from this region Of the species population is hardly influenced, and yet, the
can be controlled. population, though still exhibiting chaotic behavior, will

FIG. 7. ForQ,=2.560378 4:(a) a controlled time serie¥(t);
and (b) required control perturbations. Apparently, only infrequent
perturbations are needed to prevent voltage collapse.

0.6f
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never become zero. The implication is that in a realistic eco- (@
logical environment, a very small amount of artificially im- 11
posed change to population sizes or some small disturbance
to the environment, only very rarely applied, can prevent

species extinction over long time scales. Potentially, our idea

a.
can be of paramount interest to the significant and growing €0.925
environmental problem of species preservation. E
We consider the following model of a simple three- é
species food chain by McCann and Yodg#d: a resource
species, a preyconsumey, and a predator. The population 075

densities of these three species, denoted®Rpy, andP for
resource, consumer, and predator, respectively, are governed 0.85 0.965 1.08
by the following equations: K

0.8

dR R} XcYcCR
K

at MR RERy

d—C=x ycR 1 _XPYPPC ®) o
dt  "°"\R+R, C+Cy '’ g 0.68
E
c
dpP ( ypC €
—=XpP| =1+ ,
dt P C+Cy 0.56

whereK is the resource carrying capacity, axgd, yc, Xp,
yp, Ry, andC, are parameters that are positive. The model 0.85 i 098 1.08
carries the following biological assumptiori§) The life his-
tories of each species involve continuous growth and over- FIG. 9. Bifurcation diagrams of the ecological model frgah
lapping generations, with no age structytieis permits the the local maxima andb) the local minima ofP(t).
use of differential equations(2) The resource population
(R) grows logistically.(3) Each consumer speci¢snmedi-  Ppa and local minimaP ., versusK. There is a period-
ate consumec, top consumeP) without food dies off ex- doubling cascade to chaos and a crisiKatK ~0.999 76.
ponentially. (4) Each consumer's feeding rat¢e.g., Figures 10a) and 1@b) show, forK=0.99<K_, the projec-
xcYcR/I(R+Ry)], saturates at high food levels. tions of the chaotic attractor onto tiie,P and(C,P) planes,
The resource population, growing alone, equilibrates ityespectively. It is apparent from these plots that the trajectory
carrying capacityK. The resource population and intermedi- [ R(t),C(t),P(t)] exhibits irregular and chaotic motion, but
ate consumer, without the top consumer, either settle to aone of the populations will become extinct because the cha-
stable equilibrium, or to a stable limit cycle, a kind of “bio- otic attractor is located in a phase-space region away from
logical oscillator.” The oscillations are generated by thethe origin[(R,C,P)=(0,0,0)]. In this parameter range, not
saturating feeding response, which permits the resource @l initial conditions yield motions on this chaotic attractor;
periodically “escape” control by the consumer. With the top there is in fact a second attractor, coexisting with the first
consumer, there are in a sense two coupled oscillators in thene. This attractor is a limit cycle located in the planePof
food chain. It is well known that coupled oscillators can lead= 0. Trajectories on this attractor thus correspond to the situ-
to complex dynamic¢see, for example, Reff25]). This pro-  ation where the top predator population is extinct. Therefore,
vides an intuitive insight into why the model can give rise tofor a fixed K=<K., depending on the choice of the initial
chaotic dynamics. condition, the system either asymptotes to the chaotic attrac-
Realistic values for parameters can be derived frontor or to the limit cycle withP=0. As the carrying capacity
bioenergetics. Following McCann and Yod4i8], in our K increases passing through the critical valye the preda-
study we fixxc=0.4,yc=2.009,xp,=0.08, andyp,=2.876 tor eventually becomes extinct for almost all initial condi-
so that both the consumer and the predator can be eithébns. This is quite counterintuitive, but it can be easily un-
invertebrate or vertebrate ectotherfesg., fish), with a rea-  derstood from the dynamics. AK=K_, a crisis occurs
sonable predator to pregonsumer to resourtdody mass where the tip of the chaotic attractor touches the basin
ratio. We also fixRy=0.16129 andC,=0.5. Although the boundary[1], after which there is transient chaos. Figure 11
above parameter choices are rather arbitrary, they are ecehows a time serieB(t) for K=1.02=P,. It can be seen
logically meaningful[9]. The resource carrying capacik that P(t) remains finite initially but decreases rapidly to
however, can be different in different environments. Thus wezero. Thus we see that a species extinction can indeed occur
vary K over some reasonable range to assess different dws a result of transient chaos.
namical behaviors of the system. One way to prevent extinction of the predator population
To understand how species extinction can occur in thés to decrease the resource carrying capakityo that sus-
model Eq.(8), it is insightful to look into the dynamics of the tained chaotic motion on the attractor is restored. But eco-
predator population from the perspective of chaos. Figurefogically, it may not be easy to adjust the carrying capacity
9(a) and 9b) show bifurcation diagrams of local maxima of an environment, and, if this can be done, it may take some
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(a) 0.75

0.7025¢

& 0.655[
=

0.60751

0.6

0.56 0.6075 %655 0.7025 0.76
n

FIG. 12. ForK=1.02 (after the crisig the return map con-
structed from the local minima d®(t). The existence of an escap-
ing region (Il-111) through which species extinction occurs is ap-
parent. The arrow illustrates how a trajectory escapes from the
chaotic saddle when falling into the escaping gap. The regions be-
tween lines | and Il and between lines Il and IV are the these from
which target points are chosen.

0.6

lines denote the regions from which target points are chosen
01 0.35 0.6 (the regions between lines | and I, and between lines Ill and

c IV). The escaping gap lies in between lines Il and Ill. We

FIG. 10. For the ecological modBEq. (8)] at K = 0.99 (before then select a set of target points in both the right and left

- N . vicinities of the primary gap for computing the control per-
the crisig, the projections of the chaotic attractor onto iteP) . . .
plane(a) and the(C,P) plane (b). turbations. Figures 18) and 13b) show a controlled time

seriesP(t) and the required magnitude of the perturbation
+[8C(1)]°+[JP(1)]°. It can be seen

time to do so after detecting that the predator population is iﬁxx(t)z VISRMT®

danger. It may occur that the predator will already have be-

come extinct before the carrying capacity is changed. Thus @)

we suggest the use of small but occasional adjustments to the 1.2

population at appropriate times to prevent species extinction.

From an ecological point of view, it may be more feasible to

make tiny adjustments to the local populations than to 0.8

change the carrying capacity of the environment. ‘
To apply control, we first construct a return map from the o

local minimaP,,, and identify the escape region, as shown

- ) . 0.4
in Fig. 12. The box enclosed by the dotted lines is the phase-
space region in which the chaotic saddle lies. The vertical
0
12 : . () 2000 4000
t
(b)
0.015
0.8
o
;A
o a 0.01
<
+
ke
0.4} =
oif 0.006
g2
0 : . 0
0 1000 2000 3000 0 2000 4000
t t

FIG. 11. A typical time serieP(t) after the crisis. It can be seen FIG. 13. ForK=1.02 (after the crisig (a) a controlled time
that P(t) finite remains initially but decreases rapidly to zero, sig- seriesP(t) for which extinction is preventedp) the required in-
nifying species extinction. frequent small control perturbations.
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that the required perturbations are indeed snjalX(t) 0.625
<0.015, compared with the size of the population which is

about oné and rarg only three perturbations are applied in a

time interval of (0, 400Q]. Numerical computations reveal

that the chaotic populatioRP(t) can be maintained practi-

cally indefinitely through the use of occasional and small
adjustments to all the populations, for almost all initial con- | £ 0.6035¢
ditions chosen in the original basin of the chaotic attractor.
Our approach can thus prevent species extinction effectively.

V. EXAMPLE 3: ELIMINATING UNDESIRABLE BURSTS
IN A CHEMICAL REACTION

0.582

The preceding two examples are for transient chaos 0.126 0.1355 0145

caused by boundary crises. There is another important class

of crisis, the interior crisis, in which a chaotic attractor sud- d

denly enlarges itself after a system parameter passes through

a critical value. Dynamically, an interior crisis is triggered by  FIG. 14. For the chemical reaction model E8), a bifurcation
the collision of a small chaotic attractor with a large chaoticdiagram for 0.12d<0.145. An interior crisis occurs al=d,
saddle near the attractpt,26,27. Interior crisis occurs ex- =~0.1356 adl is decreased.

tremely commonly in chaotic systems because there is at

least one event of interior crisis in every periodic wind@t/ where other parameters are set to bEL5,16

the end of the windoyy which is believed to be dense in _
parameter space. Physically, after an interior crisis, the dy(kl’kz’k3'k4’k5'k6’k7’k8’K)_(2’0'4’1'0’0'0001’0'5’0'0002'

namical variables exhibit intermittency in that a typical tra—O'OOS’O'OOGS’O'OOZ)' Adis decreased, an interior crisis oc-

jectory switches between distinct chaotic states in an intertY"s atd=d,~0.1356. Ford>d_, there is a small chaotic

mittent fashion. In applications it may be desirable to keepattrac'tor. At the inFerior crisis, thﬁs attractor collides with a
the trajectory in one chaotic state. The aim of this section i$haotic saddle which already exists fr-d.. Ford<d,,
to present an example to demonstrate that our control methdf€re is a larger attractor consisting of essentially the former
can be employed to eliminate undesirable chaotic state frorfimall chaotic attractor and the chaotic sad@e,27. A tra-
intermittent chaotic time series. jectory after the crisis typically visits both parts in an inter-
Our strategy is as follows. First, we construct a returnmittent fashion, leading to an intermittent time series, as
map by using local maximéor minima from a measured shown in Fig. 18) for d=0.135. Figure 1&) shows the
time series. Second, we identify, on the return map, a criticateturn map constructed from the local maxima of the time
region through which a switch from one chaotic state to anseries in Fig. 1&), where the critical regions through which
other occurs. We then run the system to determine a set &fwitching of the trajectory between the two chaotic states
target points near the critical region on the side of the desiroccurs are denoted by thick solid lines, and the desirable
able chaotic state. These target points are chosen such thiaotic state is confined between lines | and Il. Assuming
trajectories originated from them can follow the desirablethat the small amplitude chaotic state is the desirable one, we
chaotic state for relatively long time, and they are the onlygetermine from the return map a set of 3000 target points
mforma‘_uon n_eeded to achieve cqntrol if _perturbanns are t3rom which trajectories can stay in the small amplitude cha-
be applied directly to the dynamical variables. In real time,qtic state for at least 200 time units. Figure(d6shows a

whgn a trajectory falls into the critica! region, control pertur- controlled trajectory that only stays in the desirable chaotic
bations are applied to force the trajectory onto one of the"s,tate, and the required small perturbations are shown in Fig.

nearest target points. Desirable chaotic or periodic motior16(b) The controlled trajectory is in fact a periodic one em-
can then be maintained for a long period of time. o . ; _
S . .. bedded in the desirable chaotic state, since we apply the
To demonstrate our strategy for controlling interior crisis, I trol odically. Th its thus d rat
we consider the following model of a chemical reactionSMa% controt periodically. These resulls thus demonstrate
[15,16: that interior crisis in deterministic flow can also be controlled
to yield a sustained desirabfeeriodic motion[28,29.
. kaXy
X= k]_XZ— kzX— m + k4d,

VI. DISCUSSION

y=koX—ksy+keg, 9 In this work, we have studied a scheme to control tran-
sient chaos in general deterministic flows. In principle, the
z=Kk;—kxz—Kgz, control strategy does not require detailed knowledge of the

underlying dynamical equations: a time series and accessibil-
wherex, y and z are dynamical variables representing theity of dynamical variables are enough to achieve control.
concentrations of chemicals in the reactikf;-kg andK are Thus we expect our method, or some variants of it, to be
parameters, and we choodéo be the bifurcation parameter. applicable to practical situations where sustained periodic or
Figure 14 shows a bifurcation diagram for 01@<0.145, chaotic motion is desired.
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FIG. 15. For the chemical reaction model E§) at d=0.135 FIG. 16. Ford=0.135 (after the crisis (a) a controlled time

<d, (after the crisix (a) an intermittent chaotic time series; aflid  series where the corresponding trajectory is periodic and restricted
the return map constructed from the local maxima of the time serieg the desirable small chaotic state; giwl the required small per-

in (a). The desirable small-amplitude chaotic state lives in the returbations. This example shows that our method can be readily
gion bounded by lines | and II. adapted to stablizing periodic motion from transient chaos.

An important issue in any scheme of chaos control is_. . . .
; X - - inct, and(2) dynamically it should be sufficiently close to
noise. Typically noise can destabilize an already controlle h ivinal basinB. The planeP=P . th A
trajectory[10]. In the case of transient chaos, noise can b € onginal basins. 1he planer=Fe us represents a

devastating because a trajectory, when kicked out of the r(_:(::_ritical level of the endangered population at which human

gion of desirable chaotic motion by noise, can go to thdntervention must be introduced to prevent the extinction of

undesirable state, e.g., voltage collapse or extinction of &€ specie® [30]. Attimet, arbitrarily smallrandomadjust-
species, in an irreversible manner. Our control strategy isnents[ 6R(t), 6C(t),sP(t)] are made tall the populations
however, robust against noise in so far as the magnitude ¢ that the trajectory falls into a point, in the phase space,
control perturbations can exceed the noise level. This is bewithin a small ball centered aR(, ,C. ,P). With a non-
cause under the influence of noise, the return map becom@sro probability, the trajectory will be close to one of the
fuzzy, but the fuzziness hardly affect the control as we actipoints in the small ball with long lifetime so that sustained
vate the control whenever a dynamical variable falls into archaotic motion can be resumed. Insofar as the trajectory ex-
escaping region, although a precise control of a target poirécutes a recurrent chaotic motion fBr>P,; no external
becomes difficult. perturbations are necessary. The control is successful and,
The issue of noise thus motivates us to consider an alteffurther, we find that only small perturbations to the popula-
native way to sustain transient chaos. Specifically, we askjons are needed.
can control still be achieved if we randomly perturb the tra- The procedure we have presented in this paper applies
jectory to kick it back into the region of desirable chaotic generally to controlling transient chaos in deterministic
motion after a dynamical variable falls below a critical flows. The key feature of our metho@r a variant of it,
value? Take Eq(8), for example: what if we simply apply discussed in the preceding paragraisithat we set a control
some small kick so that the trajectory falls back into theregion based on the most relevant dynamical variable that is
region whereP>P_;=0.56. To address this guestion, we experimentally accessible. Control is activated only when the
have undertaken the following numerical experiment. Sawariable falls into the region. As such, only infrequent small
the populationP(t) falls slightly below the critical level at control perturbations are required, and we also overcome the
timet. Let (R_,C_,P_) be the values of the state variables difficulty caused by the more standard use of the discrete-
at this time, wherd® _<P.;, and let R, ,C, ,P.) be the  map-type of controlling procedure so that almost all transient
values of the state variables a little befarewhere P, chaotic trajectories can be controlled. To our knowledge, in
=P The criteria for choosin®;; are (1) ecologically it previously purposed methods for controlling transient chaos,
is chosen with respect to a population that can become exnly a fraction of trajectories can be controlled. Controlling
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