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Transient fractal behavior in snapshot attractors of driven chaotic systems

Ying-Cheng Lai
Departments of Physics and Astronomy and of Mathematics, University of Kansas, Lawrence, Kansas 66045

~Received 1 December 1998; revised manuscript received 5 April 1999!

Snapshot attractors, i.e., attractors formed by a cloud of trajectories at the same instants of time, are usually
employed to reveal the fractal structure of randomly or chaotically driven dynamical systems. A necessary
condition for the underlying fractal structure to be observed is that the ensemble of particles utilized in the
construction of the snapshot attractors are subject to identical perturbation at any instant of time. We examine
the influence of small phase-space inhomogeneity in the chaotic perturbation on the observability of the
snapshot fractal attractors. We find that, typically, fractal structure can be seen in only a transient period of
time. The scaling of the transient time with the amount of inhomogeneity is investigated. Implication to
experimental observation of fractal structure in physical systems is pointed out.@S1063-651X~99!02308-9#
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I. INTRODUCTION

The concept ofsnapshot attractorswas first proposed by
Romeiras, Grebogi, and Ott@1# to study the fractal structure
of chaotic attractors in randomly or chaotically driven d
namical systems. Consider a physical system that exhib
chaotic attractor. In a noiseless situation, the attractor t
cally exhibits a fractal structure that is caused by the und
lying chaotic dynamics. Such a fractal structure can be v
alized in the phase space if the chaotic system is lo
dimensional, that is, at each point along a trajectory on
attractor, there is a stable and an unstable direction.
boundedness of the phase-space region in which the attr
lies, together with an exponentialdivergence of distance
along the unstabledirection, stipulates that distances b
folded back on the unstable manifold, thus forming a frac
set of foliations in the stable direction@2,3#. Under the influ-
ence of small random perturbations, the fractal pattern mo
randomly in the phase space from time to time. As such
one examines a long trajectory produced by the dynam
one usually observes that the fractal structure is smeared
to a distance scale that is proportional to the strength of
perturbations. In order to see the fractal structure of the
derlying chaotic attractor, a remedy is to ‘‘freeze’’ the tim
and examine the snapshot patterns formed by an ensemb
trajectories. Starting with a cloud of uniformly distribute
initial conditions, after an initial transient time, one can i
deed see the fractal structure of the snapshot attractors@1,4#.
The details of the fractal structure differ from time to tim
but properties such as fractal dimensions remain invar
@1#, although such invariant properties may fluctuate sligh
about their nominal values in practical situations@5#. The
idea of snapshot attractors has also been used in labor
experiments to visualize and investigate fractal patterns a
ing in physical situations such as passive particles conve
on the surface of fluid@6#. More recently, snapshot attracto
were utilized to study the transition to chaos in quasiperio
cally driven dynamical systems@7#.

A necessary condition for snapshot attractors to exh
fractal structures is that at any instant of time, the influen
of the random perturbation onevery trajectory in the cloud
PRE 601063-651X/99/60~2!/1558~5!/$15.00
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must be identical. The reason is that the difference in
random perturbation to different trajectories in the cloud c
be regarded as a phase-space diffusion, which, when
large enough, can smear out the fractal structure eve
snapshot attractors. To be more specific, consider l
dimensional driven chaotic systems described by the follo
ing map:

xn115F~xn ,yn!, ~1!

wherexPRNx andyPRNy represent random or chaotic driv
ing. Now imagine that as time progresses, we move the f
tal pattern within a phase-space region in a random fash
In order to see the fractal structure, we must move theentire
pattern at any instant of time. That is, every point on t
attractor must be shifted by an identical amount to prese
the fractal pattern. Thus, the random perturbationsyn must
not depend on the phase-space variablexn @1,4#. It they do,
the fractal structure of the snapshot attractor will be smea
approximately by an amount proportional to the magnitu
of the perturbation. Due to chaos in the driving system,
fractal pattern will be less and less visible because
amount of ‘‘fuzziness’’ in the phase space is magnified e
ponentially in time. As such, it is not possible to observe
fractal structure even in the snapshot attractor for a lo
time.

The aim of this paper is to address to what extent frac
snapshot attractors can be observed in dynamical sys
driven by random or chaotic perturbations that depends o
weakly on the dynamical variables. We call such weak
pendencephase-space inhomogeneity. Specifically, we con-
sider dynamical systems described by Eq.~1! and assume
that the chaotic driving signal comes from the following pr
cess:

yn115G~yn ,exn!, ~2!

whereG is a nonlinear map ande*0 represents the amoun
of weak phase-space inhomogeneity. Note that whene50,
the x dynamics do not influence they dynamics and, hence
Eqs.~1! and~2! represent aunidirectionally coupled~from y
to x! system. Suppose we choose an ensemble of initial c
ditions x0 and evolve them according to Eqs.~1! and ~2!.
1558 © 1999 The American Physical Society
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If e50, then at any instant of timen, the perturbations to
every trajectory in the ensemble are identical. In this cas
snapshot image of all these trajectory points would reve
fractal structure@1#. If, however,e*0, this phase-space in
homogeneity will be amplified exponentially due to the ch
otic nature of the driving~2!, and finite scale fractal struc
tures can be seen in the snapshot attractorsfor only a
transient period of time. We find that the average transie
time t is typically short, and it scales withe as

t'a ln
1

e
1b, ~3!

where the proportional constanta is approximately the in-
verse of the largest Lyapunov exponent of Eq.~2!. The im-
plication of the scaling relation~3! is that in order to observe
fractal snapshot attractors for a long time, the phase-sp
inhomogeneity must be small and/or the driving system
only weakly chaotic. For unidirectionally coupled system
wheree50, Eq. ~3! givest5`, so fractal patterns in snap
shot attractors can be observed indefinitely.

II. NUMERICAL RESULTS

Consider the following two-dimensional Ikeda-Hamme
Jones-Moloney map@8#:

xn115a1b~xn cosfn2yn sinfn!,
~4!

yn115b~xn sinfn1yn fn!,

with the following phase variablefn :

fn5k2p/~11xn
21yn

2!12pun , ~5!

whereun represents the random or chaotic driving anda, b,
k, andp are parameters. The Ikeda-Hammel-Jones-Molo
map models the dynamics of an optical pulse propagatin
a ring cavity, subject to partial reflection, phase and am
tude modulation and distortion due to a nonlinear opti
medium in the cavity. Specifically, the optical field is repr
sented by the complex variablez5x1 iy , the parametera
and b quantify the splitting of the optical field at variou
mirrors in the cavity, the termp/(11xn

21yn
2) simulates the

phase modulation due to the nonlinear medium, and the
rameterk characterizes the optical detuning of the cavity
the absence of a nonlinear medium. The random perturba
un can be regarded as coming from the temporal fluctuati
of the nonlinear optical medium, or from the interaction w
another chaotic optical cavity. To model the effect of pha
space inhomogeneity in the driving, we assume thatu comes
from the following chaotic logistic map@9#:

un1153.75un~12un!1exn . ~6!

Note that Eqs.~4! and~6! are actually a system of two bidi
rectionally coupled nonidentical chaotic maps. We cho
(a,b,k,p)5(0.85, 0.9, 0.4, 5.18), so the Ikeda-Hamm
Jones-Moloney map, in the absence of perturbationun , ex-
hibits a chaotic attractor, which apparently has a frac
structure@8#.
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We first examine the case of unidirectional coupli
wheree50 so that the~x,y! dynamics in Eq.~4! does not
influence theu dynamics in Eq.~6!. Due to the coupling to
the ~x,y! dynamics from theu dynamics, the fractal structur
in the chaotic attractor of the Ikeda-Hammel-Jones-Molon
map is smeared if a single long trajectory is examined,
shown in Fig. 1. But since there is no coupling from the~x,y!
dynamics to theu dynamics~no phase-space inhomogen
ity!, the underlying fractal geometry of the chaotic attrac
in Eq. ~4! can still be revealed by observing snapshot attr
tors, as shown in Figs. 2~a!–2~d! at time n51000, 2000,
3000, and 4000, respectively. To obtain Figs. 2~a!–2~d!, we
choose a grid of 1283128 initial conditions uniformly dis-
tributed in the phase-space region:~22.0<x<4.0, 22.5
,y,2.5! and evolve all these initial conditions according
Eqs.~4!, ~5!, and~6! under the conditione50. We see that
for unidirectionally coupled systems, the fractal pattern
the snapshot attractors can indeed be observed for an
trarily long time, and it is known that snapshot attracto
possess the same multifractal geometry as that of the cha
attractor in the absence of random perturbations@1#.

We now examine the effect of weak phase-space inho
geneity on snapshot attractors. Figures 3~a!–3~j! show, for
e510216, the snapshot attractors from the same set of ini
conditions used to obtain Figs. 2~a!–2~d!, at times n
510,20,...,100, respectively. We see that the snapshot at
tors are apparently fractal for 20&n&80, beyond which time
the fractal structure is smeared out. The apparently nonf
tal behavior at very short time, e.g. atn510, is due to the
fact that it takes a finite amount of time for the cloud
trajectories to settle down to the chaotic attractor. Ase is
increased, the time interval for fractal snapshot attractor
be observed decreases, as shown in Figs. 4~a!–4~j!, where
e510210. To measure the average transient time intervat
in which snapshot attractors are apparently fractal, we
the following box-counting procedure. We divide the phas
space region from which the initial conditions are chos
into a grid of 2003200 boxes. We then count, at each insta

FIG. 1. For the Ikeda-Hammel-Jones-Moloney map, a smea
chaotic attractor from a single trajectory of 50 000 points under
influence of small random noise.
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FIG. 2. Fractal snapshot attractors observed
the Ikeda-Hammel-Jones-Moloney map at tim
n51000 ~a!, n52000 ~b!, n53000 ~c!, and n
54000 ~d!, wheree50.

FIG. 3. For the chaotically driven Ikeda
Hammel-Jones-Moloney map with phase-spa
inhomogeneitye510216, the snapshot attractor
at timesn510,20,...,100~a!–~j!.

FIG. 4. For the chaotically driven Ikeda
Hammel-Jones-Moloney map with phase-spa
inhomogeneitye510210, the snapshot attractor
at timesn510,20,...,100~a!–~j!.
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FIG. 5. ~a!–~d! The number of nonempty
boxesN(t) versust for e51026, 1029, 10212,
and 10215, respectively.
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of time n, the number of nonempty boxesN(t). For small
time, since the trajectories have not come close to the cha
attractor, we expect to observe a large number of occup
boxes. As the trajectories begin to settle down in the vicin
of the chaotic attractor,N(t) starts to decrease and reach
small value and remains approximately at this value wh
the snapshot attractors are apparently fractal. When the e
of phase-space inhomogeneity in the driving begins to t
over so that the fractal structure becomes smeared, we ex
the number of nonempty boxes to increase. The time inte
in which N(t) remains approximately at constant is taken
be the average transient timet. Figures 5~a!–5~d! showN(t)
versust for e51026, 1029, 10212, and 10215, respectively.
We see that compared with the order of magnitude of
crease ine, the transient timet only increases incremently
Figure 6 showst versus log10e, where we observe the sca
ing relation ~3!. The slope in the plot is approximatel
25.75, which givesa'5.75/ln 10'2.5. We notice that the
Lyapunov exponent of Eq.~6! is about 0.36, the inverse o
which is approximately 2.78. This agrees reasonably w
with the result in Fig. 6. These features appear to be gen
regardless of the specific choice of the chaotic map or
chaotic driving@10#.

FIG. 6. The average transient timet versus log10 e.
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III. HEURISTIC ARGUMENT FOR THE SCALING
RELATION „3…

We now give a heuristic argument for the scaling beh
ior observed in Fig. 6. To do so, it is necessary to define
Lyapunov exponents of both Eqs.~1! and ~2!. Since, how-
ever, Eqs.~1! and ~2! are coupled together, their Lyapuno
exponents are in fact thesub-Lyapunov exponentsthat were
originally introduced in the context of chaos synchronizati
@11#. Let l i

x ( i 51,...,Nx) and l j
y ( j 51,...,Ny) be the

Lyapunov exponents of the subsystems Eqs.~1! and ~2!, re-
spectively. Mathematically, the exponents can be defined
follows:

l i
x5 lim

N˜`

1

N (
n51

N

lnZ]F

]xU
~xn ,yn!

•uiZ, i 51,...,Nx

~7!

l j
y5 lim

N˜`

1

N (
n51

N

lnU]G

]yU
~xn ,yn!

•vjU , j 51,...,Ny

where (]F/]x)u(xn ,yn) and (]G/]y)u(xn ,yn) are the Jacobian
matrices of Eqs.~1! and ~2! evaluatedalong a coupled tra-
jectory (xn ,yn), ui ( i 51,...,Nx) is a unit vector in thei th
eigendirection in the tangent space of Eq.~1!, and vj ( j
51,...,Ny) is a unit vector in thej th eigendirection in the
tangent space of Eq.~2!. These vectors can be obtained b
using the standard Gran-Schmit orthogonalization proced
@12#.

Say we choose a cloud of initial conditions uniform
distributed in a phase-space region covering the attracto
the subsystemx. Let d be the smallest distance scale to r
solve the fractal structure in an observation. Roughly,
time Tx for the cloud to settle down to a fractal set of res

lution d can be estimated frome2ulNx

x uTx;d. We obtain,Tx

;2 ln d/ulNx

x u. In order to be able to observe the fractal stru

ture, the amount of phase-space inhomogeneitye must be
smaller thand. The timeTy for diffusion to reach the dis-
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tance scaled in the x subsystem satisfieseel1
yTy;d. We

obtainTy;(ln d2ln e)/l1
y . Thus, the time window for a frac

tal snapshot attractor to be observed is

t5Ty2Tx;
2 ln e

l1
y 1 ln dS 1

l1
y 1

1

ulNx

x u D , ~8!

which gives the scaling relation~3!. Demandingt.0, we
obtain the maximum value of the phase-space inhomogen
for a fractal snapshot attractor of resolutiond to be ob-
served: e,de2D, whereD[11l1

y/ulNx

x u.

IV. DISCUSSIONS

We remark that the phenomenon of transient fractal sn
shot attractors has some implications to the study of fra
geometry in high-dimensional chaotic systems, i.e., syst
with more than one positive Lyapunov exponents. Consi
the following general class of high-dimensional systems,

xn115f~xn ,exyn!,
~9!

yn115g~yn ,eyxn!,

where bothf andg are chaotic maps andex andey are two
parameters characterizing the coupling fromx to y and vice
versa. The system setting of Eq.~9! arises naturally in the
context of coupled chaotic oscillators, which has become
area of intense recent interest@13#. The mapsf andg can be
noninvertible@14#. In order to study the fractal geometry o
system Eq.~9!, we assume that when the two maps are
o
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coupled, i.e., whenex5ey50, both mapsf~x! and g~y! ex-
hibit a chaotic attractor with one positive Lyapunov exp
nent and the attractor has a fractal structure in their o
phase spacex and y. When couplings are present, the co
pling termsexy andeyx can be regarded as two driving term
to the x and y dynamics, respectively. Sincey and x are
chaotic variables, the problem effectively becomes that
studying fractals of randomly driven chaotic systems. In
itively we expect snapshot attractors in thex or y space to
reveal the fractal structures in the absence of couplin
Nonetheless, due to coupling, the influence of driving is
homogeneous in both thex and y subspaces. The phase
space inhomogeneity of the chaotic driving thus become
potential obstacle for observing low-dimensional frac
structures in high-dimensional chaotic systems. The fact
fractal snapshot attractors have been observed in labora
experiments such as passive particles convected on the
face of fluids@6# indicates that the experimental conditio
may be such that the amount of phase-space inhomoge
in the fluid surface is near zero~the coupling between the
dynamics in the direction orthogonal to the fluid surface a
the dynamics of the passive scalar on the surface of the fl
is nearly unidirectional! or, the dynamics of the driving is
only weakly chaotic with a near zero positive large
Lyapunov exponent.

ACKNOWLEDGMENTS

This work was supported by the NSF under Grant N
PHY-9722156 and by AFOSR under Grant No. F49620-9
1-0400.
a-

-

rs.
or
sed
. F.

n

(

@1# F. J. Romeiras, C. Grebogi, and E. Ott, Phys. Rev. A41, 784
~1990!.

@2# K. Alligood, T. Sauer, and J. A. Yorke,Chaos: An Introduc-
tion to Dynamical Systems~Springer, New York, 1997!.

@3# J. L. Kaplan and J. A. Yorke, inFunctional Differential Equa-
tions and Approximations of Fixed Points, edited by H.-O.
Peitgen and H.-O. Walter, Lecture Notes in Mathematics, V
730 ~Springer, Berlin, 1979!.

@4# L. Yu, E. Ott, and Q. Chen, Phys. Rev. Lett.65, 2935~1990!;
Physica D53, 102 ~1991!.

@5# A. Namenson, E. Ott, and T. M. Antonsen, Phys. Rev. E53,
2287 ~1996!.

@6# J. C. Sommerer and E. Ott, Science259, 335 ~1993!.
@7# Y.-C. Lai, U. Feudel, and C. Grebogi, Phys. Rev. E54, 6070

~1996!.
@8# K. Ikeda, Opt. Commun.30, 257~1979!; S. M. Hammel, C. K.

R. T. Jones, and J. Moloney, J. Opt. Soc. Am. B2, 552~1985!.
@9# R. M. May, Nature~London! 261, 459 ~1976!.
l.

@10# We tested different choices of chaotic maps in Eqs.~1! and~2!

such as two bidirectionally coupled nonidentical Iked
Hammel-Jones-Moloney maps and found similar results.

@11# L. M. Pecora and T. L. Carroll, Phys. Rev. Lett.64, 821
~1990!; Phys. Rev. A44, 2374~1991!.

@12# G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, Mec
canica15, 21 ~1980!.

@13# There is a large amount of literature on coupled oscillato
Even an abbreviated list of references is prohibitively long. F
a list of representative papers in optical, chemical, conden
matter, biological, neural network and other systems, see J
Heagy, T. L. Carroll, and L. M. Pecora, Phys. Rev. E50, 1874
~1994!.

@14# For an N-dimensional autonomous flow, a
(N21)-dimensional Poincare´ surface of section is typically
invertible. However, returns maps of dimensions less thanN
21) constructed from the flow are typically noninvertible.


