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Transient fractal behavior in snapshot attractors of driven chaotic systems
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Snapshot attractors, i.e., attractors formed by a cloud of trajectories at the same instants of time, are usually
employed to reveal the fractal structure of randomly or chaoctically driven dynamical systems. A necessary
condition for the underlying fractal structure to be observed is that the ensemble of particles utilized in the
construction of the snapshot attractors are subject to identical perturbation at any instant of time. We examine
the influence of small phase-space inhomogeneity in the chaotic perturbation on the observability of the
snapshot fractal attractors. We find that, typically, fractal structure can be seen in only a transient period of
time. The scaling of the transient time with the amount of inhomogeneity is investigated. Implication to
experimental observation of fractal structure in physical systems is pointeflSA63-651X%99)02308-9

PACS numbds): 05.45-a

[. INTRODUCTION must be identical. The reason is that the difference in the
random perturbation to different trajectories in the cloud can
The concept obnapshot attractorsvas first proposed by be regarded as a phase-space diffusion, which, when it is
Romeiras, Grebogi, and Ott] to study the fractal structure large enough, can smear out the fractal structure even in
of chaotic attractors in randomly or chaotically driven dy- shapshot attractors. To be more specific, consider low-
namical systems. Consider a physical system that exhibits @mensional driven chaotic systems described by the follow-
chaotic attractor. In a noiseless situation, the attractor typiln9 map:
cally exhibits a fractal structure that is caused by the under-
lying chaotic dynamics. Such a fractal structure can be visu-
alized in the phase space if the chaotic system is lowwherexe RNx andy e RNy represent random or chaotic driv-
dimensional, that is, at each point along a trajectory on théng. Now imagine that as time progresses, we move the frac-
attractor, there is a stable and an unstable direction. Theal pattern within a phase-space region in a random fashion.
boundedness of the phase-space region in which the attractbr order to see the fractal structure, we must moveethire
lies, together with an exponentigivergence of distances pattern at any instant of time. That is, every point on the
along the unstabledirection, stipulates that distances be attractor must be shifted by an identical amount to preserve
folded back on the unstable manifold, thus forming a fractathe fractal pattern. Thus, the random perturbatigpsnust
set of foliations in the stable directi¢@,3]. Under the influ-  not depend on the phase-space variafj¢1,4]. It they do,
ence of small random perturbations, the fractal pattern movei§ie fractal structure of the snapshot attractor will be smeared
randomly in the phase space from time to time. As such, iBPProximately by an amount proportional to the magnitude
one examines a long trajectory produced by the dynamichf the perturbation. Due to chaos in the .dr.iving system, the
one usually observes that the fractal structure is smeared offgctal pattern will be less and less visible because the
to a distance scale that is proportional to the strength of th8Mount of “fuzziness” in the phase space is magnified ex-
perturbations. In order to see the fractal structure of the unponentlally In time. As .SUCh’ it is not possible to observe a
derlying chaotic attractor, a remedy is to “freeze” the time fractal structure even in the snapshot attractor for a long
and examine the snapshot patterns formed by an ensemble
trajectories. Starting with a cloud of uniformly distributed

Xn+1=F(Xn,Yn), (1

The aim of this paper is to address to what extent fractal
o " - . . ~~ snapshot attractors can be observed in dynamical systems
initial conditions, after an initial transient time, one can in- driven by random or chaotic perturbations that depends only
deed see the fractal structure of the snapshot attrddiofs  \eakly on the dynamical variables. We call such weak de-
The details of the fractal structure differ from time to time, pendencephase-space inhomogenei§pecifically, we con-
but properties such as fractal dimensions remain invariant;ya, dynamical systems described by Ef). and assume

[1], although such invariant properties may fluctuate slightlyynat the chaotic driving signal comes from the following pro-
about their nominal values in practical situatiofg. The

idea of snapshot attractors has also been used in laboratory
experiments to visualize and investigate fractal patterns aris- Yn+1=G(Yn,€Xy), (2
ing in physical situations such as passive particles convected
on the surface of fluidl6]. More recently, snapshot attractors whereG is a nonlinear map ané=0 represents the amount
were utilized to study the transition to chaos in quasiperiodi-of weak phase-space inhomogeneity. Note that wéed,
cally driven dynamical systenig]. the x dynamics do not influence thedynamics and, hence,

A necessary condition for snapshot attractors to exhibiqgs.(1) and(2) represent anidirectionally coupledfromy
fractal structures is that at any instant of time, the influencdo x) system. Suppose we choose an ensemble of initial con-
of the random perturbation ogverytrajectory in the cloud ditions Xy and evolve them according to Eqd) and (2).
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If e=0, then at any instant of time, the perturbations to 4
every trajectory in the ensemble are identical. In this case, &
shapshot image of all these trajectory points would reveal a
fractal structure1]. If, however,e=0, this phase-space in-
homogeneity will be amplified exponentially due to the cha-
otic nature of the driving?2), and finite scale fractal struc-
tures can be seen in the snapshot attracforsonly a
transient period of timeWe find that the average transient

time 7 is typically short, and it scales withas > o
1t
1
T~aln—+p, 3
€ ot
where the proportional constantis approximately the in- 3t
verse of the largest Lyapunov exponent of E2). The im-
plication of the scaling relatio(8) is that in order to observe -4 : s ; :
fractal snapshot attractors for a long time, the phase-spact -3 -2 -1 0 1 2 3 4

inhomogeneity must be small and/or the driving system is
only weakly chaotic. For unidirectionally coupled systems
wheree=0, Eq.(3) gives 7=, so fractal patterns in snap-
shot attractors can be observed indefinitely.

FIG. 1. For the Ikeda-Hammel-Jones-Moloney map, a smeared
chaotic attractor from a single trajectory of 50 000 points under the
influence of small random noise.

Il NUMERICAL RESULTS We first examine the case of unidirectional coupling

Consider the following two-dimensional Ikeda-Hammel- where e=0 so that the(x,y) dynamics in Eq.(4) does not

Jones-Moloney maf8]: influence thed dynamics in Eq(6). Due to the coupling to
the (x,y) dynamics from the& dynamics, the fractal structure
Xni1=a+b(x,cos¢,—y,sined,), in the chaotic attractor of the Ikeda-Hammel-Jones-Moloney
(4) map is smeared if a single long trajectory is examined, as
Yni1=b(XpSiNdp+Yn, bn), shown in Fig. 1. But since there is no coupling from tkg)
dynamics to thed dynamics(no phase-space inhomogene-
with the following phase variablé,, : ity), the underlying fractal geometry of the chaotic attractor
in Eq. (4) can still be revealed by observing snapshot attrac-
dn=k—pl(1+X2+y2)+2m0),, (5)  tors, as shown in Figs.(8-2(d) at time n=1000, 2000,

3000, and 4000, respectively. To obtain Fig&)22(d), we
where ¢,, represents the random or chaotic driving and, choose a grid of 128128 initial conditions uniformly dis-
k, andp are parameters. The lkeda-Hammel-Jones-Moloneyributed in the phase-space regioni—2.0<x<4.0, —2.5
map models the dynamics of an optical pulse propagating ir<y<2.5) and evolve all these initial conditions according to
a ring cavity, subject to partial reflection, phase and ampli€gs.(4), (5), and(6) under the conditiore=0. We see that
tude modulation and distortion due to a nonlinear opticalfor unidirectionally coupled systems, the fractal pattern in
medium in the cavity. Specifically, the optical field is repre-the snapshot attractors can indeed be observed for an arbi-
sented by the complex variable=x+iy, the parametea  trarily long time, and it is known that snapshot attractors
and b quantify the splitting of the optical field at various possess the same multifractal geometry as that of the chaotic
mirrors in the cavity, the termp/(1+x2+y?2) simulates the attractor in the absence of random perturbatidrs
phase modulation due to the nonlinear medium, and the pa- We now examine the effect of weak phase-space inhomo-
rameterk characterizes the optical detuning of the cavity ingeneity on snapshot attractors. Figuréa)33(j) show, for
the absence of a nonlinear medium. The random perturbatios= 10" *°, the snapshot attractors from the same set of initial
6, can be regarded as coming from the temporal fluctuationsonditions used to obtain Figs.(€2-2(d), at times n
of the nonlinear optical medium, or from the interaction with = 10,20,...,100, respectively. We see that the snapshot attrac-
another chaotic optical cavity. To model the effect of phasetors are apparently fractal for 2h=80, beyond which time
space inhomogeneity in the driving, we assume thewmes the fractal structure is smeared out. The apparently nonfrac-

from the following chaotic logistic maf9]: tal behavior at very short time, e.g. a& 10, is due to the
fact that it takes a finite amount of time for the cloud of
0,11=3.750,(1— 6,) + €X,, . (6) trajectories to settle down to the chaotic attractor. As

increased, the time interval for fractal snapshot attractors to
Note that Eqs(4) and(6) are actually a system of two bidi- be observed decreases, as shown in Fig®—4(j), where
rectionally coupled nonidentical chaotic maps. We choose=10 1°. To measure the average transient time intetval
(a,b,k,p)=(0.85,0.9,0.4,5.18), so the Ikeda-Hammel-in which snapshot attractors are apparently fractal, we use
Jones-Moloney map, in the absence of perturbatipnex-  the following box-counting procedure. We divide the phase-
hibits a chaotic attractor, which apparently has a fractabpace region from which the initial conditions are chosen
structure[8]. into a grid of 200< 200 boxes. We then count, at each instant
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FIG. 2. Fractal snapshot attractors observed in
the Ikeda-Hammel-Jones-Moloney map at time
n=1000 (a), n=2000 (b), n=3000 (c), and n
=4000(d), wheree=0.

FIG. 3. For the chaotically driven lkeda-
Hammel-Jones-Moloney map with phase-space
inhomogeneitye=10"18, the snapshot attractors
at timesn=10,20,...,100a)—(j).

FIG. 4. For the chaotically driven lkeda-
Hammel-Jones-Moloney map with phase-space
inhomogeneitye=10"1°, the snapshot attractors
at timesn=10,20,...,100a)—(j).
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of time n, the number of nonempty box&¢(t). For small ll. HEURISTIC ARGUMENT FOR THE SCALING
time, since the trajectories have not come close to the chaotic RELATION (3)

attractor, we expect to obser\_/e a large numbe_r of OC.(:L.Jp.'ed We now give a heuristic argument for the scaling behav-
boxes. As the trajectories begin to settle down in the vicinity:.

: ior observed in Fig. 6. To do so, it is necessary to define the
of the chaotic attractor'l,\l(t) starts. to decrease' and reach aLyapunov exponents of both Eqel) and (2). Since, how-
small value and remains approximately at this value whe

réver, Egs(1) and (2) are coupled together, their Lyapunov

the snapshot attractors are apparently fractal. When the effe&&ponents are in fact thgub-Lyapunov exponentisat were

of phase-space inhomageneity in the driving begins to tak%riginally introduced in the context of chaos synchronization
over so that the fractal structure becomes smeared, we exp tl] Let \* (i=1,.N) and AV (j=1,..N,) be the
. i — Ly Ny J — Ly y.

the number of nonempty boxes to increase. The time interv yapunov exponents of the subsystems Eaand (2), re-

in which N(t) remains approximately at constant is taken to . : .
be the average transient timeFigures %a)—5(d) showN(t) ?(g)lﬁo(\:/t/l;/-ely. Mathematically, the exponents can be defined as

versust for e=107°, 107°, 1072 and 10''°, respectively.
We see that compared with the order of magnitude of de-

N

crease ine, the transient timer only increases incremently. N dF o

: )\-—I|m—2 In|— “Ui|, 1=1,...Ny
Figure 6 showsr versus logg e, where we observe the scal- BRI \ = R )¢ % y)
ing relation (3). The slope in the plot is approximately n¥n -
—5.75, which givese~5.75/In 16=2.5. We notice that the ) (7)
Lyapunov exponent of Eq6) is about 0.36, the inverse of Vo i 1 2 | G o
which is approximately 2.78. This agrees reasonably well Aj _NImNn=1 n 07_y( )'Vj c 1=10Ny

— 0 Xn 'yn

with the result in Fig. 6. These features appear to be general,
regardless of the specific choice of the chaotic map or the _
chaotic driving[10]. where @F/9x)|(x_ vy and @G/dy)|, y, are the Jacobian
matrices of Eqs(1) and (2) evaluatedalong a coupled tra-
jectory (X,,Yn), Ui (i=1,...N,) is a unit vector in theth
eigendirection in the tangent space of Ed), andv; (j
=1,..N,) is a unit vector in thejth eigendirection in the
tangent space of Eq2). These vectors can be obtained by
using the standard Gran-Schmit orthogonalization procedure
[12].

Say we choose a cloud of initial conditions uniformly
distributed in a phase-space region covering the attractor of
the subsystenx. Let 6 be the smallest distance scale to re-
solve the fractal structure in an observation. Roughly, the
time T, for the cloud to settle down to a fractal set of reso-

S it 12 0 = & lution & can be estimated frora™ ",/ T~ 8. We obtain,T,
logy € ~—In 6/|)\>,§X|. In order to be able to observe the fractal struc-
10

ture, the amount of phase-space inhomogeneityiust be
FIG. 6. The average transient timeversus log €. smaller thané. The timeT, for diffusion to reach the dis-
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tance scaled in the x subsystem satisfiese’Tv~ 5. We  coupled, i.e., wher, = e,=0, both maps(x) andg(y) ex-
obtainT,~ (In §—In €)/A]. Thus, the time window for a frac- hibit a chaotic attractor with one positive Lyapunov expo-
tal snapshot attractor to be observed is nent and the attractor has a fractal structure in their own
phase spacg andy. When couplings are present, the cou-
g L ®) pling termse,y ande,x can be regarded as two driving terms
NN to the x andy dynamics, respectively. Sincg and x are
* chaotic variables, the problem effectively becomes that of
which gives the scaling relatiof8). Demanding=>0, we  studying fractals of randomly driven chaotic systems. Intu-
obtain the maximum value of the phase-space inhomogeneiffively we expect snapshot attractors in theor y space to
for a fractal snapshot attractor of resolutidhto be ob- reveal the fractal structures in the absence of couplings.
served: e<de P, whereD=1+\J/|\} |. Nonetheless, due to coupling, the influence of driving is not
X homogeneous in both the andy subspaces. The phase-
space inhomogeneity of the chaotic driving thus becomes a
IV. DISCUSSIONS potential obstacle for observing low-dimensional fractal
We remark that the phenomenon of transient fractal snapstructures in high-dimensional chaotic systems. The fact that
shot attractors has some implications to the study of fractaractal snapshot attractors have been observed in laboratory
geometry in high-dimensional chaotic systems, i.e., system@xperiments such as passive particles convected on the sur-
with more than one positive Lyapunov exponents. Consideface of fluids[6] indicates that the experimental condition

the following general class of high-dimensional systems, ~May be such that the amount of phase-space inhomogeneity
in the fluid surface is near zerghe coupling between the

—Ine 1

T=Ty—TX~ T+In o
1

Xn+1=T(Xn, €Yn), dynamics in the direction orthogonal to the fluid surface and
(99  the dynamics of the passive scalar on the surface of the fluid
Yn+1=9(Yn, €yXn), is nearly unidirectionalor, the dynamics of the driving is

only weakly chaotic with a near zero positive largest

where bothf andg are chaotic maps anel and e, are two Lyapunov exponent.

parameters characterizing the coupling frarno y and vice
versa. The system setting of E@®) arises naturally in the
context of coupled chaotic oscillators, which has become an
area of intense recent inter¢48]. The maps andg can be This work was supported by the NSF under Grant No.
noninvertible[14]. In order to study the fractal geometry of PHY-9722156 and by AFOSR under Grant No. F49620-98-
system Eq(9), we assume that when the two maps are un-1-0400.
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