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Universal behavior in the parametric evolution of chaotic saddles
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Chaotic saddles are nonattracting dynamical invariant sets that physically lead to transient chaos. As a
system parameter changes, chaotic saddles can evolve via an infinite number of homoclinic or heteroclinic
tangencies of their stable and unstable manifolds. Based on previous numerical evidence and a rigorous
analysis of a class of representative models, we show that dynamical invariants such as the topological entropy
and the fractal dimension of chaotic saddles obey a universal behavior: they exhibit a devil-staircase charac-
teristic as a function of the system paramef&1063-651X99)01605-0

PACS numbds): 05.45-a

Chaotic saddles are nonattracting dynamical invariant setsntropy or the fractal dimension, one finds that the change of
in the phase space of nonlinear systdihs3|. A trajectory  these invariants as a function of the system paranuetypi-
starting from a random initial condition in a phase-spacecally exhibits adevil-staircasetype of behavior. That is, in
region containing a chaotic saddle typically stays near théhe parameter intervdp,,p»], the dynamical invariants re-
saddle exhibiting a chaoticlike dynamics for a finite amountmain constant or change smoothly in almost all the intervals,
of time before exiting the region eventually and asymptotingbut, at a set of an infinite number of parameter values of
to a final state(usually not chaotic Chaos in this case is Lebesgue measure zero, they chaageuptly. To establish
only transient. Physically, chaotic saddles lead to observableniversality of the devil-staircase behavior, we study an ana-
phenomena such as chaotic scatteridd, fractal basin lyzable model that captures the essential dynamical features
boundarie$5], and passive particle advection in open hydro-involved in the evolution of chaotic saddles: the sequence of
dynamical flows[6]. Mathematically, chaotic saddles are tangencies between the stable and unstable manifolds.
closed, bounded, and invariant sets having a dense orbit. Before we proceed with our analysis, we wish to point out
They are the soul of chaotic dynamikca. the following three physical contexts in which the evolution

A central problem in chaotic dynamics concerns how aof chaotic saddle and the devil-staircase behavior are rel-
dynamical invariant set evolves or bifurcates as a systeravant[10].
parameter changes. If the invariant set is attracting, i.e., a (i) Crisis in chaotic scatteringChaotic scattering is a
stable periodic orbit or a chaotic attractor, qualitativemanifestation of chaotic saddles in open Hamiltonian sys-
changes of the set can be conveniently studied by the bifutems[4]. A crisis in chaotic scatterinffl1] is characterized
cation diagram[8]. It is known that the bifurcation of an by the collision and interaction of two previously isolated
attracting set can exhibit universal behaviors, such as thosshaotic saddles via a complicated sequence of intersections
observed in successive period-doubling bifurcations of stablef their stable and unstable manifolds. A physical conse-
periodic orbits[9]. However, a bifurcation diagram, which quence is that chaotic scattering is characteristically en-
deals with attractors, cannot reveal qualitative changes dfanced throughout the crisis in the sense that an infinite
chaotic saddles because they are nonattracting. Hence, onamber of new possibilities for scattering trajectories is be-
has to rely on more quantitative measures such as the behawng created due to the tangencies of stable and unstable
ior of various dynamical invariants of chaotic saddles tomanifolds. Dynamically, the fractal dimension of the chaotic
characterize their parametric evolution. A question is thensaddle increases through the crisis. It was conjectured, but
what is the universal behavior characterizing the invariantsiever shown in Refd.11], that the fractal-dimension func-
associated with the evolution of chaotic saddles? tion of the chaotic saddle versus a system parameter through-

The aim of this paper is to present a universal behavior, @ut the crisis exhibits a devil-staircase behavior.
behavior that is highly nontrivial, governing the evolution of (i) Channel capacity in communicating with chads.
chaotic saddles that arise in dissipative chaotic systems or iwas demonstrated recently that a chaotic system can be ma-
open Hamiltonian systems. Specifically, fetbe a bifurca- nipulated, via arbitrarily small time-dependent perturbations,
tion parameter and l¢tp,,p,], wherep,>p,, be a param- to generate controlled chaotic orbits whose symbolic repre-
eter interval in which there is a chaotic saddle. Assume thasentation corresponds to the digital representation of a desir-
the chaotic saddle evolves pss increased fronp, to p,. able messagEl2]. A central issue in any digital communi-
Dynamically, the universal feature of such an evolution carcation strategy is to select a proper coding scheme by which
be characterized by an infinite number of homoclinic or het-arbitrary messages can be encoded into the transmitting sig-
eroclinic tangencies and subsequent crossings of the stahbbal. It was argued that in general, a coding scheme generates
and unstable manifolds associated with the saddle. Then, i¢haotic trajectories that live on one of the infinite number of
one measures dynamical invariants such as the topologicabnattracting chaotic saddles embedded in the chaotic attrac-
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FIG. 1. Schematic illustration of interaction between stable and
unstable foliations of a chaotic saddle. Parametric evolution of the FIG. 2. lllustration of the model Eq1).
system corresponds to unstable foliations’ moving downwards.

L , i such as the topological entropy that measures the abundance
tor [13]. A relevant question is how much information the ot nstable periodic orbits, to increase abruptly at the tangen-
system can encode and transmit. A quantitative measure @fes pye to the fractal structure of the stabie and unstable
the amount of information is thehannel capacityl14l, fjiations, such tangencies occur at a dense set of parameter
which is equivalent to the topological entropy of the chaotic, 4 es of Lebesgue measure zero. In any parameter subinter-
set that is utilized for encodmg messages. Since a COd'”;gals where there is no tangency, the dynamical invariants
scheme makes use of only an invariant subset embedded {gain constant or change smoothly, since the topology of
the attractor, and since the topological entropy of the subsgfe stahle and unstable manifolds remains unchanged. Over-
cannot be greater than that of the attractor, the channel ¢ in 4 parameter inverval containing both the first and the
pacity in any practical communication scheme employing g,5; tangencies, we expect to see the values of dynamical
code must be less than or equal to that which would b, arants increase abruptly at each tangency value, while

produced in the ideal situation where the full attractor isyhey remain constant in any subintervals in between the tan-
utilized for encoding messages. In Rgf83], it was demon- gency parameter values.

strated that the channel-capacity function versus a parameter tpe egsential ingredient leading to a devil-staircase be-
characterizing the chaotic saddle typically exhibits a devil-payior in the dynamical invariants of a chaotic saddle, which
staircase behavior as a result of the coding. 5 independent of the physics of any specific model system,
_(ii)) Evolution of chaotic saddles after crisi€risis in g the tangencies between the stable and unstable foliations
dissipative dynamical systems is an event that converts g e saddie. We thus seek to construct a model that cap-
chaotic attractor into a chaotic saddlf as a system param- res this essential feature, yet the model should be simple
eter changes through a critical value. In a typical nonlineag,,gh so that a rigorous understanding can be obtained. To
system, a crisis is induced by the collision of a chaotic alyg extent that the model is free of any feature specific to
tractor with the boundary of its own basin. Since the attraCto'bhysical systems exhibiting a devil-staircase behavior, we

lies in the closure of its unstable manifold, and since the.5, regard predictions of the model asiversal We con-
basin boundary is the stable manifold of a saddle periodigjqer the following one-dimensional model:

orbit on the boundary, the collision can be characterized as a
homoclinic or heteroclinic tangency. As the parameter in-
creases further through the crisis, an infinite number of tan- —alx+1/+b for x<0,
gencies occurs because both the stable and unstable mani- fo(x) = ajx—1|—b for x>0, @)
folds of the invariant chaotic saddle after the crisis possess a
fractal structure. Consequently, the chaotic saddle keeps
evolving after the crisis. It was found numerically that the wherex e R, anda andb are parametersh(>—1). The map
topological entropy of the chaotic saddle after crisis typicallyis schematically shown in Fig. 2, where the four branches of
exhibits a nondecreasing devil-staircase type of behavioihe map are labeled by (x) andf,(x) (positive slopesand
[15]. fo(x) andf;(x) (negative slopes The map is invariant un-
We now give a qualitative argument for the devil- der the following symmetrical operationsx— —x and
staircase behavior. Consider an invariant chaotic saddle if(X)— —f,(x). For small values ofa, the map exhibits
the two-dimensional plane. Since the saddle has a horseshdgeunded attractors, while for largevalues, almost all initial
like structure, both the stable and unstable foliations are fracsonditions, except a set of Lebesgue measure zero, asymp-
tals, as shown schematically in Fig. 1, where the horizontatote to eithere or —. Since we are interested in modeling
lines denote segments of the stable manifold and the curvegiansient chaos, we fim at a reasonably large value and
ones are those of the unstable manifold. To characterize ev#vestigate the dynamical behavior of the mapbats in-
lution of the saddle, assume that, as a system parametereased from zero. There are two intervals in which the cha-
changes, the unstable foliations move downwards across ttedic saddles live: A, =[—X,,—X,] and A_=[x,,X,],
stable foliations. At a generic parameter value, some unwhere x,=(a—b—2)/(a—1) and x,=(a+b)/(a—1),
stable manifold becomes tangent to the stable one—a havhich are determined bw(x,—1)—b=x, and a(1—x,)
moclinic or a heteroclinic tangency. Dynamically, an infinite —b=x,. To assure that almost all initial conditions asymp-
number of unstable periodic orbits is created about such tote to =%, we require thaix,>0, or equivalently,a=(b
tangency[16]. Thus, we expect the dynamical invariants, +2). Tangencies occur when the critical point and its high-
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order iterates of, say, the left-hand side branch, touch the
edges of the box defined by, andx, of the right-hand side
branch, and vice versa.

Note that Eq.(1) is piecewise linear and the absolute
value of the derivative is constanif,(x)|=a for any x.
Hence, the natural invariant measyg [17] covers uni-
formly the invariant selS Moreover, it coincides with the
Parry measurédmaximal entropy measureand the Sinai-
Ruelle-Bowen(SRB) measurd18,19. Thus the topological
entropyh;, the Kolmogorov-Sina{KS) metric entropyhks,
and the generalized Renyi entropieg of the system are
identical: hr=hygs=hq. In an analogous way, the constant
slope of the map stipulates that the generalized dimensions
(including the capacityp,, the information dimensiol,
and the correlation dimensioB, [20]) are all equal. Our
system is similar to the system analyzed by Bohr and Rand
[18], in which a relation between the information dimension
and the KS entropy is given Hy,=hgg/Ina. This relation-
ship, corresponding to the Kaplan-Yorke conjecti2], is
also valid for our model. Thus, if the fractal dimension ex-
hibits a devil-staircase behavior, so does the topological en-
tropy, and vice versa. For concreteness, in the analyses that
follow, we seta=6. For this value o#, all tangencies occur
for be[by,b,]=[2/3,3/2. Our aim is to provide a rigorous FIG. 3. (a) A detailed view of the right branch of E€t); (b) the
calculation for the behavior of the topological entropy andfour preimages of the two gaps of widtg in (a).
the fractal dimension fob in this range.

The topological entropy of a chaotic system is the

X

asymptotic rate of growth of the number of periodic orbits
with respect to the length of the peripti9]. Recently it was

proposed that for one-dimensional maps, the topological en-
tropy could be computed by averaging the number of preim;

ages with respect to the maximal entropy meagure22].
Consider a one-dimensional mixing systefn X—X,
where the functiorf is piecewise monotone and continuous
on N branches. Its topological entropy is then given by

e=tn [ POOGA, (0 @

where P(x): X—{0,1,2,..IN} represents the number of
preimages of at the pointx, restricted to the support @f, .
For Eq.(1), there are only two preimages fbr b, which
giveshy=In2. Forb>h,, there are four preimages so that
the topological entropy ifir=2In2. Equation(2) is also
applicable to cases whele= (b4,b,), since the measure of
maximal entropyu,. is uniformly distributed over the invari-

ant set and may be approximated by an iteration procedure.

Figure 3a) shows the branches of that mapxir 0. To take

into account the coupling with the left-hand side branch of

the system, we use two auxiliary functiomfig(x) =|f3(x)|
and fg(x) =|f4(x)|. Pointb in Fig. 3@ splits the invariant
setS* into two parts: P, andP,. For x<b belonging to
S* there exist four preimages, while fae P, there are only
two. Making use of Eq(2), we obtain

h-r=|n

b Xp
4f dM*(x)+2jb dM*(x)>:In2+In(1+M),
) 3

where the relative weigh! of the subseP, depends orb
and is given by

b
MZLdMJﬁ. (4)

rom the relationD;=hgs/Ina, we obtain anexactresult
for the fractal dimensio® of the chaotic saddIgfor Eq. (1)
ata=6:

B INn2+In(1+M)

In6 ®
To compute the fractal dimensidp, it is thus necessary to
computeM, which can be obtained by successive approxi-
mations to the fractal measudq., . To obtain the crudest
(zeroth-order approximationD(®), we use the intervaS,
instead of the fractal se&8*. This is equivalent to using in
Eq. (4) the Lebesgue measuds in place of the fractal mea-
suredu, . The relative weight o, is then approximated
by the ratioM°(b) = (b—x,)/(X,—X,), Which when substi-
tuted into Eq.(5) yields

r
In2 for b<2/3,
In6
In 2+ In[(4b—1)/(b+1

DO(by={ - M(me)( 1 for be[2/3,3/2

2In2
cne for b>3/2.

L In6

(6)

This function is shown by the dashed curve in Fig. 4. A
better approximationD™), is obtained by taking into ac-
count the two main gaps in the s8t, as shown in Fig. 4 by
the thin solid curve. Discontinuity iD™ occurs if the bi-
furcation parametds coincides with the edges of the gaps
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FIG. 4. Devil-staircase of the fractal dimensibnas a function

of b. Narrow dashed and solid lines represent continuous approx

mations ofD(®(b) andD¥(b), respectively, while the thick line
represent® ®) (b).

andg,. Every gap in the invariant fractal s8tcorresponds
to a specific plateau in the functidn(b), which is a devil
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(6) thus allows for a simple interpretation of the existence of
the dimension plateaus and hence the devil-staircase behav-
ior: if the parameteb sweeps the gaps of the fractal &t
integral (4) remains constant, and so is the dimendinn

In summary, we make use of the concept of integration
over a fractal measure to obtain analytically, to arbitrarily
high order approximations, the fractal dimension and the to-
pological entropy of chaotic saddles evolving under param-
eter change. Our paradigm captures the essential features of
evolution of chaotic saddles: an infinite number of tangen-
cies between the stable and unstable foliations. As such, the
devil-staircase behavior of dynamical invariants is a charac-
keristic feature in physical phenomena involving the evolu-
tion of nonattracting chaotic saddles.

We stress that although the model utilized in our analysis
is a one-dimensional map with symmetry, it captures the
essential dynamical feature of the parametric evolution of
chaotic saddles in higher-dimensional systems: the infinite

staircase. To visualize this structure in a more transpareymber of tangencies between the stable and the unstable
way, we show in Fig. @) a more precise sketch of the manifolds of the saddle. This feature is responsible for the
invariant setS™, in which the secondary gaps are indicated.devil-staircase behavior in the dynamical invariants of the
These sE:lcondary gaps are the preimages of the primaghaotic saddle. Symmetry in our one-dimensional model is
gaps: f,“(g1) andf, °(g,). There are four secondary gaps not an essential ingredient for the devil-staircase behav-

for the value ofb used in this graph: for larger values lof
two or four new gaps appear in the central partand E.
These secondary gaps have the wigfk ¢,/a and are cen-
tered at the preimages of the pointsandx,. In Fig. 3b),
the symbolx, ; denotes the poinltgl(xz), etc. The se§ | ;
can then be constructed by removing fr@nthe preimages
of all its gaps. Definingu; to be a uniform measure on the
setS;, we can compute the numbM(i)szﬁad,ui /fi:d,m .

The sequence of the measuggsconverges in a weak sense

to u, , so the sequence of integrals(") converges tav,
defined as an integral over a fractal measure.

Due to the large contraction factoa€6), the conver-
gence ofM() is fast: the numerically obtained fifth-order
approximation of the fractal dimensid(®)(b) (represented
in Fig. 4 by a thick ling is already hardly distinguishable
from the fourth-order ond(*)(b). Vertical lines indicate

ior: we use it only to facilitate theanalytic derivation In

fact, there is no apparent symmetry in higher-dimensional
maps such as the lHen map, yehumerical evidencéor the
devil-staircase behavior is clearly present in the dynamical
invariants of the chaotic saddIg$0,13,13. In so far as the
stable and the unstable foliations of a chaotic set are fractals,
their interaction during the parametric evolution of the set
will result in the devil-staircase behavior. This is indepen-
dent of any specific features, such as symmetry, of the sys-
tem.
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