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Universal behavior in the parametric evolution of chaotic saddles
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Chaotic saddles are nonattracting dynamical invariant sets that physically lead to transient chaos. As a
system parameter changes, chaotic saddles can evolve via an infinite number of homoclinic or heteroclinic
tangencies of their stable and unstable manifolds. Based on previous numerical evidence and a rigorous
analysis of a class of representative models, we show that dynamical invariants such as the topological entropy
and the fractal dimension of chaotic saddles obey a universal behavior: they exhibit a devil-staircase charac-
teristic as a function of the system parameter.@S1063-651X~99!01605-0#

PACS number~s!: 05.45.2a
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Chaotic saddles are nonattracting dynamical invariant
in the phase space of nonlinear systems@1–3#. A trajectory
starting from a random initial condition in a phase-spa
region containing a chaotic saddle typically stays near
saddle exhibiting a chaoticlike dynamics for a finite amou
of time before exiting the region eventually and asymptot
to a final state~usually not chaotic!. Chaos in this case is
only transient. Physically, chaotic saddles lead to observ
phenomena such as chaotic scattering@4#, fractal basin
boundaries@5#, and passive particle advection in open hyd
dynamical flows@6#. Mathematically, chaotic saddles a
closed, bounded, and invariant sets having a dense o
They are the soul of chaotic dynamics@7#.

A central problem in chaotic dynamics concerns how
dynamical invariant set evolves or bifurcates as a sys
parameter changes. If the invariant set is attracting, i.e
stable periodic orbit or a chaotic attractor, qualitati
changes of the set can be conveniently studied by the b
cation diagram@8#. It is known that the bifurcation of an
attracting set can exhibit universal behaviors, such as th
observed in successive period-doubling bifurcations of sta
periodic orbits@9#. However, a bifurcation diagram, whic
deals with attractors, cannot reveal qualitative changes
chaotic saddles because they are nonattracting. Hence
has to rely on more quantitative measures such as the be
ior of various dynamical invariants of chaotic saddles
characterize their parametric evolution. A question is th
what is the universal behavior characterizing the invaria
associated with the evolution of chaotic saddles?

The aim of this paper is to present a universal behavio
behavior that is highly nontrivial, governing the evolution
chaotic saddles that arise in dissipative chaotic systems
open Hamiltonian systems. Specifically, letp be a bifurca-
tion parameter and let@p1 ,p2#, wherep2.p1 , be a param-
eter interval in which there is a chaotic saddle. Assume
the chaotic saddle evolves asp is increased fromp1 to p2 .
Dynamically, the universal feature of such an evolution c
be characterized by an infinite number of homoclinic or h
eroclinic tangencies and subsequent crossings of the s
and unstable manifolds associated with the saddle. The
one measures dynamical invariants such as the topolog
PRE 591063-651X/99/59~5!/5261~5!/$15.00
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entropy or the fractal dimension, one finds that the chang
these invariants as a function of the system parameterp typi-
cally exhibits adevil-staircasetype of behavior. That is, in
the parameter interval@p1 ,p2#, the dynamical invariants re
main constant or change smoothly in almost all the interv
but, at a set of an infinite number of parameter values
Lebesgue measure zero, they changeabruptly. To establish
universality of the devil-staircase behavior, we study an a
lyzable model that captures the essential dynamical feat
involved in the evolution of chaotic saddles: the sequence
tangencies between the stable and unstable manifolds.

Before we proceed with our analysis, we wish to point o
the following three physical contexts in which the evolutio
of chaotic saddle and the devil-staircase behavior are
evant@10#.

(i) Crisis in chaotic scattering.Chaotic scattering is a
manifestation of chaotic saddles in open Hamiltonian s
tems@4#. A crisis in chaotic scattering@11# is characterized
by the collision and interaction of two previously isolate
chaotic saddles via a complicated sequence of intersect
of their stable and unstable manifolds. A physical con
quence is that chaotic scattering is characteristically
hanced throughout the crisis in the sense that an infi
number of new possibilities for scattering trajectories is b
ing created due to the tangencies of stable and unst
manifolds. Dynamically, the fractal dimension of the chao
saddle increases through the crisis. It was conjectured,
never shown in Refs.@11#, that the fractal-dimension func
tion of the chaotic saddle versus a system parameter thro
out the crisis exhibits a devil-staircase behavior.

(ii) Channel capacity in communicating with chaos.It
was demonstrated recently that a chaotic system can be
nipulated, via arbitrarily small time-dependent perturbatio
to generate controlled chaotic orbits whose symbolic rep
sentation corresponds to the digital representation of a de
able message@12#. A central issue in any digital communi
cation strategy is to select a proper coding scheme by wh
arbitrary messages can be encoded into the transmitting
nal. It was argued that in general, a coding scheme gene
chaotic trajectories that live on one of the infinite number
nonattracting chaotic saddles embedded in the chaotic at
5261 ©1999 The American Physical Society



e
e

tic
in
d
s

l c
g
b
is

e
vil

ts
-
ea
a
to

th
d

as
in
an
a

ss
e

he
lly
vi

il-
e
h

ra
t

rv
ev
e
t

un
h

ite
h

ts

ance
en-
ble
eter

nter-
nts
of

ver-
the
ical
hile
tan-

be-
ich
em,
ions
ap-
ple
. To
to

we

of

mp-
g
d

ha-

p-

h-

n
th

5262 PRE 59LAI, ŻYCZKOWSKI, AND GREBOGI
tor @13#. A relevant question is how much information th
system can encode and transmit. A quantitative measur
the amount of information is thechannel capacity@14#,
which is equivalent to the topological entropy of the chao
set that is utilized for encoding messages. Since a cod
scheme makes use of only an invariant subset embedde
the attractor, and since the topological entropy of the sub
cannot be greater than that of the attractor, the channe
pacity in any practical communication scheme employin
code must be less than or equal to that which would
produced in the ideal situation where the full attractor
utilized for encoding messages. In Refs.@13#, it was demon-
strated that the channel-capacity function versus a param
characterizing the chaotic saddle typically exhibits a de
staircase behavior as a result of the coding.

(iii) Evolution of chaotic saddles after crisis.Crisis in
dissipative dynamical systems is an event that conver
chaotic attractor into a chaotic saddle@1# as a system param
eter changes through a critical value. In a typical nonlin
system, a crisis is induced by the collision of a chaotic
tractor with the boundary of its own basin. Since the attrac
lies in the closure of its unstable manifold, and since
basin boundary is the stable manifold of a saddle perio
orbit on the boundary, the collision can be characterized
homoclinic or heteroclinic tangency. As the parameter
creases further through the crisis, an infinite number of t
gencies occurs because both the stable and unstable m
folds of the invariant chaotic saddle after the crisis posse
fractal structure. Consequently, the chaotic saddle ke
evolving after the crisis. It was found numerically that t
topological entropy of the chaotic saddle after crisis typica
exhibits a nondecreasing devil-staircase type of beha
@15#.

We now give a qualitative argument for the dev
staircase behavior. Consider an invariant chaotic saddl
the two-dimensional plane. Since the saddle has a horses
like structure, both the stable and unstable foliations are f
tals, as shown schematically in Fig. 1, where the horizon
lines denote segments of the stable manifold and the cu
ones are those of the unstable manifold. To characterize
lution of the saddle, assume that, as a system param
changes, the unstable foliations move downwards across
stable foliations. At a generic parameter value, some
stable manifold becomes tangent to the stable one—a
moclinic or a heteroclinic tangency. Dynamically, an infin
number of unstable periodic orbits is created about suc
tangency@16#. Thus, we expect the dynamical invarian

FIG. 1. Schematic illustration of interaction between stable a
unstable foliations of a chaotic saddle. Parametric evolution of
system corresponds to unstable foliations’ moving downwards.
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such as the topological entropy that measures the abund
of unstable periodic orbits, to increase abruptly at the tang
cies. Due to the fractal structure of the stable and unsta
foliations, such tangencies occur at a dense set of param
values of Lebesgue measure zero. In any parameter subi
vals where there is no tangency, the dynamical invaria
remain constant or change smoothly, since the topology
the stable and unstable manifolds remains unchanged. O
all, in a parameter inverval containing both the first and
last tangencies, we expect to see the values of dynam
invariants increase abruptly at each tangency value, w
they remain constant in any subintervals in between the
gency parameter values.

The essential ingredient leading to a devil-staircase
havior in the dynamical invariants of a chaotic saddle, wh
is independent of the physics of any specific model syst
is the tangencies between the stable and unstable foliat
of the saddle. We thus seek to construct a model that c
tures this essential feature, yet the model should be sim
enough so that a rigorous understanding can be obtained
the extent that the model is free of any feature specific
physical systems exhibiting a devil-staircase behavior,
can regard predictions of the model asuniversal. We con-
sider the following one-dimensional model:

f b~x!5 H 2aux11u1b
aux21u2b

for x<0,
for x.0, ~1!

wherexPR, anda andb are parameters (b.21). The map
is schematically shown in Fig. 2, where the four branches
the map are labeled byf 1(x) and f 4(x) ~positive slopes! and
f 2(x) and f 3(x) ~negative slopes!. The map is invariant un-
der the following symmetrical operations:x→2x and
f b(x)→2 f b(x). For small values ofa, the map exhibits
bounded attractors, while for largea values, almost all initial
conditions, except a set of Lebesgue measure zero, asy
tote to either̀ or 2`. Since we are interested in modelin
transient chaos, we fixa at a reasonably large value an
investigate the dynamical behavior of the map asb is in-
creased from zero. There are two intervals in which the c
otic saddles live: A1[@2xb ,2xa# and A2[@xa ,xb#,
where xa5(a2b22)/(a21) and xb5(a1b)/(a21),
which are determined bya(xb21)2b5xb and a(12xa)
2b5xb . To assure that almost all initial conditions asym
tote to 6`, we require thatxa.0, or equivalently,a>(b
12). Tangencies occur when the critical point and its hig

d
e FIG. 2. Illustration of the model Eq.~1!.
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order iterates of, say, the left-hand side branch, touch
edges of the box defined byxa andxb of the right-hand side
branch, and vice versa.

Note that Eq.~1! is piecewise linear and the absolu
value of the derivative is constant:u f b8(x)u5a for any x.
Hence, the natural invariant measurem* @17# covers uni-
formly the invariant setS. Moreover, it coincides with the
Parry measure~maximal entropy measure! and the Sinai-
Ruelle-Bowen~SRB! measure@18,19#. Thus the topological
entropyhT , the Kolmogorov-Sinai~KS! metric entropyhKS,
and the generalized Renyi entropieshq of the system are
identical: hT5hKS5hq . In an analogous way, the consta
slope of the map stipulates that the generalized dimens
~including the capacityD0 , the information dimensionD1 ,
and the correlation dimensionD2 @20#! are all equal. Our
system is similar to the system analyzed by Bohr and R
@18#, in which a relation between the information dimensi
and the KS entropy is given byD15hKS/ln a. This relation-
ship, corresponding to the Kaplan-Yorke conjecture@21#, is
also valid for our model. Thus, if the fractal dimension e
hibits a devil-staircase behavior, so does the topological
tropy, and vice versa. For concreteness, in the analyses
follow, we seta56. For this value ofa, all tangencies occu
for bP@b1 ,b2#5@2/3,3/2#. Our aim is to provide a rigorous
calculation for the behavior of the topological entropy a
the fractal dimension forb in this range.

The topological entropy of a chaotic system is t
asymptotic rate of growth of the number of periodic orb
with respect to the length of the period@19#. Recently it was
proposed that for one-dimensional maps, the topological
tropy could be computed by averaging the number of pre
ages with respect to the maximal entropy measurem* @22#.
Consider a one-dimensional mixing systemf: X→X,
where the functionf is piecewise monotone and continuo
on N branches. Its topological entropy is then given by

hT5 ln E
X
P~x!dm* ~x!, ~2!

where P(x): X→$0,1,2,...,N% represents the number o
preimages off at the pointx, restricted to the support ofm* .
For Eq.~1!, there are only two preimages forb,b1 , which
giveshT5 ln 2. For b.b2 , there are four preimages so th
the topological entropy ishT52 ln 2. Equation~2! is also
applicable to cases wherebP(b1 ,b2), since the measure o
maximal entropym* is uniformly distributed over the invari
ant set and may be approximated by an iteration proced
Figure 3~a! shows the branches of that map inx.0. To take
into account the coupling with the left-hand side branch
the system, we use two auxiliary functionsf 5(x)5u f 3(x)u
and f 6(x)5u f 4(x)u. Point b in Fig. 3~a! splits the invariant
set S1 into two parts: P4 and P2 . For x,b belonging to
S1 there exist four preimages, while forxPP2 there are only
two. Making use of Eq.~2!, we obtain

hT5 lnS 4E
xa

b

dm* ~x!12E
b

xb
dm* ~x! D 5 ln 21 ln~11M !,

~3!

where the relative weightM of the subsetP4 depends onb
and is given by
e

ns

d

n-
hat

n-
-

re.

f

M5E
xa

b

dm* ~x!. ~4!

From the relationD15hKS/ln a, we obtain anexact result
for the fractal dimensionD of the chaotic saddleS for Eq. ~1!
at a56:

D5
ln 21 ln~11M !

ln 6
. ~5!

To compute the fractal dimensionD, it is thus necessary to
computeM, which can be obtained by successive appro
mations to the fractal measuredm* . To obtain the crudes
~zeroth-order! approximationD (0), we use the intervalS0
instead of the fractal setS1. This is equivalent to using in
Eq. ~4! the Lebesgue measuredx in place of the fractal mea
suredm* . The relative weight ofP4 is then approximated
by the ratioM0(b)5(b2xa)/(xb2xa), which when substi-
tuted into Eq.~5! yields

D ~0!~b!55
ln 2

ln 6
for b,2/3,

ln 21 ln@~4b21!/~b11!#

ln 6
for bP@2/3,3/2#

2 ln 2

ln 6
for b.3/2.

~6!

This function is shown by the dashed curve in Fig. 4.
better approximation,D (1), is obtained by taking into ac
count the two main gaps in the setS1, as shown in Fig. 4 by
the thin solid curve. Discontinuity inD (1) occurs if the bi-
furcation parameterb coincides with the edges of the gapsg1

FIG. 3. ~a! A detailed view of the right branch of Eq.~1!; ~b! the
four preimages of the two gaps of widthe0 in ~a!.
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andg2 . Every gap in the invariant fractal setS corresponds
to a specific plateau in the functionD(b), which is a devil
staircase. To visualize this structure in a more transpa
way, we show in Fig. 3~b! a more precise sketch of th
invariant setS1, in which the secondary gaps are indicate
These secondary gaps are the preimages of the prim
gaps: f b

21(g1) and f b
21(g2). There are four secondary gap

for the value ofb used in this graph: for larger values ofb
two or four new gaps appear in the central partD and E.
These secondary gaps have the width«15«0 /a and are cen-
tered at the preimages of the pointsx1 andx2 . In Fig. 3~b!,
the symbolx2,3 denotes the pointf 3

21(x2), etc. The setSi 11

can then be constructed by removing fromSi the preimages
of all its gaps. Definingm i to be a uniform measure on th
setSi , we can compute the numberM ( i )5*xa

b dm i /*xa

xbdm i .

The sequence of the measuresm i converges in a weak sens
to m* , so the sequence of integralsM ( i ) converges toM,
defined as an integral over a fractal measure.

Due to the large contraction factor (a56), the conver-
gence ofM ( i ) is fast: the numerically obtained fifth-orde
approximation of the fractal dimensionD (5)(b) ~represented
in Fig. 4 by a thick line! is already hardly distinguishabl
from the fourth-order oneD (4)(b). Vertical lines indicate
positions of the primary plateaus. Observe that the dep
denceD(b) between them, say forbP(17/13,3/2), is similar
to the dependence in the entire interval (b1 ,b2). Equation

FIG. 4. Devil-staircase of the fractal dimensionD as a function
of b. Narrow dashed and solid lines represent continuous appr
mations ofD (0)(b) andD (1)(b), respectively, while the thick line
representsD (5)(b).
ie
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~6! thus allows for a simple interpretation of the existence
the dimension plateaus and hence the devil-staircase be
ior: if the parameterb sweeps the gaps of the fractal setS,
integral ~4! remains constant, and so is the dimensionD.

In summary, we make use of the concept of integrat
over a fractal measure to obtain analytically, to arbitrar
high order approximations, the fractal dimension and the
pological entropy of chaotic saddles evolving under para
eter change. Our paradigm captures the essential featur
evolution of chaotic saddles: an infinite number of tange
cies between the stable and unstable foliations. As such
devil-staircase behavior of dynamical invariants is a char
teristic feature in physical phenomena involving the evo
tion of nonattracting chaotic saddles.

We stress that although the model utilized in our analy
is a one-dimensional map with symmetry, it captures
essential dynamical feature of the parametric evolution
chaotic saddles in higher-dimensional systems: the infi
number of tangencies between the stable and the uns
manifolds of the saddle. This feature is responsible for
devil-staircase behavior in the dynamical invariants of
chaotic saddle. Symmetry in our one-dimensional mode
not an essential ingredient for the devil-staircase beh
ior: we use it only to facilitate theanalytic derivation. In
fact, there is no apparent symmetry in higher-dimensio
maps such as the He´non map, yetnumerical evidencefor the
devil-staircase behavior is clearly present in the dynam
invariants of the chaotic saddles@10,13,15#. In so far as the
stable and the unstable foliations of a chaotic set are frac
their interaction during the parametric evolution of the s
will result in the devil-staircase behavior. This is indepe
dent of any specific features, such as symmetry, of the
tem.
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