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Modeling of deterministic chaotic systems
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The success of deterministic modeling of a physical system relies on whether the solution of the model
would approximate the dynamics of the actual system. When the system is chaotic, situations can arise where
periodic orbits embedded in the chaotic set have distinct number of unstable directions and, as a consequence,
no model of the system produces reasonably long trajectories that are realized by nature. We argue and present
physical examples indicating that, in such a case, though the model is deterministic and low dimensional,
statistical quantities can still be reliably computed.@S1063-651X~99!10302-7#
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Scientists and engineers rely heavily on models to und
stand natural phenomena. Usually, for a particular proc
data from laboratory experiments or from observations
analyzed and, together with physical laws, a model of
process is formulated. In fact, this is done for a large vari
of processes in fields such as physics, chemistry, biolo
ecology, and engineering. The models are then used to
derstand the particular process, to make predictions, an
control its dynamics. There are two important classes
models. The first class is the deterministic dynamical s
tems and they evolve the relevant physical variables in t
according to a set of prescribed rules. The second on
statistical models, which are models that involve some k
of stochastic process and, consequently, for these mo
statistical averages regarding properties of the system
often obtained from the model. The conventional wisdo
about statistical models is that they deal with situatio
where random noise is influential or systems that involv
large number of degrees of freedom such as those arisin
statistical physics.

This paper deals with neither class; it deals with a spe
class of deterministic models, models that, in spite of be
deterministic, yield only statistically relevant information
the form of averages about some quantities depending
their dynamical variables. A related question but one t
captures the essential problem is to what extent predict
from deterministic models are expected to be valid. Proble
with prediction arise when the deterministic system is c
otic; that is, when the system has sensitive dependenc
initial conditions, or on small parameter variations, or
environmental noise, etc. To address the validity of de
ministic modeling of chaotic systems, imagine that we co
struct two models of the natural system@1#: A and B, very
close to each other: modelA, dx/dt5f(x,t); model B,
dx/dt5f(x,t)1e(t), wheree(t) is an arbitrarily small time
dependent perturbation that is bounded, i.e., we exclude
bounded random perturbations such as Gaussian white n
in our consideration. Since no model is exact, they are at
a perturbed version of the natural system. For either mode
reproduce and predict correctly the behavior of the natu
system, trajectories of modelA must stay close to some tra
jectories ofB. If this is so, we say that there is model sha
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owability. If no trajectory ofA is close to any trajectory o
B, it is unlikely that the solution of either modelA or B stays
close to any trajectory of the natural system. In other wor
there is no model which would produce trajectories that
realized by nature. In studying chaotic systems, previ
work @1# has suggested that there is a hierarchy of difficu
levels obstructing model shadowability. Specifically, the le
els of difficulty are~i! minor modeling difficulties: hyper-
bolic chaotic systems exhibiting sensitive dependence on
tial conditions. For these systems, trajectories of modeA
can always be shadowed by trajectories of modelB for an
infinite time @2#; ~ii ! moderate modeling difficulties: cha-
otic systems with nonhyperbolic tangencies. For these s
tems, trajectories of modelA are shadowed by trajectories o
model B for a long but finite amount of time@3#; and ~iii !
severe modeling difficulties: nonhyperbolic chaotic system
with unstable-dimension variability@4–6#. For these sys-
tems, the shadowing times are surprisingly short@7#.

In this paper, we argue that chaotic systems having se
modeling difficulties could still be modeled deterministical
but such models are able to make relevant predictions
are only statistical in nature. The necessity for statistical p
dictions stems from the fact that any individual trajecto
yields no reliable information about the state of the syste
Instead, statistical quantities should be considered when
lyzing and evaluating solutions of the model. Thus, althou
the system is intrinsically deterministic, no long-term det
ministic information regarding the system’s state can be
tained about its behavior through deterministic modeling.

We begin by describing the notion of hyperbolicity~or
nonhyperbolicity!, a fundamental property of chaotic sy
tems which plays the key role in determining the validity
a model. The dynamics is hyperbolic on a chaotic set if,
each point of the trajectory, the phase space can be split
expanding and contracting subspaces and the angle bet
them is bounded away from zero. Furthermore, the expa
ing subspace evolves into the expanding one along the
jectory and the same is true for the contracting subspa
Otherwise the set is nonhyperbolic. For hyperbolic chao
systems, one gets modeling shadowing for an infinitely lo
time @2#, and one has only minor modeling difficulties. Th
situation with nonhyperbolic chaotic systems, on the ot
2907 ©1999 The American Physical Society
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hand, is more complicated. To discuss model shadowabi
it is insightful to classify nonhyperbolic systems into tw
types. For thefirst type, the splitting of the phase space in
expanding and contracting subspaces is invariant along a
jectory except at the tangencies of the stable and unst
manifolds, where the angles between subspaces are ze
this case, one gets modeling shadowing up to a timet that
scales withe5max@e(t)# ast;e2a, wherea& 1

2 is the scal-
ing exponent@3#. Thus, for this type of nonhyperbolic sys
tems, modeling trajectories are expected to be reliable f
reasonably long time if the modeling errore is small, and
one has moderate modeling difficulties. Thesecond typeof
nonhyperbolicity concerns a more drastic violation of t
continuous splitting of the phase space into the expand
and contracting subspaces. For this case, the unstable
odic orbits embedded in the chaotic set have different nu
ber of unstable directions. Both sets of periodic orbits
expected to be densely mixed. Therefore, as the dynam
evolves, the trajectory of the system experiences differ
number of unstable~and, hence, stable! directions, and the
neighborhood of each set can be visited for arbitrarily lo
times. This is called unstable-dimension variability@6#, a
phenomenon that is reflected and quantified by a finite-t
Lyapunov exponent fluctuating about zero@4,8#. Modeling
shadowability for this type of nonhyperbolic systems can
very short, for a time that scales withe ast;e22m/s2

, where
m ands are the mean and standard deviation of the fluc
ating time-one Lyapunov exponent closest to zero@7#. In this
case, one has severe modeling difficulties. The fundame
mechanism for modeling to fail so severely when the num
of unstable directions changes along a trajectory was
described by Abraham and Smale@9#.

We now give a physical example to address the issue
modeling. The system exhibits unstable dimension varia
ity and hence, it has severe modeling difficulties. The sys
is the following four-dimensional map which physically d
scribes the dynamics of a double rotor subject to perio
kicks @10,11#:

xn115Myn1xn ,
~1!yn115Lyn1G~xn11!,

where

x5S x~1!

x~2! DPS13S1, y5S y~1!

y~2! DPR3R,

and

G~x!5S c1 sinx~1!

c2 sinx~2! D . ~2!

In Eqs. ~1! and ~2!, xn(1,2) are the angular positions of th
rotors at the instant of thenth kick, while yn(1,2) are the
angular velocities of the rotors immediately after thenth
kick, L and M are 232 constant matrices whose elemen
depend on the physical parameters of the rotors,c1 and c2
are two parameters that are proportional to the kick
strengthf. In the following we choose the parameter setti
in Ref. @11# so thatc15c25 f @12#.
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It is known that the double-rotor map, Eq.~1!, exhibits
unstable dimension variability in certain parameter regim
@4,11#. In particular, at the parameter setting described
Ref. @11#, there is unstable dimension variability and cons
quently obstruction to modeling shadowing nearf 58.0,
while moderate modeling shadowing difficulties seem to
cur in other parameter regimes, say, nearf 59.0 @4#. The
reason, as given in Ref.@4#, is that one of the Lyapunov
exponents of Eq.~1! fluctuates about zero when it is com
puted in finite time. The fluctuations of finite-time Lyapuno
exponents are a direct manifestation of unstable dimen
variability @4,7#. We observe that unstable dimension va
ability typically occurs in a parameter region where there i
transition in the chaotic behavior of the system. In particu
for Eq. ~1!, nearf 58.0 there is a transition from one positiv
Lyapunov exponent to two positive ones in the attract
That is, the system is low-dimensionally chaotic forf ,8.0,
while it is hyperchaotic forf *8.0. This transition is shown
in Fig. 1, where the four Lyapunov exponents of Eq.~1! are
plotted as a function off. In the computation, 1000 values o
f are chosen uniformly from the interval@6,10# and for each
f, 107 iterations~with 106 initial iterations disregarded! are
used. It can be seen that the system goes through a cas
of period-doubling bifurcations forf , f c1

'6.746 and be-

comes chaotic with one positive Lyapunov exponent atf c1
.

At f 5 f c2
'8.0, the second Lyapunov exponent becom

positive so that forf . f c2
, the system is hyperchaotic. Fo

parameter much above the transition, say nearf 59.0, the
second Lyapunov exponent becomes so positive that
fluctuations in the finite-time Lyapunov exponent have on
a negligible tail in the negative side. In this case, unsta
dimension variability is less severe and the system beco
shadowable again. We note that in previous papers@4,7#, it
has been conjectured that unstable dimension variabilit
common in high-dimensional dynamical systems. Figure
suggests, however, that one should expect unstable dim
sion variability especially near the transition regions whe
the system becomes more~or less! chaotic.

We now demonstrate that when modeling difficulties a
severe so that no model trajectory corresponds to any tra
tory of the natural system which the model is supposed
describe, statistical prediction can still be donereliably
through the use of the model. To argue this, we conside
family of models which is a slighly perturbed version of E
~1!,

xn115Myn1xn ,
~3!

yn115Lyn1G~xn11!1eH~xn11!,

where e! f is the magnitude of the model uncertaint
H„x…5@sn

1 sinx(1),sn
2 sinx(2)#T, andsn

1 andsn
2 are two ran-

dom variables uniformly distributed in@0, 1#. Following our
previous notion, Eq.~1! is modelA and Eq.~3! is modelB.
Now, suppose we want to compute a statistical quantity, s
the average energŷE& of the system, by using both mode
A and B. For the kicked double-rotor system~1! with the
parameter setting chosen,^E& is given by
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FIG. 1. ~Color! Lyapunov spectrum of the kicked double-rotor map Eq.~1! as a function of the kicking strengthf. Severe unstable
dimension variability has been documented atf 58.0 near which there is a transition from low-dimensional chaos to hyperchaos.
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&
@cosxn~1!1cosxn~2!#J . ~4!

The expression for̂E& is the same for the randomly pe
turbed double rotor in Eq.~3!. We first compute, in the
noiseless case (e50), ^E& versus the kicking strengthf, as
shown in Fig. 2 for 1000 values off in 6< f <10, where for
each value off, a trajectory of 107 points on the attracto
~with 106 initial iterations disregarded! is used to compute

FIG. 2. The average energy^E& of the double rotor vs the kick-
ing strengthf in a noiseless situation. The energy changes smoo
near f 58.0 where there is a severe modeling difficulty. The abr
changes in̂ E& near f 57.1 andf 57.5 are due to a periodic win
dow, and the fluctuations of^E& inside the window are due to tran
sient chaos.
ly
t

FIG. 3. ~a! Computation of the average energy of the doub
rotor system from Eq.~1! ~dashed line,̂E&! and from the perturbed
Eq. ~3! @closed circles,̂ E&(e)#, wheree is the magnitude of the
model uncertainty. Apparently, we have^E&(e)'^E& over 14 or-
ders of magnitude ine. ~b! The second energy momen
^(DE)2&(e) vs e.
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^E&. This time is much longer than the modeling-shadow
time. We see that nearf 58.0, ^E& changes smoothly, imply
ing robustness of statistical averages in parameter reg
where there is a severe modeling difficulty. Forf 58.0, we
obtain^E&'28.3565. Next, we computêE&(e) from Eq.~3!
for 16 values ofe in eP@10216,1021#, also by using trajec-
tories of 107 points. The result is shown in Fig. 3~a!, where
the dashed line indicates the value of^E& and the filled
circles denotê E&(e). Apparently, we havê E&(e)'^E&
over many orders of magnitude ine, indicating that statistica
prediction about the energy of the system is robust thro
the use of the model, despite unstable dimension variabi
The fluctuations of̂ E&(e) around^E& are due to finite nu-
merics and decrease as 1/AN as the lengthN of the trajectory
used in the computation increases. We can also cons
other statistical invariants such as higher moments,
Lyapunov exponents and fractal dimensions. Computati
reveal that those invariants are also robust in the sense
both models Eq.~1! and Eq.~3! yield the same values ove
many orders of magnitude of variation in the model unc
y

e,
g

es

h
y.

er
e
s

hat

-

tainty e. For example, Fig. 3~b! shows the average secon
moment of the energŷ(DE)2& versuse, where behavior
similar to that in Fig. 3~a! is observed.

In conclusion, we demonstrate that for physical syste
with severe modeling difficulties, although it is not possib
to make deterministic prediction reliably from the model,
is still possible to make statistical predictions. We exp
unstable dimension variability to be common in hig
dimensional chaotic systems. Alternatively, physical syste
with severe modeling difficulties can be investigated by m
suring some observables of the system and then using
linear time series analysis for the understanding, predict
and control of their dynamics.
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