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Analytic signals and the transition to chaos in deterministic flows
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The transition from regular to chaotic motions in deterministic flows is characterized by a change from a
discrete Fourier spectrum to a broadband one. The onset of chaos is thus associated with the creation of an
infinite number of new Fourier modes. Given a system that generates a timexgerjese study the transition
to chaos from the perspective of analytic signals, which are defined via the Hilbert transform. In order to
identify distinct analytic signals, we decompose the original time sa(igsinto a finite number of modes that
correspond to proper rotations in the complex plane of their analytic signals. We provide numerical evidence
that at the transition, there is no substantial change in the number of analytic signals charactétjzing
Furthermore, the distributions of the instantaneous frequencies of the analytic signals in the chaotic regime are
well localized and exhibit no broadband feature. These results suggest a simple organization of chaos in terms
of analytic signals[S1063-651X98)50712-X]
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Turbulent and chaotic motions occur commonly in manyGiven a scalar time serieg(t), obtained from a measure-
natural processes. A fundamental question then concermaent of a nonlinear system, the corresponding analytic signal
how these motions occur as a system parameter changes.defined to be
About a half century ago, Landau proposed that turbulent
motion was a result of the successive addition of a great (D) =X +IH[x(1)], 2
many new discrete frequency components as the system pa-
rameter approaches the critical pofi at the onset of the Where the imaginary paH[x(t)] is the Hilbert transform of
turbulent or chaotic motiori2]. This turbulence scenario, X(1):
however, was shown to be incorrect by Ruelle, Takens, and
Newhousd 3] who proved mathematical theorems concern- if” Lt') dt’
ing the transition to chaotic motion from four- and three- m)_wt—t' '
frequency quasiperiodic flows. The key implication of their
results is that broadband frequency spectra, a hallmark ah Eq.(3), the notionP stands for the Cauchy principal value
turbulent and chaotic motions, can appear more abruptly asf the integral. The analytic signal represents a rotation in the
the result of the onset of a chaotic attractor. To be moreomplex plane {x(t),H[x(t)]}, with instantaneous fre-
specific, consider a physical system described by a continlquency given byw(t)=de¢(t)/dt, where the phase angle
ous flow: ¢(t) is defined through the representationy,(t)
=A(t)exdié(t)], andA(t) is the instantaneous radius of the
d—sz(x ) 1) rotation. The instantaneous frequency so defined, however,
dt e may possess negative valyé&g. In order to only have posi-
tive frequencies that are physically meaningful, and to detect
where xe RN and p is a system parameter. Assume @t distinct fundamental frequency components, it is necessary
=p, that the flow is quasiperiodic. In this case, if one exam-to preprocess the time seriggt). We use theempirical-
ines the Fourier spectrum aft), one finds only a few in- modedecomposition method developed by Huaeteal. [5]
commensurate Fourier frequencies. According to Ruelleto decompose(t) into a finite number of components whose
Takens, and Newhoug&], an arbitrarily small change, say analytic signals yield only positive instantaneous frequen-
in the parametep from p; to p,=p;+ dp, wheresp~0,  cies. The principal results of this paper af&) distributions
can lead to a chaotic motion characterized by a broadbangf the instantaneous frequencies for a chaotic system are
Fourier spectrum. Note that there are in fact an infinite numtypically well localized and exhibit no broadband feature, in
ber of incommensurate Fourier frequencies associated witbontrast to the Fourier spectra of chaotic signals, &)d
the chaotic motion ap,, whereas there are only a very few there is no substantial change in the number of analytic sig-
such frequencies at; even if|p,— p;|—0. Thus, an infinite  nals that constitute a dynamical variable before and after the
number of fundamental Fourier frequencies must have beetinset of chaos. The implication is that transition to chaos in
created through an arbitrarily small parameter change. nonlinear systems can be considered as a rather smooth pro-
In this paper, we address the transition to chaos in detereess when the transition is viewed from the perspective of
ministic flows from the perspective of analytic signals, aanalytic signals rather than from that of the traditional Fou-
concept that was originally proposed by Gabor in opf#ls  rier spectra. Our results also suggest an interesting organiza-
tion of chaos in continuous flows, that is, chaos is supported
by only a few distinct rotations in the complex representa-
*Electronic address: lai@poincare.math.ukans.edu tions of analytic signals.
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@) odic attractor lies breaks at., and the asymptotic attractor
becomes chaotic with a fractal dimension between 3 and 4
for p<p. [8]. Figures 1c) and Xd) show the projection of
the chaotic attractor in theU,X) plane and the Fourier
power spectrum ofJ(t), respectively. Clearly, the Fourier
spectrum now has a broadband feature, which is a hallmark
of chaos. Comparison between Figgb)land Xd) indicates
that an infinite number of new Fourier modes is created at
the onset of chaos.

We now examine the transition to chaos, as demonstrated
in Figs. {a)—1(d), from the standpoint of analytic signals. In
order to obtain analytic signals with positive instantaneous
frequencies from a time seriéar signa) x(t), it is necessary
to decompose the signal in a proper way. To gain intuition,
imagine a counterclockwis@r clockwise rotation of a par-
ticle on a circle of unit radius in the plane. This motion can
be characterized by an angle function, or phag<t)
=w(t)t, wherew(t) is the instantaneous frequency of the
rotation that satisfiee(t) =0. The position of the particle on
a line passing through the center of the circle can be de-
scribed by the function c&(t)] or sir ¢(t)]. For such func-
tions that describe rotation, the number of maxima and
minima is equal to the number of zeros in a given large time
interval, a property that definespoper rotation. This ob-
"servation provides a general principle to obtain components
with proper analytic signals from a complicated sigréi).

The empirical-mode-decomposition methds we employ
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FIG. 1. (a) For p=0.25 (two-frequency quasiperiodicitya tra-
jectory in the (U, X) plane.(b) The Fourier spectrum df(t) in (a).
(c) For p=0.24 (chaos, a trajectory in the J,X) plane.(d) The
Fourier spectrum obJ(t) in (c).

We have studied the analytic-signal representation of dy
namic variables for several chaotic systems including the Lo
renz systeni6] and the Resler systeni7]. Here we choose
to present our results with the model of two-mode truncatio
of the complex coefficient Ginzburg-Landau equati@.
The model represents a four-dimensional autonomous flow

da, _ , s consjsts of three stfap(ét) cons’grqct two smooth splines con-
gt~ Pat (i—p)(|ai|“ay+as|ay/“+3a7a3), necting all the maxima and minima Bft) to getx,,{t) and
Xmin(t), respectively; (2) compute Ax(t)=X(t) — [ Xmaxt)
da (4) +xmin(D1/2; and(3) repeat stepsl) and (2) for Ax(t) until
d_t2: pa,—g3(i+p)a, the resulting signal corresponds to a proper rotation. Denote

the resulting signal b, (t), which is the first component of
X(t). We then take the difference;(t)=x(t)—C4(t) and
repeat step$l)—(3) to obtain the second compone@j(t)
from x4(t). The procedure continues until the component

+(i—p)(afaj +2|a|?a+ 3|a,/ay),

wherea,(t) anda,(t) are complex dynamical variables, the
star denotes a complex conjugate, gndnd q are param- Cwu(t) shows no apparent time variatigb]. The original
eters. It was argued that E¢) exhibits a transition from  signalx(t) can thus be expressedx($)==}.;C;(t), where
two-frequency quasiperiodic motion to chaos in wide paramthe functionsC;(t) are nearly orthogonal to each otHé.

eter regimes via the mechanism of heteroclinic crossing oBy the nature of the decomposition procedure, the first com-
stable and unstable manifolds and torus bredldjpin par-  ponentC,(t) corresponds to the fastest time variatiorx(t)
ticular, it was demonstrated that a two-frequency quasiperiand, hence, the signal has the smallest time scale. As the
odic motion can lose its stability directly and becomes chaimode index increases, the time scale increases so that the
otic. In the sequel we fixy=1.0 and use the following mean frequency of the rotation decreases. While this proce-
notion: U(t)=Rday(t)], V(t)=Im[a,(t)], X(t) dure is generally applicable to a smooth signét), we
=Rd a,(t)], andY(t)=Im[a,(t)]. Numerical computation stress that it is onlgmpirical[5]. There are also situations in
indicates that the transition from two-frequency quasiperiodwhich the variablex(t) itself is already a proper rotation. In
icity to chaos occurs at the critical parameter value 0.24uch a case, the procedure decompaggsinto components
<p.<0.25, where the motion is quasiperiodic forp, and  with distinct time scales, and the analytic signals of which
chaotic forp<p.. Figure Xa shows, forp=0.25, the pro- Yield distinct mean frequencies.

jection of the quasiperiodic attracttafter a transient time of
t=50 000 onto the U,X) plane, and Fig. (b) shows the
Fourier power spectrum df (t) for 0<t<3276.8 at a sam-
pling rate At=0.05 (so that there are® points in the time
series for fast Fourier transfopmNumerical integration of
Eq. (4) was carried out by using a fifth-order adaptive step-

After x(t) is decomposed, one can obtain quantitative
characteristics of the rotations from the analytic signal of
each component by utilizing the Hilbert transform. To gain
insight about the nature of the Hilbert transform, consider the
mathematical functiore'!, which is the simplest analytic
signal. If one plots the real and the imaginary partg'6t in

size Runge-Kutta algorithm. We see that the Fourier specthe complex plane of'“!, one obtains a rotation with angu-
trum is apparently discrete. Examination of the spectrum infar frequencyw. This example also illustrates the role of the

dicates that there are two fundamental frequeni@gsAs p
decreases, the two-frequency torus in which the quasiper

Hilbert transform: for a simple harmonic function ce$
the Hilbert transform simply shifts the phase of the function
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FIG. 2. The first two proper analytic signals obtained from
U(t). (& p=0.25(quasiperiodicity, mode 1;(b) p=0.25(quasip- FIG. 3. Histograms of mean frequencies of proper analytic sig-
eriodicity), mode 2;(c) p=0.24(chaog, mode 1; andd) p=0.24  nals associated with thd(t) for (a) the quasiperiodic motion at
(chaog, mode 2. p=0.25 and(b) for the chaotic motion ap=0.24.

by m/2. For a more complicated sign@l(t), one can nu- for quasiperiodic and chaotic signals, we study the statistical
merically obtain its Hilbert transform via the following three pehavior of mean frequencies of rotation. Specifically, for a
steps:(1) decomposé(t) into a large number of harmonics fixed parameter valup, we choose 10 000 trajectoriésach
using the Fourier transforn{2) shift the phase of each har- o o16 points at a sampling ratAt=0.05) on the attractor

monic component byr/2; and(3) sum up all of the phase- 5nd for each trajectory we compute mean frequencies of the

shifted harmonics.

We have analyzed trajectories for both the quasiperiodi
and chaotic motions in Eq4) by decomposing the time
series into components with proper analytic signals. Here we,
present results with the time series of one of the dynamical
variables, say, U(t). Specifically, we write U(t)
=EiM:1Ci(t), whereM is the number of modes with nonzero
mean frequencies of rotation. For a time series $fints
at a sampling rate akt=0.05, we find thaM ~6 suffices to
capture the time variation of the original sigria(t). Fig-

Gix frequencies @, .

first six modes of proper rotations. The histograms of these
..,wg) are then computed. Figures
3(a)and 3b) show the histograms fqu=0.25 andp=0.24,
spectively. When the motion is quasiperiofliég. 3a)],

we see that the first few frequencies are sharply distributed.
Note that some of the frequencies are the linear combinations
of others, which occur commonly in the Fourier analysis. For
instance, we findvs~(w,+ w,4)/2. For the chaotic motion
[Fig. 3(b)], the frequenciespreadand the frequency distri-

ures 2a) and Zb) show, forp=0.25, the first two rotations butions sh_ift relative to those ir_1 the qt_Jasip_eriodic case_. How-
in the complex planes of their own analytic signals. The€Ver: ?he first few.frequency.dlstr|but|ons in the_chaotlp case
average frequencies of these two rotationsaaye 0.846 and &€ still yvell quahzed. One important fgature dlstlngwshmg
w,~0.314, respectively. The rotations reveal rather regulaf chaotic rotation from a regular one is that for a chaotic
patterns, as can be expected for a quasiperiodic motiop. As fotationy(t) =A(t)exdig(t)], the amplitudeA(t) is random
decreases passing through so that the system is in a cha- and the phase dynamics are similar to a random walk. This is
otic regime, these proper analytic signals still persist. Figuregue to the fact that the phase dynamics can be described by
2(c) and 2d) show the corresponding rotations fqr  d¢(t)/dt=w+F[A(t)], where F[A(t)] is a function of
=0.24. Due to chaos, the rotations no longer exhibit regulaA(t) [9,10]. The most important feature of Figs(ap and
patterns, but the overall behaviors of rotation still exist. The3(b) is that the number of proper analytic signals remains
average frequencies of rotation awe;~0.864 and w, essentially unchanged through the transition from quasiperi-
~0.378 for modes 1 and 2, respectively. We see that thedicity to chaos, and the distributions of the instantaneous
mean frequency of the first analytic signal changes onlyfrequencies of the analytic signals avell localizedand ex-
slightly asp decreases from 0.25 to 0.24, and the correspondhibit no broadband feature. We speculate that a reason may
ing change in the second analytic signal is rather large. Iibe that in the rotation representation, the chaotic amplitude
general, we observe that the onset of chaos usually hasmodulation is filtered out so that the broadband component
greater influence on rotations with smaller frequencies. in the Fourier spectrum disappeddsl]. Thus, although an
The remarkable result is that as the quasiperiodic motioinfinite number of Fourier modes is created at the onset of
is converted into a chaotic one, the number of proper analytichaos, there is no metamorphosis in the number of analytic
signals characterizing a chaotic signal essentially remains thgignals that represent a chaotic time sefik.
same. For instance, we find that the chaotic sidsét) in We remark that the frequencies; obtained here corre-
Fig. 1(c) can still be represented by six proper analytic sig-spond to the mean rotation frequencies of the empirical mod-
nals. To better examine the change in proper analytic signalls C;(t) (j=1,... M) in the complex planes of their ana-
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lytic signals. These frequencies, in fact, characterize theotation frequencies of the analytic signals and the Fourier
main physical time scales hidden in the original time seriedrequencies.

U(t) from the perspective of rotation3he frequencieso; In summary, we have examined the transition to chaos in
can be rationally related and we observe that there are onlgeterministic flows from the standpoint of analytic signals.
two incommensurate ones, which is consistent with the facBy studying the rotational characteristics of the analytic sig-
that the underlying flow is two-frequency quasiperiodic. Thenals, we find that there is no significant change in the number
Fourier frequencies, on the other hand, are harmonic freef proper analytic signals through the transition, although the
guencies. When the motion is regular, we expect the fundaourier spectrum becomes broadband after the onset of
mental frequencies in the analytic-signal representation to behaos. Thus, although chaotic motion can be characterized as
approximately equal to these in the Fourier representation, aandom and complicated, its fundamental structure in terms
the “real” frequencies of the quasiperiodic motifcompare  of proper analytic signals can be quite simple.

Fig. 1(b) with Fig. 3(@]. When the motion is chaotic, the

Fourier spectrum is broadband, but the frequency distribu- | thank T. Yalgnkaya for assisting in the implementation
tion in the analytic-signal representation is still well local- of the empirical-mode-decomposition algorithm. This work
ized, due to the fact that there cannot be abrupt change in theas supported by the NSF under Grant Nos. PHY-9722156
analytic signalgrotationg that constitute the physical signal. and DMS-962659, by AFOSR under Grant No. F49620-98-
In this case, there is no direct correspondence between tHe0400, and by the University of Kansas.
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