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Analytic signals and the transition to chaos in deterministic flows
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The transition from regular to chaotic motions in deterministic flows is characterized by a change from a
discrete Fourier spectrum to a broadband one. The onset of chaos is thus associated with the creation of an
infinite number of new Fourier modes. Given a system that generates a time seriesx(t), we study the transition
to chaos from the perspective of analytic signals, which are defined via the Hilbert transform. In order to
identify distinct analytic signals, we decompose the original time seriesx(t) into a finite number of modes that
correspond to proper rotations in the complex plane of their analytic signals. We provide numerical evidence
that at the transition, there is no substantial change in the number of analytic signals characterizingx(t).
Furthermore, the distributions of the instantaneous frequencies of the analytic signals in the chaotic regime are
well localized and exhibit no broadband feature. These results suggest a simple organization of chaos in terms
of analytic signals.@S1063-651X~98!50712-X#
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Turbulent and chaotic motions occur commonly in ma
natural processes. A fundamental question then conc
how these motions occur as a system parameter chan
About a half century ago, Landau proposed that turbul
motion was a result of the successive addition of a gr
many new discrete frequency components as the system
rameter approaches the critical point@1# at the onset of the
turbulent or chaotic motion@2#. This turbulence scenario
however, was shown to be incorrect by Ruelle, Takens,
Newhouse@3# who proved mathematical theorems conce
ing the transition to chaotic motion from four- and thre
frequency quasiperiodic flows. The key implication of the
results is that broadband frequency spectra, a hallmar
turbulent and chaotic motions, can appear more abruptl
the result of the onset of a chaotic attractor. To be m
specific, consider a physical system described by a cont
ous flow:

dx

dt
5F~x,p!, ~1!

where xPRN and p is a system parameter. Assume atp
5p1 that the flow is quasiperiodic. In this case, if one exa
ines the Fourier spectrum ofx(t), one finds only a few in-
commensurate Fourier frequencies. According to Rue
Takens, and Newhouse@3#, an arbitrarily small change, sa
in the parameterp from p1 to p25p11dp, wheredp;0,
can lead to a chaotic motion characterized by a broadb
Fourier spectrum. Note that there are in fact an infinite nu
ber of incommensurate Fourier frequencies associated
the chaotic motion atp2 , whereas there are only a very fe
such frequencies atp1 even if up22p1u→0. Thus, an infinite
number of fundamental Fourier frequencies must have b
created through an arbitrarily small parameter change.

In this paper, we address the transition to chaos in de
ministic flows from the perspective of analytic signals,
concept that was originally proposed by Gabor in optics@4#.
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Given a scalar time seriesx(t), obtained from a measure
ment of a nonlinear system, the corresponding analytic sig
is defined to be

cx~ t !5x~ t !1 iH @x~ t !#, ~2!

where the imaginary partH@x(t)# is the Hilbert transform of
x(t):

H@x~ t !#5P F 1

pE2`

` x~ t8!

t2t8
dt8G . ~3!

In Eq. ~3!, the notionP stands for the Cauchy principal valu
of the integral. The analytic signal represents a rotation in
complex plane $x(t),H@x(t)#%, with instantaneous fre-
quency given byv(t)5df(t)/dt, where the phase angl
f(t) is defined through the representationcx(t)
5A(t)exp@if(t)#, andA(t) is the instantaneous radius of th
rotation. The instantaneous frequency so defined, howe
may possess negative values@5#. In order to only have posi-
tive frequencies that are physically meaningful, and to de
distinct fundamental frequency components, it is necess
to preprocess the time seriesx(t). We use theempirical-
modedecomposition method developed by Huanget al. @5#
to decomposex(t) into a finite number of components whos
analytic signals yield only positive instantaneous frequ
cies. The principal results of this paper are:~1! distributions
of the instantaneous frequencies for a chaotic system
typically well localized and exhibit no broadband feature,
contrast to the Fourier spectra of chaotic signals, and~2!
there is no substantial change in the number of analytic
nals that constitute a dynamical variable before and after
onset of chaos. The implication is that transition to chaos
nonlinear systems can be considered as a rather smooth
cess when the transition is viewed from the perspective
analytic signals rather than from that of the traditional Fo
rier spectra. Our results also suggest an interesting organ
tion of chaos in continuous flows, that is, chaos is suppor
by only a few distinct rotations in the complex represen
tions of analytic signals.
R6911 © 1998 The American Physical Society
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We have studied the analytic-signal representation of
namic variables for several chaotic systems including the
renz system@6# and the Ro¨ssler system@7#. Here we choose
to present our results with the model of two-mode truncat
of the complex coefficient Ginzburg-Landau equation@8#.
The model represents a four-dimensional autonomous fl

da1

dt
5pa11~ i 2p!~ ua1u2a11a1ua2u21 1

2 a1* a2
2!,

~4!
da2

dt
5pa22q2~ i 1p!a2

1~ i 2p!~a1
2a2* 12ua1u2a21 3

4 ua2u2a2!,

wherea1(t) anda2(t) are complex dynamical variables, th
star denotes a complex conjugate, andp and q are param-
eters. It was argued that Eq.~4! exhibits a transition from
two-frequency quasiperiodic motion to chaos in wide para
eter regimes via the mechanism of heteroclinic crossing
stable and unstable manifolds and torus breakup@8#. In par-
ticular, it was demonstrated that a two-frequency quasip
odic motion can lose its stability directly and becomes c
otic. In the sequel we fixq51.0 and use the following
notion: U(t)[Re@a1(t)#, V(t)[Im@a1(t)#, X(t)
[Re@a2(t)#, andY(t)[Im@a2(t)#. Numerical computation
indicates that the transition from two-frequency quasiperi
icity to chaos occurs at the critical parameter value 0
,pc,0.25, where the motion is quasiperiodic forp.pc and
chaotic forp,pc . Figure 1~a! shows, forp50.25, the pro-
jection of the quasiperiodic attractor~after a transient time o
t550 000! onto the (U,X) plane, and Fig. 1~b! shows the
Fourier power spectrum ofU(t) for 0<t<3276.8 at a sam-
pling rateDt50.05 ~so that there are 216 points in the time
series for fast Fourier transform!. Numerical integration of
Eq. ~4! was carried out by using a fifth-order adaptive ste
size Runge-Kutta algorithm. We see that the Fourier sp
trum is apparently discrete. Examination of the spectrum
dicates that there are two fundamental frequencies@8#. As p
decreases, the two-frequency torus in which the quasip

FIG. 1. ~a! For p50.25 ~two-frequency quasiperiodicity!, a tra-
jectory in the (U,X) plane.~b! The Fourier spectrum ofU(t) in ~a!.
~c! For p50.24 ~chaos!, a trajectory in the (U,X) plane.~d! The
Fourier spectrum ofU(t) in ~c!.
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odic attractor lies breaks atpc , and the asymptotic attracto
becomes chaotic with a fractal dimension between 3 an
for p,pc @8#. Figures 1~c! and 1~d! show the projection of
the chaotic attractor in the (U,X) plane and the Fourie
power spectrum ofU(t), respectively. Clearly, the Fourie
spectrum now has a broadband feature, which is a hallm
of chaos. Comparison between Figs. 1~b! and 1~d! indicates
that an infinite number of new Fourier modes is created
the onset of chaos.

We now examine the transition to chaos, as demonstra
in Figs. 1~a!–1~d!, from the standpoint of analytic signals. I
order to obtain analytic signals with positive instantaneo
frequencies from a time series~or signal! x(t), it is necessary
to decompose the signal in a proper way. To gain intuiti
imagine a counterclockwise~or clockwise! rotation of a par-
ticle on a circle of unit radius in the plane. This motion c
be characterized by an angle function, or phase,f(t)
5v(t)t, wherev(t) is the instantaneous frequency of th
rotation that satisfiesv(t)>0. The position of the particle on
a line passing through the center of the circle can be
scribed by the function cos@f(t)# or sin@f(t)#. For such func-
tions that describe rotation, the number of maxima a
minima is equal to the number of zeros in a given large ti
interval, a property that defines aproper rotation.This ob-
servation provides a general principle to obtain compone
with proper analytic signals from a complicated signalx(t).
The empirical-mode-decomposition method@5# we employ
consists of three steps:~1! construct two smooth splines con
necting all the maxima and minima ofx(t) to getxmax(t) and
xmin(t), respectively; ~2! compute Dx(t)[x(t)2@xmax(t)
1xmin(t)#/2; and~3! repeat steps~1! and ~2! for Dx(t) until
the resulting signal corresponds to a proper rotation. Den
the resulting signal byC1(t), which is the first component o
x(t). We then take the differencex1(t)[x(t)2C1(t) and
repeat steps~1!–~3! to obtain the second componentC2(t)
from x1(t). The procedure continues until the compone
CM(t) shows no apparent time variation@5#. The original
signalx(t) can thus be expressed asx(t)5( j 51

M Cj (t), where
the functionsCj (t) are nearly orthogonal to each other@5#.
By the nature of the decomposition procedure, the first co
ponentC1(t) corresponds to the fastest time variation ofx(t)
and, hence, the signal has the smallest time scale. As
mode indexj increases, the time scale increases so that
mean frequency of the rotation decreases. While this pro
dure is generally applicable to a smooth signalx(t), we
stress that it is onlyempirical@5#. There are also situations i
which the variablex(t) itself is already a proper rotation. In
such a case, the procedure decomposesx(t) into components
with distinct time scales, and the analytic signals of whi
yield distinct mean frequencies.

After x(t) is decomposed, one can obtain quantitat
characteristics of the rotations from the analytic signal
each component by utilizing the Hilbert transform. To ga
insight about the nature of the Hilbert transform, consider
mathematical functioneivt, which is the simplest analytic
signal. If one plots the real and the imaginary parts ofeivt in
the complex plane ofeivt, one obtains a rotation with angu
lar frequencyv. This example also illustrates the role of th
Hilbert transform: for a simple harmonic function cos(vt),
the Hilbert transform simply shifts the phase of the functi
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by p/2. For a more complicated signalC(t), one can nu-
merically obtain its Hilbert transform via the following thre
steps:~1! decomposeC(t) into a large number of harmonic
using the Fourier transform;~2! shift the phase of each ha
monic component byp/2; and~3! sum up all of the phase
shifted harmonics.

We have analyzed trajectories for both the quasiperio
and chaotic motions in Eq.~4! by decomposing the time
series into components with proper analytic signals. Here
present results with the time series of one of the dynam
variables, say, U(t). Specifically, we write U(t)
5( i 51

M Ci(t), whereM is the number of modes with nonzer
mean frequencies of rotation. For a time series of 216 points
at a sampling rate ofDt50.05, we find thatM'6 suffices to
capture the time variation of the original signalU(t). Fig-
ures 2~a! and 2~b! show, forp50.25, the first two rotations
in the complex planes of their own analytic signals. T
average frequencies of these two rotations arev1'0.846 and
v2'0.314, respectively. The rotations reveal rather regu
patterns, as can be expected for a quasiperiodic motion.p
decreases passing throughpc so that the system is in a cha
otic regime, these proper analytic signals still persist. Figu
2~c! and 2~d! show the corresponding rotations forp
50.24. Due to chaos, the rotations no longer exhibit regu
patterns, but the overall behaviors of rotation still exist. T
average frequencies of rotation arev1'0.864 and v2
'0.378 for modes 1 and 2, respectively. We see that
mean frequency of the first analytic signal changes o
slightly asp decreases from 0.25 to 0.24, and the correspo
ing change in the second analytic signal is rather large
general, we observe that the onset of chaos usually h
greater influence on rotations with smaller frequencies.

The remarkable result is that as the quasiperiodic mo
is converted into a chaotic one, the number of proper anal
signals characterizing a chaotic signal essentially remains
same. For instance, we find that the chaotic signalU(t) in
Fig. 1~c! can still be represented by six proper analytic s
nals. To better examine the change in proper analytic sig

FIG. 2. The first two proper analytic signals obtained fro
U(t). ~a! p50.25 ~quasiperiodicity!, mode 1;~b! p50.25 ~quasip-
eriodicity!, mode 2;~c! p50.24 ~chaos!, mode 1; and~d! p50.24
~chaos!, mode 2.
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for quasiperiodic and chaotic signals, we study the statist
behavior of mean frequencies of rotation. Specifically, fo
fixed parameter valuep, we choose 10 000 trajectories~each
of 216 points at a sampling rateDt50.05) on the attractor
and for each trajectory we compute mean frequencies of
first six modes of proper rotations. The histograms of th
six frequencies (v1 , . . . ,v6) are then computed. Figure
3~a!and 3~b! show the histograms forp50.25 andp50.24,
respectively. When the motion is quasiperiodic@Fig. 3~a!#,
we see that the first few frequencies are sharply distribu
Note that some of the frequencies are the linear combinat
of others, which occur commonly in the Fourier analysis. F
instance, we findv3'(v21v4)/2. For the chaotic motion
@Fig. 3~b!#, the frequenciesspreadand the frequency distri-
butions shift relative to those in the quasiperiodic case. Ho
ever, the first few frequency distributions in the chaotic ca
are still well localized. One important feature distinguishi
a chaotic rotation from a regular one is that for a chao
rotationc(t)5A(t)exp@if(t)#, the amplitudeA(t) is random
and the phase dynamics are similar to a random walk. Th
due to the fact that the phase dynamics can be describe
df(t)/dt5v1F@A(t)#, where F@A(t)# is a function of
A(t) @9,10#. The most important feature of Figs. 3~a! and
3~b! is that the number of proper analytic signals rema
essentially unchanged through the transition from quasip
odicity to chaos, and the distributions of the instantane
frequencies of the analytic signals arewell localizedand ex-
hibit no broadband feature. We speculate that a reason
be that in the rotation representation, the chaotic amplit
modulation is filtered out so that the broadband compon
in the Fourier spectrum disappears@11#. Thus, although an
infinite number of Fourier modes is created at the onse
chaos, there is no metamorphosis in the number of ana
signals that represent a chaotic time series@12#.

We remark that the frequenciesv j obtained here corre
spond to the mean rotation frequencies of the empirical m
els Cj (t) ( j 51, . . . ,M ) in the complex planes of their ana

FIG. 3. Histograms of mean frequencies of proper analytic s
nals associated with theU(t) for ~a! the quasiperiodic motion a
p50.25 and~b! for the chaotic motion atp50.24.



th
ie

on
fa
he
fr
d
b

,

e
bu
l-
t

l.
t

rier

s in
ls.
ig-
ber
the
t of
d as
rms

n
rk
156
8-

RAPID COMMUNICATIONS

R6914 PRE 58YING-CHENG LAI
lytic signals. These frequencies, in fact, characterize
main physical time scales hidden in the original time ser
U(t) from the perspective of rotations.The frequenciesv j
can be rationally related and we observe that there are
two incommensurate ones, which is consistent with the
that the underlying flow is two-frequency quasiperiodic. T
Fourier frequencies, on the other hand, are harmonic
quencies. When the motion is regular, we expect the fun
mental frequencies in the analytic-signal representation to
approximately equal to these in the Fourier representation
the ‘‘real’’ frequencies of the quasiperiodic motion@compare
Fig. 1~b! with Fig. 3~a!#. When the motion is chaotic, th
Fourier spectrum is broadband, but the frequency distri
tion in the analytic-signal representation is still well loca
ized, due to the fact that there cannot be abrupt change in
analytic signals~rotations! that constitute the physical signa
In this case, there is no direct correspondence between
-
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rotation frequencies of the analytic signals and the Fou
frequencies.

In summary, we have examined the transition to chao
deterministic flows from the standpoint of analytic signa
By studying the rotational characteristics of the analytic s
nals, we find that there is no significant change in the num
of proper analytic signals through the transition, although
Fourier spectrum becomes broadband after the onse
chaos. Thus, although chaotic motion can be characterize
random and complicated, its fundamental structure in te
of proper analytic signals can be quite simple.

I thank T. Yalçınkaya for assisting in the implementatio
of the empirical-mode-decomposition algorithm. This wo
was supported by the NSF under Grant Nos. PHY-9722
and DMS-962659, by AFOSR under Grant No. F49620-9
1-0400, and by the University of Kansas.
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in chaotic regimes. A somewhat analogous situation occur
the periodic-orbit representation of chaotic sets. It is believ
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