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Basin bifurcation in quasiperiodically forced systems
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In this paper we study quasiperiodically forced systems exhibiting fractal and Wada basin boundaries.
Specifically, by utilizing a class of representative systems, we analyze the dynamical origin of such basin
boundaries and we characterize them. Furthermore, we find that basin boundaries in a quasiperiodically driven
system can undergo a unique type of bifurcation in which isolated “islands” of basins of attraction are created
as a system parameter changes. The mechanism for this type of basin boundary bifurcation is elucidated.
[S1063-651%98)07909-4

PACS numbd(s): 05.45+b

I. INTRODUCTION how fractal and Wada basins evolve in quasiperiodically
forced systems as the system’s parameters are varied. Our
Many physical, chemical, biological, and engineering pro-approach will be to study a class of representative systems:
cesses are known to possess multiple coexisting final statefle quasiperiodically forced maps5]. We choose to study
Often, these processes can be modeled by eifder maps because they exhibit many fundamental phenomena of
dimensional continuous flowsdx/dt=F(x,p) or N-  the quasiperiodically driven flows such as strange nonchaotic
dimensional discrete maps,.;=F(x,,p), wherexe RN is  attractors[16,17,15,18,1R yet the analyses and computa-
the state variableF is a nonlinear function that haé com-  tions involved are greatly simplified. We find that multiple
ponents, and is a system parameter. Multiple coexisting Coexisting attractors, fractal and Wada basin boundaries are
final states mean that for a given parameter valudifferent ~ common in the sense that they occur in wide parameter re-
choices of the initial conditiorx, can lead to distinctly dif- ~gions of the systems studied. In particular, we study a basin
ferent asymptotic attractors, each with its own basin of atboundary bifurcation that characterizes a sudden change of
traction. The basin of attraction of an attractor is the set othe basin boundary as a parameter changes. We find that in
initial conditions in the phase space that asymptote to thguasiperiodically forced systems, Wada basin boundaries can
attractor. The boundaries that separate different basins of agndergo a unique type of bifurcation in which isolated and
traction are thebasin boundaries which can be either islandlike basins are created in the originally open basins.
smooth or fracta[1-7]. When the boundary is smooth, its We give a detailed analysis to account for this type of bifur-
box dimensiorD is one less than that of the phase space, i.e $ation.
D=N-1. For a fractal basin boundary, its dimensns a The rest of the paper is organized as follows. In Sec. Il we
fractional number that satisfiedNE1)<D<N, where the describe our model, show numerical evidence for the pres-
numbera=N-D<1 is the so-called uncertainty exponent €nce of fractal and Wada basin boundaries, and quantify
[8]. More recently, common fractal basin boundaries of more¢hese boundaries by using the uncertainty expofisai. In
than two basins of attractions, tiwfada basin boundarigs Sec. lll we present an analysis for the occurrence of Wada
have been identified in dynamics and studige-11]. It has  basins. In Sec. IV we describe and analyze the phenomenon
been known that fractal and Wada basin boundaries lead to@ a basin boundary bifurcation in quasiperiodically driven
final state sensitivitf1—7,9—11. That is, for a specific pa- Systems. Discussions are presented in Sec. V.
rameter setting and initial condition, no reliable computation
can be made to predict the system’s asymptotic attractor. II. NUMERICAL EVIDENCE
So far, to our knowledge, the study of fractal and Wada . )
basin boundaries has been restricted to dynamical systems OUr model system is the following class of two-
with no external driving or periodically driven systerfis—  dimensional maps:
7,9-11. A quite important class of dynamical systems are

the quasiperiodically forced systems, systems driven at two On+1=06ntw mod 1,
or more incommensurate frequencies. These systems are of 1)
interest because they can occur in physical situations such as Xn+1=M(Xy) +F(6n),

the dynamics of a quasiperiodically driven superconducting

quantum interference devicgl?], or in situations where whereM(x) is a nonlinear map that can exhibit chaos, and

some chemical or biological oscillators are driven by two orF(6,) models an external driving. We consider the simplest

more periodic signals whose frequencies are incommensuratgpe of driving: F(6,) =a cos(2r6,), wherea is the driving

[13]. In engineering, quasiperiodically driven systems areamplitude. The driving is quasiperiodic when the parameter

also of interesf14]. w in the first line of Eq.(1) is chosen to be an irrational
The purpose of this paper is to address the question afumber. We choose to be the inverse of the golden mean:
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w=(/5—1)/2 throughout this paper. In order to study basin
boundaries, it is necessary to choose the M) so that
Eq. (1) possesses multiple coexisting attractors. For illustra-
tive purpose, we choodd (x) to be the three-times iterated
version of the logistic map, that iV (x)=f®)(x) where
f(x)=rx(1—x). For simplicity we choose the parameter

in the logistic mapf(x) so that it is in a period-3 window
and, hence, the mapl(x) possesses three isolated simple
attractors, each with its own basin of attraction. We choose
the parameter so that these attractors are fixed-point attrac-
tors. When the quasiperiodic forcing is preseat=Q), the
map Eq.(1) possesses then three isolated attractors in the
two-dimensional phase spacg,X).

We now present numerical evidence for the existence of
fractal and Wada basin boundaries in Efj). The key ob-
servation is that for the one-dimensional miQ(x), the
boundaries between the basins of attraction of the three al
tractors are Cantor setfractal) [2,4,19. Under the quasip-
eriodic forcing at small amplitudes, the three fixed-point at-
tractors in the one-dimensional phase spaceVdi) are
transformed into three attractor¢either quasiperiodic,
strange nonchaotic, or chagt{d5]. The boundaries between
the basins of attraction of these attractors we expect to be,
topologically the fractal boundary sets that already exist in
the mapM (x) cross with a circldin the 6 direction). There-
fore we expect the basin boundaries between the three quz
siperiodic attractors in Eq1) to be fractal too. Figures(d)—

1(c) show for r=3.833 and a=0.0015, the basins of
attraction at three different scales, where Fige) And Xc)
are successive enlargements of Figg)1lln Fig. 1(a), only 0.80 0.85 0.90 0.95 1.00
one of the three attractors is shown, the one whose basin i 9

denoted by white dots in the figure. The basins of the other

two attractors are indicated by black and gray dots, respec

tively. Figures 1a)—1(c) suggest the existence of fractal ba-

sin boundaries in Eq.l).

We now characterize, quantitatively, the fractal Wada ba- ©-4<89
sin boundary in Figs. (®-1(c). It has been known that frac-
tal basin boundaries pose a fundamental difficulty in the pre-
diction of the asymptotic attractor of the systefh,2] 04275
because of the interwoven fractal structure of the basins o
attraction and because of the inevitable error in the specifi-
cation of initial conditions and system parameters. This is 04270
called thefinal state sensitivity1,2]. Let € be such an error.
Then the probability for two initial conditions, af distance
apart, to asymptote to different attractors scales wits

0.14265

0.805 0.810 0.815
4

P(e)~ e, )

FIG. 1. (a) The basins of attraction of the three attractors for the
where the scaling exponent is the uncertainty exporent quasiperiodically forced logistic map. The figures show only the
with 0< @=<1[1,2]. SinceP(¢) can be regarded as the error “middle” part of the phase space containing one of the attractors.
to predict the asymptotic attractor with finite measurement’ Tﬁ wr;]ltebrlegfn b((jalongs to the bzsuln of the r‘;"”rgc@ In ]Eh‘; flgufr]e,
precisione, we see that a significant improvement in the V'€ the black and gray regions belong to the basins of the other

precision, or a substantial reductionénusually yields only two.attraCtorS'.The parameter settingris 3.833,2=0.0015. T.he

. . . - basin boundaries are apparently fracth).and(c) Two successive
a modest decrease in the prediction efifge) if « is less enlargements of the rectangles indicated in white.
than one. In the extreme case where:0, many orders of
magnitude of reduction irr would yield essentially no re- values ofe in the range 10**<e<10" 3. For each value of
duction in P(e), a situation which is common in high- €, we choose random initial conditions in the regios 8
dimensional dynamical systeni20,21 or in systems with <1 and Osx<1 in one of the two basins. We perturb each
riddled basing22]. one by e, and we then determine if the perturbed initial

To compute the uncertainty exponent associated with theondition asymptotes to the same attractor as the unperturbed

boundary between two of the basins, we choose a number @he. If yes, the pair is called certain with respect to small
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FIG. 2. InP(¢e) versus Ire for the basin boundary between the
white and black basins in Fig. 1. A linear fit yields the following
uncertainty exponentr~0.07, indicating that the dimension of the
particular basin boundary B=2—-a~1.93.

perturbatiore. Otherwise it is uncertain. The uncertain prob-
ability P(€) is approximately the fraction of, say, 1000 un-
certain initial condition pairs among total pairs chosen. Fig-
ure 2 shows, on a log-log scale(e) versuse. We see that
the plot can be well fitted by a straight line, indicating the  FiG. 3. plot of the mapM (x). There are three square regions
scaling relation2). We obtaina~0.07. The fractal dimen-  that correspond to three one-dimensional subintervalfjti in
sion of the basin boundary between the two basins is thehich the three fixed-point attractors lie. Analysis of the preimages
D=2-a~1.93, which is close to the phase-space dimenof these subintervals leads to the conclusion that the basin boundary
sion. This indicates that the basin boundary separating th@ Fig. 1 has the Wada property.
two attractors has an arbitrarily fine-scale structure and, for
all practical purposes, it is very difficult to predict the cal systemgWada basinswas first identified and analyzed
asymptotic attractor for a given initial condition. We get theby Kennedy and Yorkg9]. They found that the exotic
same dimension if one looks at the boundary between anWada-basin phenomenon occurs quite commonly even in
other two basins. low-dimensional dynamical systems such as three-

For the parameter setting in Figgal-1(c), there are ap- dimensional flows and two-dimensional maps. Recently
parently three attractors with fractal basin boundaries sepaNusse and Yorke showed rigorously that Wada basins can
rating their basins. An interesting question is then whetheoccur generally in dynamical systerfi0].
there exists @ommonfractal boundary among the three ba-  To argue for the existence of a fractal Wada-basin bound-
sins of attraction. Such a common boundary is said to posary, we consider the case whea=0 so that the basin
sess the Wada property and is hence calleWada basin  boundary is a topological transformation of the Cantor
boundary[9]. In the following we shall argue that there is boundary setC in the one-dimensional mam(x) to C
indeed a Wada boundary in Figgat-1(c). In order to test X S!, as shown in Figs. (B)—1(c), whereS' is the circle in
whether the fractal basin boundary is common to the thre¢he ¢ direction. It thus suffices to argue that the Cantor
basins, we calculate the dimension of the union of the pairboundary set irfM(x) possesses the Wada property. Refer-
wise boundaries. The numerical computation shows that thieing to Fig. 3, a plot of the maM (x), we see there are three
dimension is the same as the dimensions for the pairwisgquare regions that correspond to three one-dimensional sub-
boundaries. intervals in[0,1], each one with a fixed-point attractor. De-
note these subintervals By, , A,, andA;. The boundary
between the three basins of attraction must then lie in the
one-dimensional set which is the complement sd0id] of

We first review the concept of a Wada basin boundarythe subintervalsA,, A,, andAz. Concentrating on one of
Consider three basins of attracti@y, B,, and B;. The the complement intervals, sgg,b], we see that there are
basinB; is a Wada basin if every point in the boundary of three subintervals ifa,b], denoted by 1, 2, and 3, which are
B, is also in the boundary &, andB3. The same definition the preimages of;, A,, andA;, respectively. The interval
holds forB, andB;. To have the Wada property, the three [a,b] thus contains all three basins and contains the comple-
basins must be pairwise disjoint. Such a geometric construgnent set of the joint set of subintervals 1, 2, and 3arb].
tion of three regions in which every boundary point is aThis complement set consists of four subintervals, denoted
boundary point of all three regions was first conceived by théy 314, 15, 213, and2 4, respectively, as shown in Fig. 3.
Dutch mathematician Brouwer in 1910 and independently byNow look at one of these four subintervals, S&y, the one
the Japanese mathematician Yoneyama in 1917, which was between 3 and 2. We see that there are three subintervals
called the “Lakes of Wada” in Ref[23]. The natural occur- in X,,, denoted by 1, 2’, and 3, respectively, which map
rence of the Lakes of Wada phenomenon in chaotic dynamito A;, A,, and Az in two iterations. The subinterval ;,,

221 i Eza 2 223 3 224

IIl. WADA BASIN BOUNDARY
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lengths of the subintervals,;, A,, andA; are different for
different 6 values but, nonetheless, the lengths change
smoothly due to the smooth driving functiancos2r6 used,
as shown in Fig. (8 by the large white region about
=0.5. As the forcing amplitude increases, at some locations
of # the driving terma cos2r6 is larger so that at these
locations, the critical points of the may (x) are no longer
contained in the squares. When this happens, a subinterval,
sayA,, contains part of the basins of the attractors that are in
A; and A;. In this sense, the basin of the attractorAp,
which is originally connected, now invades the basins of the
040 other attractors. In the two-dimensional phase spate)(
00 0.2 04 06 08 Lo we then expect to see complicated basin structures in the
] originally open basins. In particular, since the effect of forc-
ing is different at differen® values, the newly created basins
Gn the originally open basins form an “island” structure, as
shown in Fig. 4 for =3.846 andh=0.0024. The uncertainty
exponent for the basin structure in Fig. 4 is estimated to be
a~0.05, indicating that the dimension of the fractal Wada
o L _ boundary is approximately 1.95, which is also close to the
which is smaller than the original intervia, b], contains all - ha5e space dimension. This islandlike basin structure cre-
three basins. In a similar fashion, it is easy to see that thergie after a basin boundary bifurcation is a unique feature of
are four still smaller subintervalS,, 25, 253, andZ4 N oninvertible systems.
1, that contain the basin boundafgee Fig. 3 Any of To understand further why basin boundary bifurcations
these smaller subintervals must contain all three basins. By.cr for Eq.(1), we employ the concept of critical curves.
examining thenth preimages of the subintervals, A;, and  cyitical points and critical curves play an important role in
Ag in the limit n—o, we see that an arbitrarily small sub- {he |ocalization of singularities of the invariant measure of
interval % ,; (j=1,2,3,4) must contain all three basins. The chaotic attractorf25]. Certain phase transitions in nonlinear
boundary between the three basins must then be unique, fr_a§ystems such as band merging or interior crisis can also be
tal, and Wada. The same must also be true for the basinggerstood by examining the dynamics of the critical points
shown in Figs. (8)-1(c) since the basin boundary is simply i the map[26]. The concept of critical curves has also been
a Cantor set of circles@x S'). Furthermore, since such a ysed to argue the loss of connectedness of the basins of at-
Cantor set has a unique dimens{@d], the dimension of the  tractions in two-dimensional noninvertible dissipative maps
basin boundary is also unique. [27]. The critical points of a map are the iterations of the
local extrema. In the logistic map, the critical points are the
images ofx=0.5. In the period-3 window, the critical points
are located in the three square regions, as shown in Fig. 3.
Besides the basin boundary consisting of a Cantor set dBecause of th@ dynamics, one has critical curves. Consider
invariant circles CxSt), another type of basin boundary the critical curve defined bx=0.5, 0<#<1. A special
can occur in quasiperiodically forced systems. In this caseproperty of this curve is that the determinant of the Jacobian
the basins of attraction of one attractor have isolated “is-matrix of Eq.(1) evaluated along it is equal to zero. When
lands” immersed in the basins of the other attractors. Figurehe quasiperiodic driving is zero, there are critical curves
4 shows an example for such a basin. The formation of thosahich are straight lines in thé direction, as shown in Fig.
islands is a result of a sudden change in the structure of th&@a). They are located in the three basins. When the quasip-
basins of attraction as a system’s parameter is changed. Thisiodic forcing is increased from zero, they become wavylike
change can be considered as a basin boundary bifurcati®haped, as shown in Figs(bp and 5c). The curves become
occurring at special values of the parameters. more convoluted as the number of iterations increases. Be-
We address the following questions: How can basinfore the basin boundary bifurcation, the higher iterates of the
boundary bifurcations occur in quasiperiodically driven sys-curves do not touch the basin boundaries and they remain in
tems and what are the unique characteristics of such bifurcahe vicinities of the three attractors. At some critical forcing
tions? To gain insight, we refer to Fig. 3, the plot of the amplitude, the higher iterates of the critical curves and the
one-dimensional maM (x) under no driving. In the figure, basin boundary are tangent, yielding the creation of islands
there are three square regions in which the three attractois the basins of attraction of different attractors. Above this
lie. The one-dimensional subintervads, A,, and A; be-  critical forcing amplitude the island structure becomes more
long entirely to the basins of the three attractors. This is du@ronounced, as exemplified by Fig. 4. To better visualize the
to the fact that the critical points of the map in the threerole played by the critical curves in the basin boundary bi-
squares are completely in the squares. Now imagine we turfurcation, we plot both the curves and the basins of attrac-
on the quasiperiodic forcing. At small forcing amplitude, thetion. Figures 6a)—6(d) show four cases at parameter values
critical points are still in the square so that the subintervala=0.001, 0.001 42, 0.001 424, and 0.0024, respectively,
Ai, A,, andA; are still open basins of the three attractors.where Figs. 6) and 6b) are before the basin boundary bi-
At different locations of¢, the driving is different. Thus the furcation, Fig. &c) is very close to the basin boundary bifur-

> 0.50

0.45

FIG. 4. Basin structures after a basin boundary bifurcation. Th
parameter setting is=3.846 anda=0.0024. We see that there are
“islands” of new basins of other attractors in the originally open
basin of one attractor.

IV. BASIN BOUNDARY BIFURCATION
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(a) is as in Fig. 4, andC denotes the parameter region in which
1oL — ] there is only one single attractor. The boundary between re-
i ] gions A andB is thus the curve in the two-dimensional pa-
08F . rameter space at which basin boundary bifurcation occurs,
i ] while the boundary between regioBsand C signifies the

el b critical parameter curve for an interior crigis].
Tt ] As we discussed above, the basin boundary in regien
" F ] a Cantor set of invariant circle<Cx S') and thus their box
0.4 . dimension is the sum of the dimension of the Cantor set
i ] obtained from the unforced logistic map and one, the dimen-
r 1 sion of the invariant circles. Moreover, this sum does not
0.2 . .
change when the amplitude of the forciaghanges. In fact,
I ] we find that the uncertainty exponeatand, consequently,
0'%0 > ” > > the box dimension of the boundafy is independent of
‘ ' e ' 1o (Fig. 8). Within the accuracy of our computations, which is
measured by the standard deviations of the least squares fits
(®) for eacha, we obtaina= a(a)=consj [curve (a)] for the
1.0 T T T . . . . . .
F basin boundary which is a Cantor set of invariant circles as
I ] in Fig. 1. By contrast, in the cag® where the basins contain
0.8¢ § islands, the dimension of the basin boundary depends on the
- strength of forcinga. Along the line r=3.846 in the
osl ] (r,a)-parameter space we find agair= a(a)=cons} for
y i ] those small values for which the basin boundary is still a
e = = Cantor set of circles. Beyond the basin boundary bifurcation
o4 ] which occurs ata~0.001 424 the uncertainty exponeat
] appears to depend linearly on the forcing amplitadeurve
02k - (b) in Fig. 8]. The decrease i corresponds to an increase
in the dimension of the basin boundary as we approach the
ool ‘ . . ‘ interior crisis value for the attractors. This linear dependency
0.0 0.2 0.4 0.6 0.8 10 can be understood using the same arguments as i Z83f.

8 where the authors analyze a basin boundary bifurcation in a
piecewise linear, noninvertible map. This map is similar to
our map shown in Fig. 3 but instead of the parabolalike
functions in the small rectangles they have considered piece-
wise linear functions. The bifurcation occurs as soon as the
tips cross the boundary of the rectang®9]. An analytical
study shows that in general one obtains a power law depen-
dence of the dimension of the basin boundary on the bifur-
cation parametes: (d—dg) ~(a—ag)?, whered, stands for

the dimension of the boundary before the basin boundary
bifurcation anda, denotes the forcing amplitude at the basin
boundary bifurcation point. However, for the very small
forcing amplitudes applied in our example this dependency

i ] is essentially linear, which is observed in the numerical ex-
ool . . . | - o . ] periments.

0.0 0.2 0.4 0.6 0.8 1.0
4

. V. DISCUSSION
FIG. 5. Critical curves afa) r=3.846 anda=0; (b) r=3.846

anda=0.001; and(c) r=3.846 anda=0.0015. Fractal and Wada basin boundaries are fundamental phe-
nomena of deterministic chaotic systems with multiple coex-
cation, and Fig. @l) is after(cf. Fig. 4. isting asymptotic attractors. The basic mechanism for fractal

The concept of critical curves can also be utilized to mapstructure to arise involves the existence of chaotic dynamics
out the parameter space regions that generate different basimthe basin boundaries, such as the creation of nonattracting
structures. This is done simply by examining a large numbechaotic saddles in the boundari¢g§]. Quasiperiodically
of iterations of the critical curve<=0.5, 0<6<1 to see forced systems exhibit fractal and Wada basin boundaries
whether they intersect the basin boundary. Figure 7 shows, idespite the fact that the system in neither expanding nor
the two-dimensional parameter spageal), three distinct contracting in one direction of the motion, i.e., in the direc-
regions, wheréA corresponds to the parameter region beforetion of the phase of the forcing. The main contribution of this
the basin boundary bifurcation where the basin structure ipaper is the detailed analysis of a unique type of basin
exemplified by Fig. 1B corresponds to the parameter regionboundary bifurcation. This basin boundary bifurcation which
after the basin boundary bifurcation where the basin structurés related to the creation of islands in the basins of attraction
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> 0.50

0.45

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
0.60 m : i 0.60

0.55 Pz : = 055

» 0.50 »® 0.50

0.45§

0.40 r= e e s 0.40
0.0 0.2 0.4 0.6 0.8 1.0 0.0

FIG. 6. Critical curves and the basifwhite) of the middle attractor fomr =3.846 and(a) a=0.001, (b) a=0.00142,(c) a
=0.001 424, andd) a=0.0024. Casef) and (b) are before the basin boundary bifurcation, cégds very close to the basin boundary
bifurcation, and(d) is after.

is due to the noninvertibility of the map. For this reason onetrast to those, the stable and unstable manifolds involved in
cannot expect such bifurcations to happen in invertible mapthe basin boundary bifurcation in quasiperiodically forced
and, therefore, in differential equations. However, changesystems are connected with quasiperiodic orkityariant

in the structure of the basin boundary can also occur in quaeurves. Furthermore, we note that the basins of attraction
siperiodically forced invertible maps. In such maps their ap-are symmetric with respect to the li’e=0.5. This symme-
pearance should be related to tangencies of stable and un-

stable manifolds similar to the basin boundary meta- o.20f T T '
morphosis known for nonforced dissipative systems. In con- 3 ]

0.0015

0.0030 T ' ] 0.151 ’ =
: C ] Llllizle L1a 84 ]
0.0025 - . I O L 20 2 G ]
L ] cso.1ofT (b) E
0.0020 - :i?%@@e}%@y%%é“%?@f ]
@ 0.05F (a) .

0.00L L L | L

0.0010 B N 0.0000  0.0005  0.0010  0.0015  0.0020  0.0025
r o a
0.0005 ! ! ! FIG. 8. The uncertainty exponentvs the forcing amplituda
3.830 3.835 3.840 3.845

for r=3.833, where there is no basin boundary bifurcation up to the

interior crisis valugcf. Fig. 7) (a) andr =3.846, where we find the
FIG. 7. Regions in the two-dimensional parameter space thamaximum distance(longest scaling regionbetween the basin

generate qualitatively different basin structures. boundary bifurcation and the interior crisis val(¢d. Fig. 7) (b).

r
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