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Antiphase synchronism in chaotic systems
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We report our finding and analysis of a type of synchronism that occurs in chaotic systems with symmetry.
Specifically, we find that the amplitudes of the dynamical variables of such a system can be synchronized with
those of its replica, but that the variables can have different signs with respect to each other. This type of
antiphase chaotic synchronism is observable in wide parameter regimes even for hyperchaotic systems. The
mechanism of the synchronism suggests a systematicaapribri way to construct synchronizable chaotic
systems. Application to nonlinear digital communication is pointed [@8063-651X98)02607-5

PACS numbd(s): 05.45+b

I. INTRODUCTION There also exist regions of the phase space, from which ini-
tial conditions chosen yield full synchronization, that is,
One of the most striking discoveries in the study of chaogy/(t) =y’ (t) ast— .
is that chaotic systems can be made to synchronize with each There are several features associated with the above syn-
other[1]. This discovery by Pecora and Carroll in 1990 waschronization schemdi) In most studies reported in the lit-
both theoretically surprising and practically significant. erature[1-3], in order to search for synchronizable chaotic
Theoretically, chaos stipulates that nearby trajectories disystems, one usually tests various combinations of a subset
verge exponentially in time and, thus, synchronization ofof state variables to look for a subsystem that possesses only
chaotic systems seems unlikely in the presence of inevitableegative Lyapunov exponents. Our scheme provides a sys-
small differences in parameters of the systems, and noise. tématic anda priori way to design synchronizable chaotic
was shown by Pecora and Carrdl], however, that when an systems(ii) In our scheme, synchronization can be readily
appropriately chosen state variable of a chaotic system igchieved even when the system has more than one positive
used to drive a subsystefthe “slave”), the subsystem syn- Lyapunov exponenthyperchaotit. (iii) The combination of
chronizes with its replica if its Lyapunov exponents are allin-phase and antiphase synchronization provides a way to
negative. Practically, synchronization of chaos provides a&ncode messages into an array of synchronous chaotic sys-
way to transmit information via a chaotic carrier and, there-tems for massive communication of digital informatiteee
fore, synchronous chaotic systems can be utilized for comSec. \j.
munication[2]. Due to these appealing features, synchronism The rest of the paper is organized as follows. In Sec. Il
in chaotic systems has become a direction of intense recemte present a theory for the antiphase synchronism. In Sec.
research3]. Ill, we give a numerical example with a two-dimensional
In this paper we report our finding of a class of synchro-map. In Sec. IV, we demonstrate, by utilizing a six-
nism that exists in chaotic systems with symmetry. Specifidimensional hyperchaotic flow, that antiphase synchronism
cally, consider a chaotic system described by either aman also occur in continuous chaotic systems. In Sec. V, we
N-dimensional continuous flowdz/dt=F(z,p) or an present discussions and conclusions.
N-dimensional discrete man, . ;=F(z,,p), wherez is the

state variableF is a nonlinear vector function that has a Il. THEORY
simple type of symmetry, anglis a system parameter. When _ _ . .
the variablez is decomposed in the manrer (x,y), where Consider arN-dimensional mag, 1= F(z,,p) with the

x is the driving system angl is the slaving subsystem, we decomposition of the system into a driving subsyste(di-
find that the subsystem can synchronize with its replica in mensionN,) and a subsystem to be synchronizeddimen-
amplitude but with opposite sign for initial conditions chosension Ny, whereN,+N,=N). We write the following equa-
from large regions in the phase space. That is, for a replicons forx andy:
y’ of the slaving subsystem, the following can occur:

Xn+1:f(xn)a

y(t)=—y'(t) ast—c. (1) Yn+1=h(X,,p)G(Yn), (2

wheref(x,) is a nonlinear map that generates a chaotic at-
We call this type of behaviaantiphase chaotic synchronism tractor, h(x,p) is a scalar driving function, an@(y,) is a
vector function that possesses symmetry. For simplicity, we
consider the reflecting symmetry i®s(y,): G(—y,) =
*Electronic address: lcao@poincare.math.ukans.edu —G(Y,). There is then an invariant subspace definedyby
TElectronic address: lai@poincare.math.ukans.edu =0, in which there is a chaotic attractor generated by the
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mapf(x,). The subspacg=0 is invariant because a trajec- of these two attractors i&=0. These attractors are symmetry
tory starting withy=0 is confined toy=0 at all subsequent broken because they are confined only within half of the
times. The replica of the subsystem to be synchronized is phase space and, hence, they do not possess the reflecting
symmetry in the equations of the system E8). Due to
Yn+1=h(Xn,P)G(Yp). (3)  symmetry in the system equations, all the statistical proper-
ties such as averages and the Lyapunov exponents are iden-
In order to achieve synchronization betwgeandy’, the  tical for both attractors. In this case, X,<0, trajectories
largest Lyapunov exponent of tlyesubsystem must be nega- starting from two random initial conditions, one yo-0 and
tive [1]. For our systeniEq. (2)], this exponent can be writ-  gnother iny<0, tend to evolve as “mirror image” of each
ten asA,=limr_..(LT)X}_; In[h(x,,p)DG(yy) - ul, where  other. Thus, depending on the choice of initial conditions,
u is a unit vector in they subspace, andDG(y,) both in-phase and antiphase synchronism can occur. In par-
=dGldyl, is the Ny XN, Jacobian matrix of the function ticular, when initial conditions for both the subsystem and its
G(y) evaluated along a typical trajectory in the phase spaceeplica are chosen in thg>0 (or y<0) space, we have an
To search for synchronizable subsystems that satisfy in-phase synchronism: lign...y, =y, . However, if the initial
<0, we expressDG(y,) by using a Taylor expansion, condition of the subsystem is chosenyir 0 but that of its
DG(y,)=DG(0)+A(Y,), whereDG(O)EDG(y)|yn:0 isthe replica is chosen ily<0, or vice versa, then antiphase syn-

Jacobian matrix evaluated g0, andA(y,) represents all chronism, lim_..y,=—yy, can occur.
the high-order terms in the expansion, which isNyxX N,
matrix that depends ow,. We thus obtain IIl. NUMERICAL EXAMPLE:

A TWO-DIMENSIONAL MAP
Ay:AT"f‘)\, (4)
We first give a simple numerical example to illustrate
where antiphase synchronism. We consider the following two-

T dimensional version of Eq2):

1
Av=m 3 2, Inihx P)DG(O)-ul, X1 =X 1),

and 1 .
; yn+1:Z pXn SiN(27yy), (6)

)‘:T"an T nZl In[h(Xn,P)A(Yn) - l. ®) where the invariant subspaceyis-0, in which the dynamics
is described by the one-dimensional logistic map,irandp

Notice thatA is the transverse Lyapunov exponent definedS @ parameter. We choose the parametesuch that the
locally with respect to the invariant subspace0[4]. When  logistic map generates a chaotic attractor. We concentrate on

A+<0, trajectories in the vicinity of the=0 approach it e phase space region{x<1,-0.5<y=<0.5) because of
asymptotically. The chaotic attractor in the invariant sub-the range of the logistic map and the periodicity in the
space thus attracts initial conditions in the entire phase spa&@duation. The replica of thg subsystem to be synchronized
if there are no other attractors. This leads to the asymptotit Yn+1= (1/2m)pX, sin(2my,). The transverse Lyapunov ex-
solutiony=0, which is not interesting from the standpoint of Ponent of Eq.(6) is At= [ In|pXp(x)dx, wherep(x) is the
synchronization. To achieve nontrivial chaotic synchronizadnvariant density ofx for the logistic map. Thus, we have
tion, we must have\>0. In this case, trajectories in the p.=exd—/gIn[x|p(x)dx], where A=0 for p=p. and
vicinity of y=0 can be repelled away from it and the dynam- A1<<0 for p<p.. It was shown in Ref[5] that the bifurca-
ics near the invariant subspace is chaotic. From(Bg.we tion at p. is a symmetry-breaking bifurcation. Fe<pg,
see that in order to havé, <0, we can choosdt=0 and y=0 is the only attractor of Eq(6). For p=p,, there are
A<0. As we shall see in numerical examples, it is in facttwo attractors, completely symmetric to each other with re-
quite straightforward to choose the functiohéx,,p) and spect toy=0, one in the upper half plane>0 and another
G(y) to satisfy this condition. in the lower half planey<<0. The boundary between basins
The key observation that antiphase synchronism can o®f attraction of the two attractors is the line segmgrtO
cur is that the system can have symmetry-broken attracto@nd O<x=<1. For Eq.(6), a symmetry-increasing bifurcation
when A1=0 [5]. Specifically, it was shown in Ref5] that  occurs at parameter valuyg,=7 [5] after which the two
the transition fromA;<0 to A;>0, as the parametgp =~ symmetry-broken attractors merge into a single chaotic at-
changes through a critical valyg. [6], can in general be a tractor with two positive Lyapunov exponents through a cri-
symmetry-breaking bifurcation. Fop<p. (A;<0), the sis. Thus we expect antiphase synchronism to occur in the
chaotic attractor in the invariant subspace is the only attragearameter rangp,<p=ps.
tor of the system. Fop>p. (A1>0), the attractor in the The Lyapunov exponent of thg subsystem is given by
invariant subspace is no longer an attractor of the entiré\y=At+/ In|cos(2rryn)|py(y)dy, where p,(y) is the prob-
phase space. Instead, two isolated attractors, perfectly syrability distribution ofy. The integral iny is always negative
metric with respect to each other, are bornpatp., one and, hence, it is possible to havg,<0 while A+>0. We
lying in the upper half spacg>0 and another in the lower note that fop<p., we haveA = A+ becausg/,=0 asymp-
half spacey<0. The boundary between basins of attractiontotically and, thereforef In|cos(2my,)|p,(y)dy=0. Figure 1
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FIG. 1. Ay and A vs the parametep in the model system
Eq. (6).

showsA, and At versusp for 1.5<p=<3.5(r=3.8 in the
logistic map. We see that\, remains negative fop.<p
<ps except wherp is very close tops. Figure Za) shows
the time seriey,, andy,, for a case of antiphase synchro-
nism, where the initial conditions agg>0 andy,<0. We
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dxq
W: _XZ_X3+ ay,
dx, )
W = X1+ 025(2+X4+ bZ y
dxg
v :30+ X1X3,
dt
(7
dx,
?E*:—Ofyg+005q,
dy
dt 2
dz 3 _ . .
T az—yy°+(B+ 1, sinx;+f, sinx,)sin(2wy),
where the invariant subspace is four-dimensional

see that the two trajectories rapidly become symmetric tgx;,X,,X3,X4) defined byy=0 andz=0, the transverse sub-

each other with respect tp=0. Figure Zb) shows, on a
logarithmic scale, the quantityy?—y/? versus time.
Clearly, the amplitudes of thg subsystem and its replica
become synchronized as- <, but the phases of the chaotic
time series are just opposite.

IV. NUMERICAL EXAMPLE:
A SIX-DIMENSIONAL FLOW

system to be synchronized is two-dimensionglz], anda,

b, a, v, B, f1, andf, are parameters. Note that the cases
wherea+0, b#0, anda=b=0 correspond to bidirectional
and unidirectional couplings from the invariant subspace to
the transverse subspace, respectively. The choices of the cou-
pling terms such aay andbz? are chosen rather arbitrarily.

In Eq. (7), the variables X;,X,,X3,X4) constitute the hyper-
chaotic Resler chaotic system with two positive Lyapunov
exponentg7]. The replica of the transverse subsystem to be
synchronized is

The antiphase synchronism can also occur in continuous

chaotic systems. To demonstrate this, we now study a six-

dimensional hyperchaotic flow

(a)

T : T T T T
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T
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FIG. 2. Antiphase synchronism at=1.85.(a) Time seriesy,
andy;,. (b) |y2—y.?*? vsn on a logarithmic scale.

dy’ |
—=7
dt '
8
dz )
T y(y' )3+ (B+Fy sinx,

+f, sinx,)sin(2wy’).

For concreteness, we fia=1.0, b=2.0, y=2.0, f;=3.5,
andf,=5.0, and change: and 8 to identify synchronizable
parameter regimes wittht>0 and Ay<0. We find that
there are large parameter regions for which antiphase syn-
chronism can be achieved. Figur@Bshows such a case for
a=10andB=1.6, wherez(t) versug andz’(t) versug are
plotted. Figure &) shows, on a semilogarithmic scale, the
quantity A(t)=[Ty(O=Ty O+ [z~ [z' ()] ver-
sus t. We see that[y(t),z(t)] approaches[—y’(t),
—Z'(t)] rapidly. We note that at this parameter setting, the
full six-dimensional systerfEqg. (7)] possesses the following
Lyapunov spectrum(approximately: (0.109, 0.021, O,
—1.891,—7.749,—24.450 and, hence, the synchronism il-
lustrated in Fig. 3 occurs in a hyperchaotic system with two
positive Lyapunov exponents.

V. DISCUSSIONS AND CONCLUSIONS

In summary, we find that both in-phase and antiphase
synchronism can occur in chaotic systems with symmetry in
parameter regimes where there is symmetry breaking. The
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o5 @ [9,10]. This approach makes explicit use of the fundamental
F i anti-phase principle that chaotic systems are natural information
0.1+ 20 { synchronization sources. By manipulating the symbolic dynamics of a chaotic
_ 0.057{ : : system in an intelligent way, the system produces trajectories
% in which digital information is embedded in the symbolic
R dynamics. Call this method 2. Here we wish to point out that
%_0‘05_5 the coexistence of in-phase and antiphase synchronization
may be quite useful in nonlinear digital communicatidhe
0.1 ; idea is to combine the principles of both method 1 and
0.15 L4 ‘ ‘ ‘ ‘ method 2, by utilizing antiphase and in-phase synchroniza-
0 2 4 6 8 10 tion, to massively encode a large amount of digital informa-
t tion into an array of chaotic systemSay we construct an
0 B array of M synchronizable subsystenisr oscillatorg y; (i
; =1,...M), all driven by the same chaotic signal Initial
51 conditions are chosen so that some of the oscillators are out
- of phase with the remaining oscillators. Due to the existence
Zo-m‘ of the two distinct phas_es, one can now assign _binary sym-
of bols to the array of oscillators. For instance, oscillators with
< ) y>0 are assigned symbdl, and those withy<0 are as-
-154 signed symboD. A digital message, represented by a finite
Al sequence of binary symbols, can now be encoded into the
-20 ‘ | ; s array of oscillators, with each oscillator bearing one informa-
0 5 lto 15 20 tion bit. The whole message is thus encodedultaneously

To encode a new message, one waits Uytils close to the

FIG. 3. Antiphase synchronism for the six-dimensional hyper-Symmetric axisy=0, at which time small perturbations to
chaotic flow[Eq. (7)]. (8) Time serie(t) andz’(t). (b) A(t) vst the oscillator’'s dynamical variables are applied to change the
on a semilogarithmic scale. See text for details. state of the oscillator frony>0 to y<0, or vice versa, de-

pending on details of the binary representation of the new

synchronization mechanism elucidated in this paper suggesfdessage. By symmetrall oscillators come close to the

a general and priori approach to construct synchronizable SYMMetric axis simultaneouslyhus small perturbations are
chaotic systems. The synchronism can be readily realize@PPliéd at the same time. An advantage of this type of en-
even for hyperchaotic systems. Due to these advantages, w@ding is that the amount of information that can be encoded
expect the chaotic synchronism reported here to be practf@n be made large by simply increasing the number of driven
cally useful. oscnlator_s. '_I'hls is thus essentially a multichannel dlglt_al
The antiphase synchronism reported in this paper relies off?Mmmunication scheme, and the aspect of the synchroniza-
the system possessing a simple symmetry. That is, in order #‘Jon utilized offers many advantages such as a good timing
realize y(t)— —y’(t), wherey andy’ are the two sub- 'OF dpcodmg messages.
system’s to be synchronized, it is necessary that both sub- Finally, we remark that recently, the phenomena of phase
systems have an identical symmetry. Antiphase synchronizg"d 1ag synchronization have been discovered and studied
tion occurs simply because the trajectories of one subsyste 1]_' In such acase, an anglelike phase functlpn ofa chao.t|c
live on a chaotic attractor, while the trajectories of the sec2Scillator, defined with respect to some rotation of chaotic

ond subsystem wander on a chaotic attractor which is comffalectories in the phase space, can be made to stay close to
pletely symmetric to the first attractor. Mathematically, thisthe_ phase _functlon Of_ a”Oth?r chaotic oscillatoot heces-
demands that the functiorgx,p) and G(y) in Eq. (2) be sarily identical to the first oscillatpwhen the two oscillators
identical for both subsystems. A slight mismatch betweerf:'® wgakly coupled o each.oth.er. The antiphase synchro-
these functions for both subsystems may be allowed, but ifism discussed in this paper is different from both the phase

such a case the quality of the synchronization, measured d Iag synchrqnization. This can be seen by noting that,
[ly()|=|y’(t)|], will be proportional to the amount of the ynamically, antiphase synchronism occurs when the largest

mismatch. Antiphase synchronism may fail if the mismatc Lyapunov exponents of bOth _subsyste_ms become negative.
is too large. hus antl_phas_e synch_romsm is essentially the same type of
A potential usage of the phenomenon of antiphase Syngynchrorjlsm first studied by Pecora_and Caifit]l Thg dif-
chronism lies in nonlinear digital communication, which hasference. is that we aIIowlfor the coexistence of chaotic attrac-
become a field of recent interest. So far there have been twig's which are symmetric to each other.
different approaches to the problem. One is to use the prin-
ciple of synchronous chadd—3] to embed and transmit
digital information. Call this method 1. Another is to extend  This work was supported by NSF under Grant No. PHY-
the principle of controlling chaoE8] to dynamical systems 9722156, by the University of Kansas, and by the
with well-defined symbolic dynamics to encode information K* STAR/NSF EPSCoR Program in Kansas.
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