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Recent work has considered the possibility of utilizing symbolic representations of controlled chaotic orbits
for communicating with chaotically behaving signal generators. The success of this type of nonlinear digital
communication scheme relies on partitioning the phase space properly so that a good symbolic dynamics can
be defined. A central problem is then how to encode an arbitrary message into the wave form generated by the
chaotic oscillator, based on the symbolic dynamics. We argue that, in general, a coding scheme for commu-
nication leads to, in the phase space, restricted chaotic trajectories that live on nonattracting chaotic saddles
embedded in the chaotic attractor. The symbolic dynamics of the chaotic saddle can be robust against noise
when the saddle has large noise-resisting gaps covering the phase-space partition. Nevertheless, the topological
entropy of such a chaotic saddle, or the channel capacity in utilizing the saddle for communication, is often less
than that of the chaotic attractor. We present numerical evidences and theoretical analyses that indicate that the
channel capacity associated with the chaotic saddle is generally a nonincreasing, devil’s-staircase-like function
of the noise-resisting strength. There is usually a range for the noise strength in which the channel capacity
decreases only slightly from that of the chaotic attractor. The main conclusion is that nonlinear digital com-
munication using chaos can yield a substantial channel capacity even in noisy environment.
[S1063-651%98)04708-4

PACS numbds): 05.45+b

[. INTRODUCTION generates a chaotic attractor in the phase space, we address
the following questions(1) What type of chaotic trajectories

Digital communication plays an extremely important role or dynamical invariant sets does a general coding scheme
in a modern economy. At present, digital communication isgenerate?2) How much information can be transmitted via
carried out mainly by linear devices, that is, by transmittersa chaotic oscillator through a coding3) What is the influ-
and receivers operating in the linear regime. Recent develognce of noise on coding? The answers to these questions
ment in nonlinear dynamics and chaos has led to the idea @onstitute an essential step in the development of a general
realizing digital communication by utilizing devices operat- theoretical framework and practical designing criteria for
ing in nonlinear regimegl,2]. Specifically, it has been dem- nonlinear digital communication with chaos.
onstrated both theoreticallyL] and experimentally2] that a The first result of this paper is that, in general, a coding
chaotic system can be manipulated, via arbitrarily smallscheme generates chaotic trajectories that live on one of the
time-dependent perturbations, to generate controlled chaotigncountably infinite number of nonattracting chaotic saddles
orbits whose symbolic representation corresponds to thembedded in the chaotic attractor. To understand this, imag-
digital representation of a desirable message. Imagine a chie the two-symbol0 and ) case and assume that we con-
otic oscillator that generates a large amplitude signal consissider ann-bit symbol sequences. For a nonlinear oscillator
ing of an apparently random sequence of positive and negdhat generates a chaotic attractor, if the dynamics corre-
tive peaks. A possible way to assign a symbolicsponds to a Bernoulli shift, there aré possible symbol
representation to the signal is to associate a positive peadequences. The number of allowsebit symbol sequences
with a one, and a negative peak with a zero, thereby genein most chaotic oscillators is usually less thaft 2he al-
ating a binary sequence. The use of small perturbations to dowed ones are called the grammar. That is, there are always
accessible system parameter or variable can then cause tfabidden symbol sequences. In communication, however,
signal to follow an orbit whose binary sequence encodes the binary representation of a message to be transmitted may
desirable message that one wishes to tranghy#f. One ad- contain all possible symbol sequences. Thus, it is necessary
vantage of this type of communication strategy is that theo code the message so that its encoded binary representation
nonlinear chaotic oscillator that generates the wave form foconstitutes symbol sequences that are allowed by the gram-
transmission can remain simple and efficient, while all themar of the chaotic oscillator. In practice, it is difficult to
necessary electronics controlling encoding of the signal redesign a code that excludes only the forbidden symbol se-
main at low-powered microelectronic level. gquences. Given a code, the set of excluded symbol sequences

A central issue in any digital communication devices is tousually includes a number of symbol sequences that are ac-
select a proper coding scheme by which arbitrary messagdsally allowed by the grammar. Thus, it is often the case that
can be encoded into the transmitting signal. The main purenly a subset of all the allowed symbol sequences is utilized.
pose of this paper is to study the dynamics of coding inSince all the allowed symbol sequences correspond to the
nonlinear digital communicating with chaos. Assuming thatoriginal chaotic attractor in the phase space, the subset of
the nonlinear device to be used for information encodingallowed symbol sequences corresponds to a chaotic set em-
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bedded in the attractor. As we will argue using a physical 44
example, these sets are typically nonattracting chaotic [\
saddles. We mention that making use of a chaotic saddle for 42+ / \
communication has one practical advantage: It makes the / \
message encoding immune to small nojsee Sec. Il for _, 405 / \
details. & / \

An issue of great importance in any digital communica- N 38 /
tion scheme is how much information the system can encode / \
and transmit. A quantitative measure of the amount of infor- 36 \\
mation is thechannel capacity3,4]. For a chaotic system,
channel capacity is equivalent to the topological entrdgy 34 | l | |
because this entropy defines the “amount” of information 34 36 38 40 42 44

that can be transmitted through a communication channel 2

[3,4]. From a dynamical point of view, the topological en- FIG. 1. A 10 000 point trajectory of the Lorenz map on a noise-
tropy measures the O.rb't C(_)mplexny of the chaotic 'nva”a.ntresisting chaotic sadpdle eméedde{i in the chaotic aFt)tractor, corre-
set. From the viewpoint of Informatlon theor_y, the topologi- sponding to imposing the grammatical restriction, “no four zeroes
cal entropy is the rate at which information is generated. Tq, . .,

give an example, consider again a stringno§ymbols gen-

erated by the dynamics. If the dynamics is purely randomyqih gne-dimensional noninvertible and two-dimensional in-
one would expect to be able to observegssible symbol \erinle maps. In Sec. IV, we give a detailed theoretical
sequences. In this case, the topological entropy is simply analysis for the devil's-staircase-like function of the topo-

n logical entropy versus the noise amplitude. In Sec. V, we

2 =In2, present a rigorous result for the topological entropy function
of the chaotic saddles for the one-dimensional logistic map
f(x)=4x(1—x). In Sec. VI, we construct, by making use of

which is the maximum possible value for processes definethe classic middle-1/3 Cantor set, a simple phenomenologi-

by two symbols. A deterministic chaotic system is, howevercal model that captures the essential behaviors of topologi-

not purely random. Thus, if the symbolic dynamics requirescally varying the chaotic saddles embedded in a chaotic at-

only two symbols, the topological entropy of the attractor istractor. Using this model, the devil's-staircase-like behavior

generally less than In §6]. Since a coding scheme makes of the topological entropy can be understood in a straightfor-

use of only an invariant subset embedded in the attractor, anslard manner. In Sec. VI, we present discussions.

since the topogical entropy of the subset cannot be larger

than that of the attractor, the channel capacity in any practi- II. AN EXAMPLE OF CODING: THE LORENZ SYSTEM

cal communication scheme employing a code must be less

than or equal to that which would be produced in the ideal

situation where the entire attractor is used for encoding mes-

he= lim

n—o

We consider the Lorenz systej@l:

x=10(y—x),
sages.
The second result of the paper is detailed analyses and y=x(28-2)—y 1)
numerical confirmation for the topological entropies of a ’
family of chaotic saddles embedded in a chaotic attractor. In 7=xy—(8/3)z.

particular, we argue that an appropriate code restriction ex-

ists that generates a noise-resisting chaotic saddle to optFhe Lorenz system has been a paradigm in the study of cha-
mize the tradeoff between the channel capacity and the noisgic systems and it can in fact be physically realized by an
resistance. Let the noise resistance be simply measured RYactronic circuif9]. Let z, be the maxima of the state vari-
the noise amplitude. We provide strong evidence that indizpje z(t). Then, on thew-limit set, the successive local

devil's-staircase-like function of the noise amplitude, a state-
2

ment that can be made rigorous for some simple discrete
chaotic maps. The plateau regions in the devil's staircase
indicate that the dynamical complexity of the chaotic saddleThe chaotic attractor in the phase spegt),y(t),z(t)} cor-
is structurally stable with respect to variations in the noisefesponds to a one-dimensional chaotic attractor in the phase
resisting strength. The main practical implication of our re-space of the discrete md{jz). The natural partition for de-
sult is that chaotic saddles embedded in a chaotic attractdining a good symbolic dynamics is the critical point
can be naturally utilized as noise-resisting but rich informa-where f(z.) is maximum. A trajectory point witlz<<z; (z
tion source for digital communication. A short account of >Zz;) bears the symbd (1). Now suppose we choose a code
this work has been reported in RET.. in which four zeroes in a row is forbiddeim any n-bit se-

The rest of the paper is organized as follows. In Sec. llquence, wheren>4. In the symbolic space, the code re-
we present a physical example with the Lorenz system tanoves an open set of symbols. In the phase space of the map
illustrate that a coding scheme generates a chaotic saddle fifz), the restriction imposed by the code removes a gap

the phase space. In Sec. lll, we present numerical results effound the cusplike maximum, and all of its preimages.
the topological entropy for chaotic systems described byrhere are an infinite number of preimages at all scales and,

z,1=1(z,).
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hence, the invariant set so produced is a chaotic saddle ertition point z, because noise can kick the trajectory through
bedded in the original chaotic attractor, as shown in Fig. 1z, in both directions. However, trajectories that live on one
The Lorenz system has its own grammar in its symbolicof the infinite number of noise-resisting chaotic saddles do
dynamics, but this grammar is in fact contained in the rulenot come close to the partition point. The possibility for bit
that no four zeroes in a row are allowed. error due to noise can be substantially reduced when a cha-
In general, a chaotic saddle generated by a code, such atic saddle is utilized to encode messages, because there is a
the one shown in Fig. 1, is advantageous for communicatiomoise-resisting gap around the partition papt such as the
because the symbolic dynamics of the chaotic saddle is imene shown in Fig. 1.
mune to small noise. Say, for example, that the system is in We now give an illustrative example of encoding an arbi-
a noisy environment. If the original chaotic attractor is usedrary message in the restricted chaotic signals. Suppose we
to encode messages, a bit er(oe., 0 becomesl or vice  wish to communicate, by using the Lorenz attractor, the fol-
versag can occur when the trajectory comes close to the partowing message “BEAT ARMY!" in the ASCII format:

B E A T space A R M Y !
10000101100101 1100001 1110100 0100000100000111100101101101 1111001 0100001 .

To transmit the message subject to the “no four zeroes in a row” code, a simple way is for the transmitter to insert a buffer
bit “1” after three zeroes in a row, regardless of the message bit that follows. Thus, the encoded message becomes

B E A T space A R M Y !
100010101100101 11000101 1110100 01000100 10001001 11100101101101 1111001 01000101.

Furthermore, if the original message contains the block 0001, with three zeroes in a row, the modified block.igB061

the receiver can recover the original message simply by stripping a one after every block of three zeroes. To communicate a
digital message, all binary sequences of the message must be allowed by the Lorenz system. Since, for the Lorenz attractor, its
intrinsic grammar is already included in the rule “no four zeroes in a row,” the message “BEAT ARMY!” can now be
transmitted using the Lorenz circi®] by utilizing small control methods outlined in R¢l]. One may also consider a more

severe restriction such as "“no three zeroes in a row,” which corresponds to a larger gap across the partition line. In this case,
the binary encoded message becomes

B E A T space A R
10010011011001101110010011 11101001 010010010 10010010111100110
M Y !

e N——
110110111110011010010011.

Since more buffer bits are needed, the transmission rate willhe partition point for a good symbolic dynamics is the criti-
be slower, but the code is rendered more immune to noise asl pointx.=1/2. That is, we assign a symb0l(1) to the
the noise-resisting gap becomes wider. trajectory ifx<<1/2 (x>1/2).
Figure Za) shows a trajectory of 50 000 points on the
chaotic saddle with a noise-resisting gap of $ze0.1 cen-
lil. CHANNEL CAPACITY OF CHAQTIC SADDLES: tered at the critical point;, atr=23.8 for which the logistic
NUMERICAL RESULTS map apparently exhibits a chaotic attractor. This chaotic

To facilitate a systematic numerical computation angsaddle is one of the uncountably infinite number of nonat-

analyses of the topological entropy of the chaotic saddles, wiacting chaotic sets embedded in the chaotic attractor. In
principle, a suitable coding scheme in the symbolic dynamics

make use of the logistic map, of the logistic map can produce the chaotic saddle in Fig.
2(a). To numerically produce Fig.(2), we make use of the
fr(x)=rx(1=x), (3 PIM triple algorithm[11], which generally enables us to find
a continuous trajectory that never enters the primary gap re-
which captures the essential dynamics of the one-hump magggon at the critical point and all its preimages. Since the
arising in physical situations such as the Lorenz sy§teBh ~ chaotic saddle in Fig.(@) is only a subset embedded in the
Consider the case where the map exhibits a chaotic attractasriginal chaotic attractor, its topological entropy must be
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b) the size of the noise-resisting gagor the logistic map at =4.
0.5
r=38 strongly suggest that the function bf versuss is a devil's
0.45 staircase.
A feature of thehy-versuss function, which is common
- to chaotic parameter values of[Figs. 4b) and 3 and of
;e 0.4+ practical importanceis thath; decreases only slightly in a
wide region when the noise-resisting gap size increases from
0.35. zero initiaIIy: In Fig. 3, fpr example, the .topological entropy
of the chaotic attractor is In=20.69. Ass is increased from
0 to 0.1,hy decreases from In 2 to about 0.62, a rather small
0.3 T | . decrease. Bus=0.1 means that the symbolic dynamics on

0 0.05 0.1 0.15 0.2

. the chaotic saddle is robust against noise of amplitude about

5% 10 2. Thus, with only incremental loss in the channel
FIG. 2. (a) A trajectory of 50 000 points on a noise-resisting capacity, the symbolic dynamics on the chaotic saddle is
chaotic saddle of gap size=0.1 embedded in the chaotic attractor immune to external noise of relatively large amplitude.
of the logistic mapf(x)=3.8x(1—x). The trajectory is computed The result that the topological entropy of the noise-
by using the PIM triple methodb) The topological entropr; vs  resisting chaotic saddles embedded in a chaotic attractor is a
the noise-resisting gap sizefor the logistic map at=3.8. nonincreasing and devil's-staircase-like function of the
noise-resisting gap size appears also to be true for chaotic
less than or equal to that of the attractor. As the noisesystems described by two-dimensional maps. A main diffi-
resisting gap size increaseshr must not increase; i.ehr  culty for maps of two dimensions and higher, however, is to
must decrease or remain constant. To address the tradegdfentify a partition curve in phase space so that a good sym-
between the channel capacity and noise resistance of the chgolic dynamics can be defined. Due to nonhyperbolici]
otic saddle, we investigate the behavior of the topologicabf chaotic attractors in typical two-dimensional maps, such a
entropy as the gap sizeis systematically increased. Figure partition curve usually consists of line segments connecting
2(b) showsh(s) versuss, for fixed r=3.8. To compute all primary tangency points between stable and unstable
ht(s) for each value ofs, we countN(n), the number of manifolds[13]. It is thus a highly nontrivial task to construct
possible symbol sequences of lengththat are allowed by symbolic dynamics in high dimensions. However, it can be
trajectories on the corresponding chaotic saddle with the priargued that the utilization of chaotic saddles with noise re-
mary gap sizes. The topological entropy is given by sisting gaps tremendously simplifies the task of identifying
partition curves. To illustrate this, we consider thénde

hy— lim In l\rl,(n)' @ map[14]

n—oe

Xns1=1.4—x34+0.3y,,
In practice, we approximate this limit by linear regression to ®)
a plot of InN(n) versusn for n up to, say, 20; the slope of Yn+1=Xn,
the plot is approximately the topological entrojpy. In Fig.
2(b), we see thah is apparently a nonincreasing function of for which it is believed to exhibit a chaotic attractor. For a
s. An interesting phenomenon is that there are regiorssiof ~ trajectory on this attractor, the symbolic partition is a zigzag
which h; remains approximately constant. Numerically, we curve lying in the vicinity of thex axis, which connects all
find that these plateau regions appear to exist on all scales primary tangencie$13,15. The dynamics on the attractor
s. The set ofs values at whichh; changes seems to have can thus be represented by that of two symbols in the sym-
arbitrarily small Lesbegue measure in the parameter space bblic space: points abovdelow) the partition curve corre-
s. Similar behavior is observed for other parameter values o$pond to a symbal (0).
the logistic map, such as the one with well developed chaos, Now consider a chaotic saddle embedded in the attractor
as shown in Fig. 3 for =4. These numerical results thus with a noise-resisting gap of size=0.25 that covers the
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the channel capacity and the noise resistance of chaotic
saddles. In practice, chaotic saddles with a noise gap embed-
ded in a chaotic attractor can be easily generated even from
an experimental data set by imposing an appropriate code
restriction. Recall that the chaotic saddle of the Lorenz map,
pictured in Fig. 1, was generated directly frgmumerica)
experimental data by eliminating four zeroes in a row from
the grammar. In fact, a gap is effectively and automatically
generated during the transmitting step, when communicating,
simply by never transmitting a “‘gap grammar” sequence
000Q for example, by incorporating “buffer” bits as appro-
priate. An analogous gap-grammar design is likely to work
well with 2D symbolic dynamics by appropriately restricting
the so-called “pruning front'[15].

IV. THEORY

We now present a detailed theoretical justification for the
devil's staircase of thé; versus noise-resistance gap func-
tion seen in numerical experiments. At present our theory
applies only to one-dimensional and one-hump maps such as
the logistic map or the Lorenz map. Briefly, the idea is as
follows. We study a sequence of successive approximations
to the grammar of the symbolic dynamics as the length of the
symbol sequenceévordg increases. The dynamics in the
symbolic space can then be represented by a sequence of
transition matrices characterizing all the possible, or forbid-
den, transitions between words. The topological entropy as-
sociated with the symbolic dynamics can then be obtained by
considering the limit of the spectral properties of the transi-
tion matrices.

A. Computation of topological entropy by transition matrices

partition curve entirely, as shown in Fig(a}. For trajecto- Without loss of generality, we consider one-dimensional
ries restricted to the chaotic saddle, specification of the paryg one-hump maps defined on the unit inteiia&[0,1].
tition is now straightforward: points witli>0 bear symbol  For such a map, there is a critical point&.<1. This criti-

1, and those witly<0 correspond t@. Chaotic saddles such ¢| point is often chosen to be the generating partition and,
as the one in Fig. (@ can be computed using the PIM triple hence, we hav&,=[0x.], S;=(X.,1]. A trajectory pointx
method similar to that for one-dimensional mdfs§]. Spe-  pears a symbol 0 ike S, and a symbol 1 ifxeS;. An
cifically, to generate Fig.(4), we have used 100 points on a jpitial condition then has an itinerary  sequence
random line segment in the squard <(x,y)<1torefinea —_; ; 5.0,..., whereoecS, andS represents the sym-
PIM triple, and the size of the refined triple is T0 Here, polic space that consists of all possible infinite symbol se-
too, increasing the gap width decreases the measure of thences of the symboBand 1. Since the chaotic dynamics
chaotic saddle. Figure (i) shows hy versuss for 0=s  of f(x) is deterministic, typically, only a subset of all pos-
<Smax~0.42, where for each value ef the topological en-  sjple symbol sequences can be generated by a typical chaotic
tropy is computed by counting the number of possible tWo+rajectory. Denote the symbolic subspace in which we find
symbol sequences of various lengths corresponding to trajegne symbolic itineraries of all trajectories of a given invariant
tories on the chaotic saddle. Agaifiy versuss is a chaotic set by>’'C3. The action of the map in the phase

nonincreasing, devil's-staircase-like function. &screases space then corresponds to the following Bernoulli-shift map
from 0, hy decreases slowly at first, and then faster, whichip the subspacg’,

warrants a relatively large reginge<s.~0.14 within which
h; decreases only slightly.

Thus, utilizing chaotic saddles with noise-resisting gap
size close te, seems to be practically beneficial in commu- By construction, the dynamics in the subspaceis invari-
nication applications{i) the specification of the symbolic antin the sense thatif €%’ thens(o) e X’. The subspace
dynamics is straightforwardji) the symbolic dynamics is 2’ is calleda subshiftthe full space® is called thefull shift)
robust even in a noisy environmertiji) yet the channal [17].
capacity is close to that obtained when one utilizes the origi- A subshift of finite type has a grammar that can be repre-
nal chaotic attractor. sented by a finite list of forbidden-bit words. In this case,

We emphasize that we utilize the PIM triple method onlythe grammar can be described by "arbde directed graph,
for the purpose of a systematic study of the tradeoff betweenr equivalently, by a 2x 2" transition matrixA,,, as shown

S(0)=5(00010203 )= 010,030 " . (6)
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in Fig. 5@ for n=4. The Bernoulli-shift map permits at Let M(s) denote the chaotic saddle, embedded in the cha-
most two arrows into and two arrows out of eaclit node, otic attractor off(x), with a primary noise-resisting gap of
corresponding to the choice of shifting ideor alinto the  sizes centered at the critical poix; . If we know the form
least significant bit from any state. For a full-shift grammar, of the subshiftM (s), we can make use of E() to compute
there are no forbidden-bit words and, hence, each row and h{[{M(s)], the topological entropy of the chaotic saddle. In
each column of the transition matrfx, hasexactlytwo non-  principle, this technique can be extended to high-
zero entries. For a subshift grammar, each row and eactimensional maps.

column ofA,, hasat mosttwo nonzero entries, because there

are now forbidden words. The grammar of the subshift, or B. Restricting the grammar: topological entropy
the symbolic dynamics, is completely specifiedAyin the of the chaotic saddle
limit n— oo,

Given a one-hump map, such as the logistic map, the key
feature that allows us to apply E) to calculate the gradu-
ally varying topological entropy, as a function of gap size
h(2')=hy(M). 7) is the fact tha_t we know the order of t_lmeblt |t|nera_ry bins,
along the unit interval. Due to continual refolding of the

The topological entropy of a subshift of finite type can beinterval back into itself, the order of itineraries of a one-
computed directly as the natural logarithm of the spectralUmp map is not given directly from the norm of its symbol

radius of the generating transition matfik7], code,||o, but is found by an alternating binary trésee, for
example, Fig. 2 of Ref[15]), which generates an order

hi(Z5)=In[p(A)]. (8 called theunimodal order[20,21. For example, the 2-bit
' words in the increasing unimodal order are<Ql<11

The topological entropy of a subshift of infinite type can be= 10. . ) o
computed in terms of the limit of spectral radii of a sequence When Tormulatlng am-bit worg approximation of the
of transition matrice§A;}, which generate a sequence of subshift2’, we construct the 2<2" transition matrices or-

By conjugacy ofs|y, to f|y, the topological entropy of
the two dynamical systems is the same,

subshifts{3 4 } to ' of increasing accuracy, dereq aqcording to the ynimodal order. For eae_hit' ap-
i proximation of the full shift grammafno word restrictions
he(S")=lim In[p(A)]. 9) each of the 2 nodes has two entering arrows and two exiting

arrows. Therefore the transition matri, has exactly two
ones in each row and column, and it follows thgt(A,,)

We require the spectral radii of a sequence of thousands In[p(A,)]=In(2). A restriction on the grammar & cor-
of matrices, each of which is"™2™ and we choosen  responds to a forbidden-bit word. If the jth n-bit word is
=14. Obviously, finding the roots of thousands of mammothforbidden, then all transitions into and out of tjth node are
characteristic polynmials is impractical. Numerically, we also forbidden so that the invariance of the subshift with
compute the spectral radius of a given maBixby a slight  respect to the Bernoulli-shift map is preserved. Hence, the
modification of the power method. The power method reliescorresponding transition matrik’, has all zero entries in the
on the fact that upon iteration, almost all initial vectors arejth row and thejth column.
rotated towards the dominant eigenspéte subspace cor- ~ We now analyze how the topological entropy of the cha-
responding to the largest eigenvaluie the case of a Perron- otic saddle changes as the size of the noise-resistingsgap
Frobenius operator, the dominant eigenvalue is guaranteed ffcreases. For illustrative purposes we study the logistic map
be a simple root, and the dominant eigenspace is ongtr=4. In this case, for the chaotic attractor the symbolic
dimensional. Given an arbitrary initial unit vectap, and dynamics is(almost[18]) a full shift. Thus, transitions be-
the iteration schemey,=Bu,_;, with normalization tween(almos} all words are allowed. Figure(® shows all
during each step,lnzvn/\/vlvn, it can be shown that as  the possible transitions among all 4-bit words, together with
—500, ‘/vgvnﬂ)\oi the dominant eigenvalue. The proof is the transition matrixA,. Whens=0, no bins on the unit
quite simple[19], beginning with the observation that an interval are forbidden, and therefore, no words are forbidden.
arbitrary vectoru, can be written as a linear combination of We obtain
the eigenvectors oB, and that if |[\o|>|\;|, then |\q|" o _
dominateg\;|", for largen. Our ma|tric|:es| ar|e o) Iar|ge|that hr(s=0)=hr(As)=In(2). (10
even the straightforward application of the power methodag s increases(symmetrically aboutx,=0.5), there is no
which is simply iterative matrix multiplication, is too costly, effect to the 4-bit grammar approximation until the bins la-
as even a single matrix multiplicatioBu, of a 2'x2™  6je 0,100 and 1.100 are eliminated, at a critical vale
renvaef:'xwr:gtg%stﬁsa;%'gIoer;nagf nrgtlijgépltlﬁsti)oar;tiitjlzflyZg\gr-sevvhen the gap radius is exactly the width of these bins. Re-
struc,ture of our subshift generating matrices. Each row an oving the_se bins from the chao_tlc attracMrlmplles that

' e itineraries 0.100 and 1.100 will never occur in the corre-

each column of our matrices has at most two nonzero entrle%‘ponding subshift. Therefore, we restiice., reduce by add-
corresponding to the possibility of shifting in either a zero or:;

a one bit from each nod@-bit word). With this consider- ing more rules the g;rammar O_EA4 o the §ma||er _SUbShift
ation, a matrix multiplication routine can be tailored to mul- >a;, generated byA;, by placing zeroes in the eighth and
tiply our 2% 2 matrix by a vector using only2 multi-  ninth rows and columns of,, as shown in Fig. ). By
plications and additions. direct computation, we obtain

| —%
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FIG. 6. Topological entropyh vs the noise-resisting gak.
This calculation is based on a Markov model of the grammar of a

o) 1) v peitasfliononsl  subshift of finite type, wherd is the number ofn-bit forbidden
g u_,,;'g:,_;;,,mx m mg:ﬁ words, andn=14. The topological entropy is calculated directly
ﬂ’:-"" f ST R o | from the logarithm of the spectral radius of the evolving transition
ﬂ‘..m’/g)\\: 101 ' o matricesA¥) . We begin with then-bit representation of the full-
6;’““""“\ - ""“:.m go0000p1 3000000 shift grammar. The plot is qualitatively similar to that in Fig. 3.
o \88‘{‘135 ao0a0s|
grammar approximation untis reaches a second critical
'“X‘LM % 6 penproses  Value s, when the itineraries 0.101 and 1.101 must also be
a 0.11:‘)(1 e Bog0d Mm\ forbidden from the new subshmAg, as shown in Fig. &).
b —— Y A | The topological entropy thus decreases agais.gt As s
mn""""< 2 oo wees|  increases further passing another critical value, the itineraries
oS 30001 % 0.111 and 1.111 are eliminated, as shown in F{gl).5This
11

causes a new decrease in the topological entropy.

FIG. 5. For the logistic map at=4, directed graph and the _ Although, in general, we do not know a priori the loca-
corresponding transition-matrix representations of subshits of finitdions and widths of each-bit itinerary bin in the case of
type generated by a 4-bit grammar. Th&=216, 4-bit words are ©One-dimensional maps, we do know the order in which they
arranged in increasing unimodal order, left to right’ just as theyare eliminated: this follows the unimodal code order for one-
occur in one-hump maps, 0.080@.0000.011<---<1.001  hump maps(In fact, we can find the critical gap widths for
<1.000. The nodegwords are further arranged in a manner to the logistic map forr=4 by using the invariant measure
suggest a one-hump mafa) The full shift grammar as generated u(x)=(1/)[x(1—x)] ¥? [22]). To compute the function
by A,. Each node has two arrows in, and two arrows out, correh(s) in a systematic way, we start with the full shift gram-
sponding to unrestricted possibility of shifting ifdar a 1 bit at all marEAn, whereA,, is ordered according to the occurrence of

bins.hThed 1?: 16 transitior_lblmatrixA4 hasd two ones in eacE rO\I/v n-bit itineraries on the unit interval, and then eliminate pairs
fje;;‘rcl (er;%henozset‘ggsp?;z' ss(;?gﬁeomlﬁm;wg;gfes A'_”Ealc dg?- of n-bit words (by zeroing corresponding rows and col-
P P g b umng, starting from the middle, to simulate the effect of

notes an arrow from thith node tp thgth node. By ordering state . . . _
vectors according to the unimodal code, and hence also the trans\{\-”demng the gap size centered ax.= 1/2. At each step, we

tion matrix, we see the ones in the transition matrix form\&’‘on computehr(k), Whe_rek 1S the, number of-bit forbidden
its side, suggesting the one-hump map whose dynamics is reprg‘-’or_ds’ of the evolving SUbS_h'ﬁ' dlreqtl)rk)frqm th? spectral
sented.(b) The gaps is widened to the critical valus,, , which radius of the current transition matriA,” in which 2k
exactly eliminates the bins 0.100 and 1.100 in the logistic map. Th&vords are eliminated. Figure 6 shols(k), wherek scales

corresponding nodeghe 8th and 9thmust also be eliminated, as monotonically with the gap widtk and, at each value d,
well as arrows in and out of these two nodes. Likewise, the transi2K bins are eliminated from the grammar. We see that the

tion matrix A; has zeroes in the 8th and 9th rows and columnstopological entropy appears to be a nonincreasing function of
Nodes eliminated are covered by ax;” but other nodes are also k. Increasingn, the word size considered, better approxi-
effectively eliminated. These nodes have no entering arrows, anthates the effect of continuously increasing the gap size
hence are never visited,, generates the subshﬁpﬂ. (o Whenthe from s=0 and, hence, more structure in the functiop(k)

gap is further widened to the critical discrete vakres,,, a 4-bit ~ can be resolved.

change in the subshift occur(gl) Whens=scr3, the channel capac-

ity of the directed graph collapses. No circuits through the graph, C. The devil's staircase entropy function

which have two arrows out of a node, remain. ) S
The structure of the functioh+(k) in Fig. 6 resembles

1+.5 that of a devil’'s staircase. As is increased, more constant
hT(S:Scrl):hT(Az’l)zln[p(Az,l)]zln(T) intervals, or “flat spots,” are revealed. The reason for these
flat spots is that the topology of the chaotic sadiMiés)
As s continues to increase, there is no effect to the 4-bitdoes not change for an interval of values of the gap size
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FIG. 8. A blowup inset of Fig. 7, with an increased grammatical
FIG. 7. The “tonguelike” gapss(s) (bold boundaryand pre-  precision of n=6 bit words and tonguelike gaps through
iteratesf ~'(G(s)) of the logistic mapf (x) =4x(1—x). Note thatas  f;, ™(G(s)), where m=0,1,2,3,4,5. Vertical line segments cut
the gap widths increases, the-bit word bins decrease. Due to through the tongues marking critical valueg,=a when a
nonuniformly distributed tongue “centers” and varying rates of f,'(G(s)), for somei=0,1,...,5, first intersects the main g&(gs),
tongue contraction, words are eliminated for varying values.of thus beginning an intervae (a,b) in which the chaotic saddle
This picture is seen on all scales, for increasing M (s) does not change topologically, despite increasinghe to-

pological entropyh+(s) is therefore constant fae (a,b).

For the logistic map af,(x)=4x(1—Xx), it is possible to
prove, by geometric argument, that the functiop(k) is 1+J1—x
indeed a devil’s staircase, which we will do in the following. fai(x)= — (14)

We first consider the case=0. All the n-bit symbol se-
quences are distributed in the unit interval in various bins
the boundaries of which are generated by the pre
images of the critical pointc=1/2 (the partition,
{Xe, F2 1 (X0),...f2 " V(xo)}. Since there are™2 * branches
of f; (" Y(x,), there ares!"_, 2! "1=2"—1 total preimages,
including the partition itself. For =4, these preimages are
all in the unit interval and they are denseras . It should
be noted that the logistic maf is semiconjugate to the full
shift. However, the lack of a full conjugacy is not serious in
this case because it is only due to the ambiguity of assignin
itineraries to set of preimages ®f: U;_,f,'(x.) [18]. We
can treat the equivalence as if it were a conjugacy with re
spect to the issue of topological entropy.

Next we consider increasing the gap widthLet M(0)
=[0,1] denote the full attractor &=0, and let

There are four such curves, as shown in Fig. 7. This figure
can be considered a bifurcation diagram of the gaps, or word
bounds, in the parameter The second preimage of the pri-
mary gap consists of four smaller gaps bounded by eight
curvesf;i(G(s)), as shown in Fig. 7. Considering all these
gaps, we see a total of up to seven gapsctly seven before
gaps collide, and eight symbol bins. Note that the successive
preimages of the primary gap form successively tighter
tonguelike structures. These tongues occur on all scales, ac-
gounting for all preimages of the primary gap.

Geometrically, the tongues in Fig. 7 correspond to the
gaps f, ™(G(s)) that bound the symbol bins. As is in-
creased from zero, the space in between the two tongues is
eliminated. Whenever the two tongues intersect, the origi-
nally allowed words that lived in the space becomes forbid-

M(s)=[0,1]— U™ of; [(1 -8, +5)] for s>0 den. That is, whenever the following occurs,

12 f,"(G(s)NFf,"(G(s))#0 for any m,n>0, (15

denote the chaotic saddle whe# 0. The saddle is a Cantor
set that consists of the original attractor excluding the noisesome words are eliminated. Due to the varying tightness of
resisting gap and all its preimages. In general, there are ovethe tongues, for different pre-images of the main tongue
laps between preimages of the primary g&gs)=(1/2 G(s), the overlap among them occurs at different values of
—s,1/2+s). s. For instance, in Fig. 7, we see that 0.10 and 1.10 are

Qualitatively, the amount of overlap changesahanges eliminated at a smaller gap width than the value of at
in such a way that the topological entropy(s), as a func- which 0.11 and 1.11 are eliminated.
tion of s, is characterized by a devil's staircase. To see this, The above consideration thus leads to the following theo-
we plot the primary gap, and a few preimages for varyingrem:
sizes, as shown in Fig. 7, where the two bold lines define Theorem:Given the logistic magf 4(x) =4x(1—Xx), the

the primary gap: topological entropy functionh;(s) is constant on the
complement of a Cantor set efvalues.
x=3=s andx=3-s. (13 The proof of the theorem is sketched as follows. Consider

Fig. 8, a blowup of part of Fig. 7 in the narrowed range
The curves that define the first preimage of the primary gap[0.3,0.7, where we have increased the precision of the
are given by grammatical representation to=6 bit words by showing
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(1w the topological entrop(s) of f4|M(S) is constant when the

e fa(s+1/2) topology of M(s) is constant. A function that is constant in
the gaps of a Cantor set, and therefore may only change on
the Cantor set, is a devil's staircase function.

Note that we have not shown that the topological entropy
actually does change farin the Cantor se€Cg, only that it
does not change in the Cantor gaps. We claim that, at least in
the case of the logistic mafy v (), the topological entropy
does in fact change whenever the topologWi(fs) changes.
Since eachkxe M(s)C[0,1] has a unique symbolic code, the

£, 16, (s + 1/2)] right-hand end pointR=maxXzeM(s)] has the symbolic
codeog=h(R) that bounds all symbol sequences in the sub-
\ . . . shift of the chaotic saddlereEf’W(s) according to

1
0.05 0.1 015 02 025

FIG. 9. The chaotic saddI¥ (s) as a function ofs. M(s) is
contained between the two curvdg(s+ 3) andf,(f,(s+3)), the OSOR (18)
first two iterates of the main gaf(s), but these are not sharp
bounds, due to “tongue’(word) overlap. Parameter values=a

< i i .
when 3-bit words first overlap, are marked. where< is the unimodal order on the symbolic spdéa]

Note that or is the kneading sequence of the one-
m . dimensional mag24]. Any loss of points inM(s) that

the gapsf, "(G(s)) for m=0, 1, 2, 3, 4, 5. Consider a ver- ¢5yses a loss of words in the corresponding subshift leads to
tical line segment of constast say, a decrease in the topological entropy that measures the
asymptotic growth rate of the word count ofbit words.

This argument does not apply to restricting a map of the
) o interval for which we cannot make the statement that each
Such a line cuts through the countably infinite number Ofpoint has a unique symbolic code, as, for example, in the
tongues: there is on&(s), and twof; *(G(s)), and four  case of maps with constant regions, or maps with attracting
f,2(G(9)),..., and 2 of f, ™(G(s)), etc. Thus, we remove periodic orbits.

the open intersections between the gaps and the line seg- Corollary: The symbolic dynamics ofl(s) are of finite
ment, leaving a Cantor set in the phase spacks the value  type, fors supported on the complement of a Cantor set.

of s is increased, some tongues intersect, and therefore they Therefore, the complex case of a grammar of infinite type
overlap ass is increased further, eliminating branches of thecan only be supported on the Cantor set. Furthermore, there
Cantor set. At the critical value bounded By<0.25, the s a structural stability associated with each resulting gram-

s=0.01, O<x<1. (16)

Cantor set no longer exists, as shown in Fig. 9. ~mar of finite type, as manifested by the flat spots of constant
The topology of increasing the noise-resisting gap is sitopology; i.e., a given complexity is persistant.
miliar to the construction of the fixed=0.01 Cantor set It is insightful to plot then=3 approximation oM(s) as

described in the previous paragraph, but for variable gag function ofs, as shown in Fig. 9. The chaotic saddil&s)
widths, the set of intersection with the tongues is the lingis contained between the two curves,
segments,

s=x—3 ands=3-x, where Gss<1. (17) fa(s+3) and fu(fa(s+3)). (19

These two line segments intersect the tongues at various Va‘*"hese are the first two iterates for the boundary of the main

t’es of s, Fand thel;efolzet at va;o_un? é)penlng V.V'?ths Otf (tjhegap G(s), which act as the envelope boundiMs); they
ongues. For smas, all tonguesf, "(G(s)) are intersected 0" oy hounding envelopes because as each of the curves
when they are narrow, and for largsr tongues are inter- . caq through a tongue, the Mts) is unchanged. This is

sected r']n a wider stat((ej. Ee:novmg the open mtcTrsectlon b4ist another way of viewing exactly the same argument of
tween the tong_ues, and the line segments of 7). eaves a tongue overlap as a function sf described in previous para-
Cantor set, which we cally,q.e, but whose measure is not graphs

uniformly distributeq, 'by construction. The projection of There is a question as to whether the tongues overlap so

Qtopgueonto thes axis is alsc_J a Cantor set, due to mMonoto- ., ich as to cause an empty €f,g.e This depends on the

nicity of Eg. (17). We call this setCs. _ lacement of the tongues, and whether preiterates of tongues
As s is increased through a tongue, the chaotic saddlgpink fast enough to prevent overlap everywhere. Thus, our

M(s) is unchanged, as such a changesiessentially just  5rqument applies to situations where some overlap with in-

increases the overlap _betwegg the main G&s), and an  reasings is allowed. In the next section, we investigate the

“already removed” preimagé, "(G(s)). An m-bit word is  gistripution of measure along these Cantor sets, using a

eliminated at exactly the value sfwhenG(s)Nf, ™(G(s))  “tongues model” based on the “middle-1/3" Cantor set,

is first nonempty, for each given branch cutfgf"(G(s)),  thus explaining a feature in the graphtef(s) with practical

for eachm>0. Therefore, the topology of the sélt(s) does  importance: the initially shallow decline bi(s) is followed

not change on the complement of the Cantorsse€,, and by the precipitious decrease of the channel capacity.



PRE 58 DYNAMICS OF CODING IN COMMUNICATING WITH CHAOS 1733

V. A PHENOMENOLOGICAL MODEL Y

FOR THE ENTROPY FUNCTION 140

113 28 79 89

/ )

(4)
o |
[ o

In this section, we develop a model, based on the middle-
1/3 Cantor set, with a similiar topology of “tongues” as that
displayed by the noise-resisting chaotic saddiess). The
model helps to explain a feature in the graphhefs) that
has particular practical importance: the initially shallow de-
cline of h{(s) is followed by a precipitious collapse of the
channel capacity. We also argue that the CantorCsge
tends to be a multifractal whose measure distribution is con-
centrated neas=0 and falls off with increasing.

The classic middle-1/3 Cantor $843 is the closed subset
of the unit interval[0,1], which is the limit of the se-
quence, Jo=[0,1], J;=J0—(1/3,2/3), J,=J,—(1/9,2/9)
—(7/9,8/9,..., andJ, is the union of 2 pairwise disjoint
closed intervals of length 3, and

[
[
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Cua=Ni—odi- (20 FIG. 10. A model of the tongues, based scaling the middle-1/3

Cantor set. The lind(y) intersects tongues of various widths,
Before we construct the set of tongues, it is useful to writewhich depends both on height and on the level of the tongue in

the centers of each removed gap; of edech in a closed question. This determines the width of flat spots of the devil’s stair-

form. We use a ternary expansion, which is analogous to thease, the cumulative measure functgfy) in Fig. 11.

usual decimal expansion. Any numbeiin the unit interval

can be written in ternary form, lent to s in Fig. 7. There is an infinite number of tongues

starting aty=0. Specifically, the lines

Z =0,1, or 2. (22)

(.OIQJ

y
Ln+(y):im_+cn! (24)
- n
A convenient characterization &5 is the set of all points

. . > | wherem,=2-3", are right(+) or left (—) edges of a tongue.
whose ternary expansion containsae- 1, sincea; =1 sig-

This equation follows immediately from E¢23) and the

nifies a point in a gap removed as partlpf25]. The center
of the gap ofJ; is 0‘11)21/2, and the two new gaps’ centers
of J, are ci’'=1/6 andc{?’=5/6, which have the ternary
expansions

slope comes from the definition of an end pointlgf Note
that there is such a tongue for each branctcof and we
define a tongud, as the open interior betweén, (y) and

Ln,(y), for a fixed centec,. So we see that for any fixed
y e (0,1], a Cantor set is defined as

L o
2 3 9 27 . C(y)=[0,1]-G(y), (25
1—1 1—O+1+1+ 0.0111 (22 where
6 2 3 3 9 27 ' G(y)=Up_1(Ly (¥),Ln, (V) (26)
5 1 1 2 1 1 — whose measure is
6—§+§—§+§+2—7+ —OZI.ll .
y
We write the general form for a centef’ , mCly)=1- .:20 3 (_) =1y, @7
c'=0b,by-b,_1111, b;=0 or 2, i=1.2,...,2°1  and we note that corresponding to eatchthere are 21
(23 gaps. The measure is independent of the location of the in-

which lists the 2 centers of], gaps.

tersections between the liye= const and the tongue bound-
ariesL, (y). Fory>1,C(y) =0, since all of the gaps over-

In order to mimic the dynamic effect of widening the |ap simultaneously, and the Cantor set evaporates.
primary gap of the chaotic saddle, we consider a unit square We can now investigate the intersection between the gaps
in the two-dimensional plane, as shown in Fig. 10. We placeand an arbitrary straight line. For example, the line
the middle-1/3 Cantor set along the horizontal direction at
y=1. Asy decreases, we linearly decrease the gaps of the
Cantor set to zero at=0. Hence, although the Cantor at
=1 is middle 1/3, it is not middle 1/3 foy# 1. The set at
y=0 is in fact not Cantor-like. Figure 10 is thus qualitatively starts at the main gap center=1/2, but with a slope other
similar to Fig. 7 in that the parametgrin Fig. 10 is equiva- than 1f =m;=6, that of the main gap boundaky(y). We

(28)
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FIG. 11. The cumulative measure functigfy) due to inter-

Inspection of Fig. 10 reveals the explanation for the pro-
file of g(y). There are two factors regarding the behavior of
g(y). () If y is small, then the width of tongué’éf) tends to
be in a narrower state when they interskgt); and (2) for
any giveny, tonguesT{) are narrower thaw(!) ,, since
m,_;<m, (analogous to hyperolicijyand, hence, the gaps
removed for large are large, causing a precipitous decrease
of g(y). In other words, the Cantor s@ty has its cumulative

measure densitf(y) weighted more heavily towards large
and it is a multifractal. Geometrically, the situation is analo-
gous to considering the profile of the topological entropy
versus noise-resisting gap as in Sec. IV C. The main differ-
ence is the way in which the tongues overlap: for this model,
the T, all overlap simultaneously wheyn>1, which is in

sectingl(y) with the scaled middle-1/3 Cantor set model of the contrast to Sec. IV C, where the first overlap of tongues oc-

tongues.

choose the line defined by, sayr #7/4, as pictured in Fig.

curs for countably many different critical gap valugs.
The geometry extends to higher dimensions. In two or
more dimensions, like codeatbit regions define neighbor-

10, which intersects the tongues in a manner similar to th@oods, or symbol bins, outlined by segmentgmBiterates

situation of widening a noise-resisting g&f(s), described

of the symbol partition curve. Widening a gap around the

in previous sections, but here we can perform many of thgympnol partition curve propagates to the iterates of the par-

calculations in closed form.
Intersections between Iinasht(y) and the linel(y) can
be found directly from Eqs(24) and (28),
cn— 1k
y=(1—| n>1. (29
E T 1/mn

The intersection betwedify), for 0<y=<1, and the tongues
leaves a Cantor set, which we lakg|,

Ci={l(y):0sy=1}—{l(y):0<y=<1}N(Uy_oTn),
(30

and we IabeC,y to be the projection o€, onto they axis.
See Fig. 10.

Any positive monotone increasing functiof(y), re-
stricted toC|y, will create a devil's staircase function with a
profile similar to those seen in Figs(i2 and 3. We choose
such a function: the measure nyﬂ[o,y] for example. Let

0 2n72
fy)=mC,noyh=y-2 % (by'~ay),
=) )

(31

wherey=aﬂ) andy=bﬂ) are the left and right end points of
intersection between the tongue IabeTé]H andl(y) accord-
ing to Eq.(29). Since there are™2* tonguesT!), or 2?2

tongues to the right ok=1/2, there are up to"™2 ? tongues
such thaty=<b{". We calculate the devil staircase function,

f
aiy=1--2", 32

as shown in Fig. 11, by direct application of E§1) (using
a truncation of the infinite sumin conjunction with thec’
from Eq. (23).

tition, thus restricting the like-codeat-bit regions in a man-

ner analogous to the tongues in one dimension. Given a two-
dimensional map, for example, a bifurcation diagram
graphing the phase space over a gap axisuld be used to
depict three-dimensional conelike symbol tongues, each of
which pinches off at a critical gap width. The middle-1/3
Cantor set model of this section generalizes to a Serinpinski
carpet whose measure can be controlled by a parameter such
asy.

VI. DISCUSSION

The basic principle that makes nonlinear digital commu-
nication with chaos possible lies in the fundamental link be-
tween chaos and information. The evolution of a chaotic sys-
tem is unpredictable in the long term. In communication, a
sequence of events conveys information if the events are not
fully predictable (Shannon’s point of view of information
[3,4]). Thus, the fundamental unpredictability of chaotic sys-
tems implies that they can be regarded as sources that natu-
rally generate digital communication signals. By manipulat-
ing a chaotic system in an intelligent way, useful information
can be communicated].

A fundamental issue in communicating with chaos, as is
in any digital communication scheme, is to select a code so
that any message can be encoded into the signal to be trans-
mitted. For chaotic systems, this is intriguing because, in
general, there are grammatical restrictions imposed by the
natural dynamics of the system. Designing a code that makes
the best use of all the naturally occurring words is thus of
paramount importance in order to realize communication.
The results of this paper provide strong evidence that such an
optimal code indeed exists for low-dimensional chaotic sys-
tems in general. We investigate the dynamics of coding and
show that a practical coding scheme in communicating with
chaos usually involves the utilization of chaotic saddles em-
bedded in a chaotic attractor. This, in fact, has the advantage
of strong noise resistance, but with only insignificant loss of
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the channel capacity. To better see this, imagine that thare optimal. Similar results appear to hold for two-
topological entropy of the chaotic saddle decreases onlgimensional chaotic systems.

slightly in a range of gap sizes (0s). Say the noise ampli-

tude isAs/10. Then the chaotic saddles with gap sizes in ACKNOWLEDGMENTS
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