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Dynamics of coding in communicating with chaos
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Recent work has considered the possibility of utilizing symbolic representations of controlled chaotic orbits
for communicating with chaotically behaving signal generators. The success of this type of nonlinear digital
communication scheme relies on partitioning the phase space properly so that a good symbolic dynamics can
be defined. A central problem is then how to encode an arbitrary message into the wave form generated by the
chaotic oscillator, based on the symbolic dynamics. We argue that, in general, a coding scheme for commu-
nication leads to, in the phase space, restricted chaotic trajectories that live on nonattracting chaotic saddles
embedded in the chaotic attractor. The symbolic dynamics of the chaotic saddle can be robust against noise
when the saddle has large noise-resisting gaps covering the phase-space partition. Nevertheless, the topological
entropy of such a chaotic saddle, or the channel capacity in utilizing the saddle for communication, is often less
than that of the chaotic attractor. We present numerical evidences and theoretical analyses that indicate that the
channel capacity associated with the chaotic saddle is generally a nonincreasing, devil’s-staircase-like function
of the noise-resisting strength. There is usually a range for the noise strength in which the channel capacity
decreases only slightly from that of the chaotic attractor. The main conclusion is that nonlinear digital com-
munication using chaos can yield a substantial channel capacity even in noisy environment.
@S1063-651X~98!04708-4#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Digital communication plays an extremely important ro
in a modern economy. At present, digital communication
carried out mainly by linear devices, that is, by transmitt
and receivers operating in the linear regime. Recent deve
ment in nonlinear dynamics and chaos has led to the ide
realizing digital communication by utilizing devices opera
ing in nonlinear regimes@1,2#. Specifically, it has been dem
onstrated both theoretically@1# and experimentally@2# that a
chaotic system can be manipulated, via arbitrarily sm
time-dependent perturbations, to generate controlled cha
orbits whose symbolic representation corresponds to
digital representation of a desirable message. Imagine a
otic oscillator that generates a large amplitude signal con
ing of an apparently random sequence of positive and ne
tive peaks. A possible way to assign a symbo
representation to the signal is to associate a positive p
with a one, and a negative peak with a zero, thereby ge
ating a binary sequence. The use of small perturbations t
accessible system parameter or variable can then caus
signal to follow an orbit whose binary sequence encode
desirable message that one wishes to transmit@1,2#. One ad-
vantage of this type of communication strategy is that
nonlinear chaotic oscillator that generates the wave form
transmission can remain simple and efficient, while all
necessary electronics controlling encoding of the signal
main at low-powered microelectronic level.

A central issue in any digital communication devices is
select a proper coding scheme by which arbitrary messa
can be encoded into the transmitting signal. The main p
pose of this paper is to study the dynamics of coding
nonlinear digital communicating with chaos. Assuming th
the nonlinear device to be used for information encod
PRE 581063-651X/98/58~2!/1724~13!/$15.00
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generates a chaotic attractor in the phase space, we ad
the following questions:~1! What type of chaotic trajectorie
or dynamical invariant sets does a general coding sch
generate?~2! How much information can be transmitted v
a chaotic oscillator through a coding?~3! What is the influ-
ence of noise on coding? The answers to these ques
constitute an essential step in the development of a gen
theoretical framework and practical designing criteria
nonlinear digital communication with chaos.

The first result of this paper is that, in general, a cod
scheme generates chaotic trajectories that live on one o
uncountably infinite number of nonattracting chaotic sadd
embedded in the chaotic attractor. To understand this, im
ine the two-symbol~0 and 1! case and assume that we co
sider ann-bit symbol sequences. For a nonlinear oscilla
that generates a chaotic attractor, if the dynamics co
sponds to a Bernoulli shift, there are 2n possible symbol
sequences. The number of allowedn-bit symbol sequences
in most chaotic oscillators is usually less than 2n: the al-
lowed ones are called the grammar. That is, there are alw
forbidden symbol sequences. In communication, howev
the binary representation of a message to be transmitted
contain all possible symbol sequences. Thus, it is neces
to code the message so that its encoded binary represent
constitutes symbol sequences that are allowed by the gr
mar of the chaotic oscillator. In practice, it is difficult t
design a code that excludes only the forbidden symbol
quences. Given a code, the set of excluded symbol seque
usually includes a number of symbol sequences that are
tually allowed by the grammar. Thus, it is often the case t
only a subset of all the allowed symbol sequences is utiliz
Since all the allowed symbol sequences correspond to
original chaotic attractor in the phase space, the subse
allowed symbol sequences corresponds to a chaotic set
1724 © 1998 The American Physical Society
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PRE 58 1725DYNAMICS OF CODING IN COMMUNICATING WITH CHAOS
bedded in the attractor. As we will argue using a physi
example, these sets are typically nonattracting cha
saddles. We mention that making use of a chaotic saddle
communication has one practical advantage: It makes
message encoding immune to small noise~see Sec. II for
details!.

An issue of great importance in any digital communic
tion scheme is how much information the system can enc
and transmit. A quantitative measure of the amount of inf
mation is thechannel capacity@3,4#. For a chaotic system
channel capacity is equivalent to the topological entropy@5#
because this entropy defines the ‘‘amount’’ of informati
that can be transmitted through a communication chan
@3,4#. From a dynamical point of view, the topological e
tropy measures the orbit complexity of the chaotic invari
set. From the viewpoint of information theory, the topolog
cal entropy is the rate at which information is generated.
give an example, consider again a string ofn symbols gen-
erated by the dynamics. If the dynamics is purely rando
one would expect to be able to observe 2n possible symbol
sequences. In this case, the topological entropy is simpl

hT5 lim
n→`

ln 2n

n
5 ln 2,

which is the maximum possible value for processes defi
by two symbols. A deterministic chaotic system is, howev
not purely random. Thus, if the symbolic dynamics requi
only two symbols, the topological entropy of the attractor
generally less than ln 2@6#. Since a coding scheme make
use of only an invariant subset embedded in the attractor,
since the topogical entropy of the subset cannot be la
than that of the attractor, the channel capacity in any pra
cal communication scheme employing a code must be
than or equal to that which would be produced in the id
situation where the entire attractor is used for encoding m
sages.

The second result of the paper is detailed analyses
numerical confirmation for the topological entropies of
family of chaotic saddles embedded in a chaotic attractor
particular, we argue that an appropriate code restriction
ists that generates a noise-resisting chaotic saddle to
mize the tradeoff between the channel capacity and the n
resistance. Let the noise resistance be simply measure
the noise amplitude. We provide strong evidence that in
cates that the topological entropy is a nonincreasing
devil’s-staircase-like function of the noise amplitude, a sta
ment that can be made rigorous for some simple disc
chaotic maps. The plateau regions in the devil’s stairc
indicate that the dynamical complexity of the chaotic sad
is structurally stable with respect to variations in the noi
resisting strength. The main practical implication of our
sult is that chaotic saddles embedded in a chaotic attra
can be naturally utilized as noise-resisting but rich inform
tion source for digital communication. A short account
this work has been reported in Ref.@7#.

The rest of the paper is organized as follows. In Sec.
we present a physical example with the Lorenz system
illustrate that a coding scheme generates a chaotic sadd
the phase space. In Sec. III, we present numerical resul
the topological entropy for chaotic systems described
l
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both one-dimensional noninvertible and two-dimensional
vertible maps. In Sec. IV, we give a detailed theoretic
analysis for the devil’s-staircase-like function of the top
logical entropy versus the noise amplitude. In Sec. V,
present a rigorous result for the topological entropy funct
of the chaotic saddles for the one-dimensional logistic m
f (x)54x(12x). In Sec. VI, we construct, by making use o
the classic middle-1/3 Cantor set, a simple phenomenol
cal model that captures the essential behaviors of topol
cally varying the chaotic saddles embedded in a chaotic
tractor. Using this model, the devil’s-staircase-like behav
of the topological entropy can be understood in a straight
ward manner. In Sec. VII, we present discussions.

II. AN EXAMPLE OF CODING: THE LORENZ SYSTEM

We consider the Lorenz system@8#:

ẋ510~y2x!,

ẏ5x~282z!2y, ~1!

ż5xy2~8/3!z.

The Lorenz system has been a paradigm in the study of
otic systems and it can in fact be physically realized by
electronic circuit@9#. Let zn be the maxima of the state var
able z(t). Then, on thev-limit set, the successive loca
maxima can be described by a one-dimensional map,

zn115 f ~zn!. ~2!

The chaotic attractor in the phase space$x(t),y(t),z(t)% cor-
responds to a one-dimensional chaotic attractor in the ph
space of the discrete mapf (z). The natural partition for de-
fining a good symbolic dynamics is the critical pointzc
where f (zc) is maximum. A trajectory point withz,zc (z
.zc) bears the symbol0 ~1!. Now suppose we choose a cod
in which four zeroes in a row is forbiddenin any n-bit se-
quence, wheren.4. In the symbolic space, the code r
moves an open set of symbols. In the phase space of the
f (z), the restriction imposed by the code removes a g
around the cusplike maximum, and all of its preimag
There are an infinite number of preimages at all scales a

FIG. 1. A 10 000 point trajectory of the Lorenz map on a nois
resisting chaotic saddle embedded in the chaotic attractor, co
sponding to imposing the grammatical restriction, ‘‘no four zero
in a row.’’
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1726 PRE 58ERIK BOLLT AND YING-CHENG LAI
hence, the invariant set so produced is a chaotic saddle
bedded in the original chaotic attractor, as shown in Fig
The Lorenz system has its own grammar in its symbo
dynamics, but this grammar is in fact contained in the r
that no four zeroes in a row are allowed.

In general, a chaotic saddle generated by a code, suc
the one shown in Fig. 1, is advantageous for communicat
because the symbolic dynamics of the chaotic saddle is
mune to small noise. Say, for example, that the system i
a noisy environment. If the original chaotic attractor is us
to encode messages, a bit error~i.e., 0 becomes1 or vice
versa! can occur when the trajectory comes close to the p
w
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tition point zc because noise can kick the trajectory throu
zc in both directions. However, trajectories that live on o
of the infinite number of noise-resisting chaotic saddles
not come close to the partition point. The possibility for b
error due to noise can be substantially reduced when a
otic saddle is utilized to encode messages, because ther
noise-resisting gap around the partition pointzc , such as the
one shown in Fig. 1.

We now give an illustrative example of encoding an ar
trary message in the restricted chaotic signals. Suppose
wish to communicate, by using the Lorenz attractor, the f
lowing message ‘‘BEAT ARMY!’’ in the ASCII format:
buffer
s

unicate a
tractor, its

be
e
his case,
To transmit the message subject to the ‘‘no four zeroes in a row’’ code, a simple way is for the transmitter to insert a
bit ‘‘1I ’’ after three zeroes in a row, regardless of the message bit that follows. Thus, the encoded message become

Furthermore, if the original message contains the block 0001, with three zeroes in a row, the modified block is 0001I1. Thus,
the receiver can recover the original message simply by stripping a one after every block of three zeroes. To comm
digital message, all binary sequences of the message must be allowed by the Lorenz system. Since, for the Lorenz at
intrinsic grammar is already included in the rule ‘‘no four zeroes in a row,’’ the message ‘‘BEAT ARMY!’’ can now
transmitted using the Lorenz circuit@9# by utilizing small control methods outlined in Ref.@1#. One may also consider a mor
severe restriction such as ‘‘no three zeroes in a row,’’ which corresponds to a larger gap across the partition line. In t
the binary encoded message becomes
ti-
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Since more buffer bits are needed, the transmission rate
be slower, but the code is rendered more immune to nois
the noise-resisting gap becomes wider.

III. CHANNEL CAPACITY OF CHAOTIC SADDLES:
NUMERICAL RESULTS

To facilitate a systematic numerical computation a
analyses of the topological entropy of the chaotic saddles
make use of the logistic map,

f r~x!5rx~12x!, ~3!

which captures the essential dynamics of the one-hump m
arising in physical situations such as the Lorenz system@10#.
Consider the case where the map exhibits a chaotic attra
ill
as

e

ps

or.

The partition point for a good symbolic dynamics is the cri
cal point xc51/2. That is, we assign a symbol0 ~1! to the
trajectory if x,1/2 (x.1/2).

Figure 2~a! shows a trajectory of 50 000 points on th
chaotic saddle with a noise-resisting gap of sizes50.1 cen-
tered at the critical pointxc , at r 53.8 for which the logistic
map apparently exhibits a chaotic attractor. This chao
saddle is one of the uncountably infinite number of non
tracting chaotic sets embedded in the chaotic attractor
principle, a suitable coding scheme in the symbolic dynam
of the logistic map can produce the chaotic saddle in F
2~a!. To numerically produce Fig. 2~a!, we make use of the
PIM triple algorithm@11#, which generally enables us to fin
a continuous trajectory that never enters the primary gap
gion at the critical point and all its preimages. Since t
chaotic saddle in Fig. 2~a! is only a subset embedded in th
original chaotic attractor, its topological entropyhT must be
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less than or equal to that of the attractor. As the noi
resisting gap sizes increases,hT must not increase; i.e.,hT
must decrease or remain constant. To address the trad
between the channel capacity and noise resistance of the
otic saddle, we investigate the behavior of the topologi
entropy as the gap sizes is systematically increased. Figur
2~b! showshT(s) versuss, for fixed r 53.8. To compute
hT(s) for each value ofs, we countN(n), the number of
possible symbol sequences of lengthn that are allowed by
trajectories on the corresponding chaotic saddle with the
mary gap sizes. The topological entropy is given by

hT5 lim
n→`

ln N~n!

n
. ~4!

In practice, we approximate this limit by linear regression
a plot of ln N(n) versusn for n up to, say, 20; the slope o
the plot is approximately the topological entropyhT . In Fig.
2~b!, we see thathT is apparently a nonincreasing function
s. An interesting phenomenon is that there are regions ofs in
which hT remains approximately constant. Numerically, w
find that these plateau regions appear to exist on all scale
s. The set ofs values at whichhT changes seems to hav
arbitrarily small Lesbegue measure in the parameter spac
s. Similar behavior is observed for other parameter value
the logistic map, such as the one with well developed cha
as shown in Fig. 3 forr 54. These numerical results thu

FIG. 2. ~a! A trajectory of 50 000 points on a noise-resistin
chaotic saddle of gap sizes50.1 embedded in the chaotic attract
of the logistic mapf (x)53.8x(12x). The trajectory is computed
by using the PIM triple method.~b! The topological entropyhT vs
the noise-resisting gap sizes for the logistic map atr 53.8.
-

off
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strongly suggest that the function ofhT versuss is a devil’s
staircase.

A feature of thehT-versus-s function, which is common
to chaotic parameter values ofr @Figs. 2~b! and 3# and of
practical importance, is thathT decreases only slightly in a
wide region when the noise-resisting gap size increases f
zero initially. In Fig. 3, for example, the topological entrop
of the chaotic attractor is ln 2'0.69. Ass is increased from
0 to 0.1,hT decreases from ln 2 to about 0.62, a rather sm
decrease. Buts50.1 means that the symbolic dynamics o
the chaotic saddle is robust against noise of amplitude ab
531022. Thus, with only incremental loss in the chann
capacity, the symbolic dynamics on the chaotic saddle
immune to external noise of relatively large amplitude.

The result that the topological entropy of the nois
resisting chaotic saddles embedded in a chaotic attractor
nonincreasing and devil’s-staircase-like function of t
noise-resisting gap size appears also to be true for cha
systems described by two-dimensional maps. A main d
culty for maps of two dimensions and higher, however, is
identify a partition curve in phase space so that a good s
bolic dynamics can be defined. Due to nonhyperbolicity@12#
of chaotic attractors in typical two-dimensional maps, suc
partition curve usually consists of line segments connec
all primary tangency points between stable and unsta
manifolds@13#. It is thus a highly nontrivial task to construc
symbolic dynamics in high dimensions. However, it can
argued that the utilization of chaotic saddles with noise
sisting gaps tremendously simplifies the task of identifyi
partition curves. To illustrate this, we consider the He´non
map @14#

xn1151.42xn
210.3yn ,

~5!

yn115xn ,

for which it is believed to exhibit a chaotic attractor. For
trajectory on this attractor, the symbolic partition is a zigz
curve lying in the vicinity of thex axis, which connects al
primary tangencies@13,15#. The dynamics on the attracto
can thus be represented by that of two symbols in the s
bolic space: points above~below! the partition curve corre-
spond to a symbol1 ~0!.

Now consider a chaotic saddle embedded in the attra
with a noise-resisting gap of sizes50.25 that covers the

FIG. 3. Numerical computation of the topological entropyhT vs
the size of the noise-resisting gaps for the logistic map atr 54.
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1728 PRE 58ERIK BOLLT AND YING-CHENG LAI
partition curve entirely, as shown in Fig. 4~a!. For trajecto-
ries restricted to the chaotic saddle, specification of the p
tition is now straightforward: points withy.0 bear symbol
1, and those withy,0 correspond to0. Chaotic saddles suc
as the one in Fig. 4~a! can be computed using the PIM trip
method similar to that for one-dimensional maps@16#. Spe-
cifically, to generate Fig. 4~a!, we have used 100 points on
random line segment in the square21<(x,y)<1 to refine a
PIM triple, and the size of the refined triple is 1029. Here,
too, increasing the gap width decreases the measure o
chaotic saddle. Figure 4~b! shows hT versus s for 0<s
,smax'0.42, where for each value ofs, the topological en-
tropy is computed by counting the number of possible tw
symbol sequences of various lengths corresponding to tra
tories on the chaotic saddle. Again,hT versus s is a
nonincreasing, devil’s-staircase-like function. Ass increases
from 0, hT decreases slowly at first, and then faster, wh
warrants a relatively large regimes,sc'0.14 within which
hT decreases only slightly.

Thus, utilizing chaotic saddles with noise-resisting g
size close tosc seems to be practically beneficial in comm
nication applications:~i! the specification of the symboli
dynamics is straightforward,~ii ! the symbolic dynamics is
robust even in a noisy environment,~iii ! yet the channal
capacity is close to that obtained when one utilizes the or
nal chaotic attractor.

We emphasize that we utilize the PIM triple method on
for the purpose of a systematic study of the tradeoff betw

FIG. 4. ~a! For the Hénon map, a noise-resisting chaotic sadd
embedded in the chaotic attractor of gap sizes50.25. ~b! The to-
pological entropyhT vs the noise-resisting gap sizes for the Hénon
map.
r-

the
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c-

h
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n

the channel capacity and the noise resistance of cha
saddles. In practice, chaotic saddles with a noise gap em
ded in a chaotic attractor can be easily generated even f
an experimental data set by imposing an appropriate c
restriction. Recall that the chaotic saddle of the Lorenz m
pictured in Fig. 1, was generated directly from~numerical!
experimental data by eliminating four zeroes in a row fro
the grammar. In fact, a gap is effectively and automatica
generated during the transmitting step, when communicat
simply by never transmitting a ‘‘gap grammar’’ sequen
0000, for example, by incorporating ‘‘buffer’’ bits as appro
priate. An analogous gap-grammar design is likely to wo
well with 2D symbolic dynamics by appropriately restrictin
the so-called ‘‘pruning front’’@15#.

IV. THEORY

We now present a detailed theoretical justification for t
devil’s staircase of thehT versus noise-resistance gap fun
tion seen in numerical experiments. At present our the
applies only to one-dimensional and one-hump maps suc
the logistic map or the Lorenz map. Briefly, the idea is
follows. We study a sequence of successive approximat
to the grammar of the symbolic dynamics as the length of
symbol sequences~words! increases. The dynamics in th
symbolic space can then be represented by a sequenc
transition matrices characterizing all the possible, or forb
den, transitions between words. The topological entropy
sociated with the symbolic dynamics can then be obtained
considering the limit of the spectral properties of the tran
tion matrices.

A. Computation of topological entropy by transition matrices

Without loss of generality, we consider one-dimension
and one-hump maps defined on the unit intervalM[@0,1#.
For such a map, there is a critical point 0,xc,1. This criti-
cal point is often chosen to be the generating partition a
hence, we haveS05@0,xc#, S15(xc,1#. A trajectory pointx
bears a symbol 0 ifxPS0 and a symbol 1 ifxPS1 . An
initial condition then has an itinerary sequences
5s0s1s2s3 ..., where sPS, and S represents the sym
bolic space that consists of all possible infinite symbol
quences of the symbols0 and1. Since the chaotic dynamic
of f (x) is deterministic, typically, only a subset of all po
sible symbol sequences can be generated by a typical ch
trajectory. Denote the symbolic subspace in which we fi
the symbolic itineraries of all trajectories of a given invaria
chaotic set byS8,S. The action of the map in the phas
space then corresponds to the following Bernoulli-shift m
in the subspaceS8,

s~s!5s~s0s1s2s3¯ !5s1s2s3s4¯ . ~6!

By construction, the dynamics in the subspaceS8 is invari-
ant in the sense that ifsPS8 thens(s)PS8. The subspace
S8 is calleda subshift~the full spaceS is called thefull shift!
@17#.

A subshift of finite type has a grammar that can be rep
sented by a finite list of forbiddenn-bit words. In this case,
the grammar can be described by a 2n-node directed graph
or equivalently, by a 2n32n transition matrix,An , as shown
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in Fig. 5~a! for n54. The Bernoulli-shift map permits a
most two arrows into and two arrows out of eachn-bit node,
corresponding to the choice of shifting in a0 or a 1 into the
least significant bit from any state. For a full-shift gramm
there are no forbiddenn-bit words and, hence, each row an
each column of the transition matrixAn hasexactlytwo non-
zero entries. For a subshift grammar, each row and e
column ofAn hasat mosttwo nonzero entries, because the
are now forbidden words. The grammar of the subshift,
the symbolic dynamics, is completely specified byAn in the
limit n→`.

By conjugacy ofsuS8 to f uM , the topological entropy of
the two dynamical systems is the same,

hT~S8!5hT~M !. ~7!

The topological entropy of a subshift of finite type can
computed directly as the natural logarithm of the spec
radius of the generating transition matrix@17#,

hT~SAi
8 !5 ln@r~Ai !#. ~8!

The topological entropy of a subshift of infinite type can
computed in terms of the limit of spectral radii of a sequen
of transition matrices$Ai%, which generate a sequence
subshifts$SAi

8 % to S8 of increasing accuracy,

hT~S8!5 lim
i→`

ln@r~Ai !#. ~9!

We require the spectral radii of a sequence of thousa
of matrices, each of which is 2m32m and we choosem
514. Obviously, finding the roots of thousands of mamm
characteristic polynmials is impractical. Numerically, w
compute the spectral radius of a given matrixB, by a slight
modification of the power method. The power method rel
on the fact that upon iteration, almost all initial vectors a
rotated towards the dominant eigenspace~the subspace cor
responding to the largest eigenvalue!. In the case of a Perron
Frobenius operator, the dominant eigenvalue is guarantee
be a simple root, and the dominant eigenspace is
dimensional. Given an arbitrary initial unit vectoru0 , and
the iteration scheme,vn5Bun21 , with normalization
during each step,un5vn /Avn

Tvn, it can be shown that asn
→`, Avn

Tvn→l0 , the dominant eigenvalue. The proof
quite simple@19#, beginning with the observation that a
arbitrary vectoru0 can be written as a linear combination
the eigenvectors ofB, and that if ul0u.ul i u, then ul0un

dominatesul i un, for largen. Our matrices are so large tha
even the straightforward application of the power meth
which is simply iterative matrix multiplication, is too costly
as even a single matrix multiplicationBun of a 2143214

matrix requires 228 addition and multiplication steps. How
ever, we avoid this problem by noting the particularly spa
structure of our subshift generating matrices. Each row
each column of our matrices has at most two nonzero ent
corresponding to the possibility of shifting in either a zero
a one bit from each node~n-bit word!. With this consider-
ation, a matrix multiplication routine can be tailored to mu
tiply our 2143214 matrix by a vector using only 215 multi-
plications and additions.
,

ch
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Let M (s) denote the chaotic saddle, embedded in the c
otic attractor off (x), with a primary noise-resisting gap o
sizes centered at the critical pointxc . If we know the form
of the subshiftM (s), we can make use of Eq.~9! to compute
hT@M (s)#, the topological entropy of the chaotic saddle.
principle, this technique can be extended to hig
dimensional maps.

B. Restricting the grammar: topological entropy
of the chaotic saddle

Given a one-hump map, such as the logistic map, the
feature that allows us to apply Eq.~9! to calculate the gradu
ally varying topological entropy, as a function of gap sizes,
is the fact that we know the order of then-bit itinerary bins,
along the unit interval. Due to continual refolding of th
interval back into itself, the order of itineraries of a on
hump map is not given directly from the norm of its symb
code,isi, but is found by an alternating binary tree~see, for
example, Fig. 2 of Ref.@15#!, which generates an orde
called theunimodal order@20,21#. For example, the 2-bit
words in the increasing unimodal order are 00a01a11
a10.

When formulating ann-bit word approximation of the
subshiftS8, we construct the 2n32n transition matrices or-
dered according to the unimodal order. For eachn-bit ap-
proximation of the full shift grammar~no word restrictions!,
each of the 2n nodes has two entering arrows and two exiti
arrows. Therefore the transition matrixAn has exactly two
ones in each row and column, and it follows thathT(An)
5 ln@r(An)#5ln(2). A restriction on the grammar ofSAn

cor-

responds to a forbiddenn-bit word. If the j th n-bit word is
forbidden, then all transitions into and out of thej th node are
also forbidden so that the invariance of the subshift w
respect to the Bernoulli-shift map is preserved. Hence,
corresponding transition matrixAn8 has all zero entries in the
j th row and thej th column.

We now analyze how the topological entropy of the ch
otic saddle changes as the size of the noise-resisting gs
increases. For illustrative purposes we study the logistic m
at r 54. In this case, for the chaotic attractor the symbo
dynamics is~almost @18#! a full shift. Thus, transitions be
tween~almost! all words are allowed. Figure 5~a! shows all
the possible transitions among all 4-bit words, together w
the transition matrixA4 . When s50, no bins on the unit
interval are forbidden, and therefore, no words are forbidd
We obtain

hT~s50!5hT~A4!5 ln~2!. ~10!

As s increases~symmetrically aboutxc50.5!, there is no
effect to the 4-bit grammar approximation until the bins
beled 0.100 and 1.100 are eliminated, at a critical valuescr1
when the gap radius is exactly the width of these bins. R
moving these bins from the chaotic attractorM implies that
the itineraries 0.100 and 1.100 will never occur in the cor
sponding subshift. Therefore, we restrict~i.e., reduce by add-
ing more rules! the grammar ofSA4

to the smaller subshift

SA
48 , generated byA48 , by placing zeroes in the eighth an

ninth rows and columns ofA4 , as shown in Fig. 5~b!. By
direct computation, we obtain
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hT~s5scr1
!5hT~A48!5 ln@r~A48!#5 lnS 11A5

2 D . ~11!

As s continues to increase, there is no effect to the 4-

FIG. 5. For the logistic map atr 54, directed graph and the
corresponding transition-matrix representations of subshifts of fi
type generated by a 4-bit grammar. The 24516, 4-bit words are
arranged in increasing unimodal order, left to right, just as th
occur in one-hump maps, 0.000a0.0001a0.011a¯a1.001
a1.000. The nodes~words! are further arranged in a manner t
suggest a one-hump map.~a! The full shift grammar as generate
by A4 . Each node has two arrows in, and two arrows out, cor
sponding to unrestricted possibility of shifting in a0 or a 1 bit at all
bins. The 16316 transition matrixA4 has two ones in each row
~each node has two possible outcomes! and two ones in each col
umn ~each node has two possible preimages!, whereAi , j51 de-
notes an arrow from thei th node tp thej th node. By ordering state
vectors according to the unimodal code, and hence also the tra
tion matrix, we see the ones in the transition matrix form a ‘‘V’’ on
its side, suggesting the one-hump map whose dynamics is re
sented.~b! The gaps is widened to the critical valuescr1

, which
exactly eliminates the bins 0.100 and 1.100 in the logistic map. T
corresponding nodes~the 8th and 9th! must also be eliminated, a
well as arrows in and out of these two nodes. Likewise, the tra
tion matrix A48 has zeroes in the 8th and 9th rows and colum
Nodes eliminated are covered by an ‘‘3,’’ but other nodes are also
effectively eliminated. These nodes have no entering arrows,
hence are never visited.A48 generates the subshiftSA

48
. ~c! When the

gap is further widened to the critical discrete values5scr2
, a 4-bit

change in the subshift occurs.~d! Whens5scr3
, the channel capac-

ity of the directed graph collapses. No circuits through the gra
which have two arrows out of a node, remain.
it

grammar approximation untils reaches a second critica
valuescr2

when the itineraries 0.101 and 1.101 must also

forbidden from the new subshiftSA
49
, as shown in Fig. 5~c!.

The topological entropy thus decreases again atscr2
. As s

increases further passing another critical value, the itinera
0.111 and 1.111 are eliminated, as shown in Fig. 5~d!. This
causes a new decrease in the topological entropy.

Although, in general, we do not know a priori the loc
tions and widths of eachn-bit itinerary bin in the case of
one-dimensional maps, we do know the order in which th
are eliminated: this follows the unimodal code order for on
hump maps.~In fact, we can find the critical gap widths fo
the logistic map forr 54 by using the invariant measur
m(x)5(1/p)@x(12x)#21/2 @22#!. To compute the function
hT(s) in a systematic way, we start with the full shift gram
marSAn

, whereAn is ordered according to the occurrence

n-bit itineraries on the unit interval, and then eliminate pa
of n-bit words ~by zeroing corresponding rows and co
umns!, starting from the middle, to simulate the effect
widening the gap sizes centered atxc51/2. At each step, we
computehT(k), wherek is the number ofn-bit forbidden
words, of the evolving subshift, directly from the spectr
radius of the current transition matrixAn

(k) in which 2k
words are eliminated. Figure 6 showshT(k), wherek scales
monotonically with the gap widths and, at each value ofk,
2k bins are eliminated from the grammar. We see that
topological entropy appears to be a nonincreasing functio
k. Increasingn, the word size considered, better appro
mates the effect of continuously increasing the gap sizs
from s50 and, hence, more structure in the functionhT(k)
can be resolved.

C. The devil’s staircase entropy function

The structure of the functionhT(k) in Fig. 6 resembles
that of a devil’s staircase. Asn is increased, more constan
intervals, or ‘‘flat spots,’’ are revealed. The reason for the
flat spots is that the topology of the chaotic saddleM (s)
does not change for an interval of values of the gap sizes.

te
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,

FIG. 6. Topological entropyhT vs the noise-resisting gapk.
This calculation is based on a Markov model of the grammar o
subshift of finite type, wherek is the number ofn-bit forbidden
words, andn514. The topological entropy is calculated direct
from the logarithm of the spectral radius of the evolving transiti
matricesAn

(k) . We begin with then-bit representation of the full-
shift grammar. The plot is qualitatively similar to that in Fig. 3.
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For the logistic map atf 4(x)54x(12x), it is possible to
prove, by geometric argument, that the functionhT(k) is
indeed a devil’s staircase, which we will do in the followin

We first consider the cases50. All the n-bit symbol se-
quences are distributed in the unit interval in various bi
the boundaries of which are generated by the p
images of the critical point c[1/2 ~the partition!,
$xc , f 4

21(xc),...,f 4
2(n21)(xc)%. Since there are 2n21 branches

of f 4
2(n21)(xc), there are( i 51

n 2i 2152n21 total preimages,
including the partition itself. Forr 54, these preimages ar
all in the unit interval and they are dense asn→`. It should
be noted that the logistic mapf 4 is semiconjugate to the ful
shift. However, the lack of a full conjugacy is not serious
this case because it is only due to the ambiguity of assign
itineraries to set of preimages ofxc : ø i 50

` f 4
2 i(xc) @18#. We

can treat the equivalence as if it were a conjugacy with
spect to the issue of topological entropy.

Next we consider increasing the gap widths. Let M (0)
5@0,1# denote the full attractor ats50, and let

M ~s!5@0,1#2ø i 50
` f 4

2 i@~ 1
2 2s, 1

2 1s!# for s.0
~12!

denote the chaotic saddle whensÞ0. The saddle is a Canto
set that consists of the original attractor excluding the no
resisting gap and all its preimages. In general, there are o
laps between preimages of the primary gapG(s)[(1/2
2s,1/21s).

Qualitatively, the amount of overlap changes ass changes
in such a way that the topological entropyhT(s), as a func-
tion of s, is characterized by a devil’s staircase. To see t
we plot the primary gap, and a few preimages for vary
size s, as shown in Fig. 7, where the two bold lines defi
the primary gap:

x5 1
2 5s and x5 1

2 2s. ~13!

The curves that define the first preimage of the primary
are given by

FIG. 7. The ‘‘tonguelike’’ gapsG(s) ~bold boundary! and pre-
iteratesf 2 i

„G(s)… of the logistic mapf (x)54x(12x). Note that as
the gap widths increases, then-bit word bins decrease. Due t
nonuniformly distributed tongue ‘‘centers’’ and varying rates
tongue contraction, words are eliminated for varying values os.
This picture is seen on all scales, for increasingn.
,
-

g

-

-
r-

s,
g

p

f 4,6
21 ~x!5

16A12x

2
. ~14!

There are four such curves, as shown in Fig. 7. This fig
can be considered a bifurcation diagram of the gaps, or w
bounds, in the parameters. The second preimage of the pr
mary gap consists of four smaller gaps bounded by e
curvesf 4,6

22
„G(s)…, as shown in Fig. 7. Considering all thes

gaps, we see a total of up to seven gaps~exactly seven before
gaps collide!, and eight symbol bins. Note that the success
preimages of the primary gap form successively tigh
tonguelike structures. These tongues occur on all scales
counting for all preimages of the primary gap.

Geometrically, the tongues in Fig. 7 correspond to
gaps f 4

2m
„G(s)… that bound the symbol bins. Ass is in-

creased from zero, the space in between the two tongue
eliminated. Whenever the two tongues intersect, the or
nally allowed words that lived in the space becomes forb
den. That is, whenever the following occurs,

f 4
2m

„G~s!…ù f 4
2n

„G~s!…Þ0” for any m,n.0, ~15!

some words are eliminated. Due to the varying tightness
the tongues, for different pre-images of the main tong
G(s), the overlap among them occurs at different values
s. For instance, in Fig. 7, we see that 0.10 and 1.10
eliminated at a smaller gap widths than the value ofs at
which 0.11 and 1.11 are eliminated.

The above consideration thus leads to the following th
rem:

Theorem:Given the logistic mapf 4(x)54x(12x), the
topological entropy functionhT(s) is constant on the
complement of a Cantor set ofs values.

The proof of the theorem is sketched as follows. Consi
Fig. 8, a blowup of part of Fig. 7 in the narrowed rangex
P@0.3,0.7#, where we have increased the precision of t
grammatical representation ton56 bit words by showing

FIG. 8. A blowup inset of Fig. 7, with an increased grammatic
precision of n56 bit words and tonguelike gaps throug
f 4

2m
„G(s)…, where m50,1,2,3,4,5. Vertical line segments cu

through the tongues marking critical valuesscr5a when a
f 4

2 i
„G(s)…, for somei 50,1,...,5, first intersects the main gapG(s),

thus beginning an intervalsP(a,b) in which the chaotic saddle
M (s) does not change topologically, despite increasings. The to-
pological entropyhT(s) is therefore constant forsP(a,b).
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the gapsf 4
2m

„G(s)… for m50, 1, 2, 3, 4, 5. Consider a ver
tical line segment of constants, say,

s50.01, 0<x<1. ~16!

Such a line cuts through the countably infinite number
tongues: there is oneG(s), and two f 4

21
„G(s)…, and four

f 4
22

„G(s)…,..., and 2m of f 4
2m

„G(s)…, etc. Thus, we remove
the open intersections between the gaps and the line
ment, leaving a Cantor set in the phase spacex. As the value
of s is increased, some tongues intersect, and therefore
overlap ass is increased further, eliminating branches of t
Cantor set. At the critical value bounded bys<0.25, the
Cantor set no longer exists, as shown in Fig. 9.

The topology of increasing the noise-resisting gap is
miliar to the construction of the fixeds50.01 Cantor set
described in the previous paragraph, but for variable
widths, the set of intersection with the tongues is the l
segments,

s5x2 1
2 and s5 1

2 2x, where 0<s<1. ~17!

These two line segments intersect the tongues at various
ues of s, and therefore at various opening widths of t
tongues. For smalls, all tonguesf 4

2m
„G(s)… are intersected

when they are narrow, and for largers, tongues are inter-
sected in a wider state. Removing the open intersection
tween the tongues, and the line segments of Eq.~17! leaves a
Cantor set, which we callCtongue, but whose measure is no
uniformly distributed, by construction. The projection
Ctongue onto thes axis is also a Cantor set, due to monot
nicity of Eq. ~17!. We call this setCs .

As s is increased through a tongue, the chaotic sad
M (s) is unchanged, as such a change ins essentially just
increases the overlap between the main gapG(s), and an
‘‘already removed’’ preimagef 4

2m
„G(s)…. An m-bit word is

eliminated at exactly the value ofs whenG(s)ù f 4
2m

„G(s)…
is first nonempty, for each given branch cut off 4

2m
„G(s)…,

for eachm.0. Therefore, the topology of the setM (s) does
not change on the complement of the Cantor setsPC̄s , and

FIG. 9. The chaotic saddleM (s) as a function ofs. M (s) is
contained between the two curves,f 4(s1

1
2 ) and f 4„f 4(s1

1
2 )…, the

first two iterates of the main gapG(s), but these are not shar
bounds, due to ‘‘tongue’’~word! overlap. Parameter valuess5a
when 3-bit words first overlap, are marked.
f
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the topological entropyhT(s) of f 4uM (s)
is constant when the

topology ofM (s) is constant. A function that is constant i
the gaps of a Cantor set, and therefore may only change
the Cantor set, is a devil’s staircase function.

Note that we have not shown that the topological entro
actually does change fors in the Cantor setCs , only that it
does not change in the Cantor gaps. We claim that, at lea
the case of the logistic mapf 4uM (s), the topological entropy
does in fact change whenever the topology ofM (s) changes.
Since eachxPM (s),@0,1# has a unique symbolic code, th
right-hand end pointR5max@zPM(s)# has the symbolic
codesR5h(R) that bounds all symbol sequences in the su
shift of the chaotic saddle,sPS f 4uM (s)

8 according to

sdsR ~18!

whered is the unimodal order on the symbolic space@23#.
Note that sR is the kneading sequence of the on
dimensional map@24#. Any loss of points inM (s) that
causes a loss of words in the corresponding subshift lead
a decrease in the topological entropy that measures
asymptotic growth rate of the word count ofn-bit words.
This argument does not apply to restricting a map of
interval for which we cannot make the statement that e
point has a unique symbolic code, as, for example, in
case of maps with constant regions, or maps with attrac
periodic orbits.

Corollary: The symbolic dynamics ofM (s) are of finite
type, fors supported on the complement of a Cantor set.

Therefore, the complex case of a grammar of infinite ty
can only be supported on the Cantor set. Furthermore, t
is a structural stability associated with each resulting gra
mar of finite type, as manifested by the flat spots of const
topology; i.e., a given complexity is persistant.

It is insightful to plot then53 approximation ofM (s) as
a function ofs, as shown in Fig. 9. The chaotic saddleM (s)
is contained between the two curves,

f 4~s1 1
2 ! and f 4„f 4~s1 1

2 !…. ~19!

These are the first two iterates for the boundary of the m
gap G(s), which act as the envelope boundingM (s); they
are only bounding envelopes because as each of the cu
passes through a tongue, the setM (s) is unchanged. This is
just another way of viewing exactly the same argument
tongue overlap as a function ofs, described in previous para
graphs.

There is a question as to whether the tongues overla
much as to cause an empty setCtongue. This depends on the
placement of the tongues, and whether preiterates of tong
shrink fast enough to prevent overlap everywhere. Thus,
argument applies to situations where some overlap with
creasings is allowed. In the next section, we investigate t
distribution of measure along these Cantor sets, usin
‘‘tongues model’’ based on the ‘‘middle-1/3’’ Cantor se
thus explaining a feature in the graph ofhT(s) with practical
importance: the initially shallow decline ofhT(s) is followed
by the precipitious decrease of the channel capacity.
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V. A PHENOMENOLOGICAL MODEL
FOR THE ENTROPY FUNCTION

In this section, we develop a model, based on the mid
1/3 Cantor set, with a similiar topology of ‘‘tongues’’ as th
displayed by the noise-resisting chaotic saddlesM (s). The
model helps to explain a feature in the graph ofhT(s) that
has particular practical importance: the initially shallow d
cline of hT(s) is followed by a precipitious collapse of th
channel capacity. We also argue that the Cantor setCtongue
tends to be a multifractal whose measure distribution is c
centrated nears50 and falls off with increasings.

The classic middle-1/3 Cantor setC1/3 is the closed subse
of the unit interval @0,1#, which is the limit of the se-
quence, J05@0,1#, J15J02(1/3,2/3), J25J12(1/9,2/9)
2(7/9,8/9),..., andJn is the union of 2n pairwise disjoint
closed intervals of length 32n, and

C1/35ù i 50
` Ji . ~20!

Before we construct the set of tongues, it is useful to w
the centers of each removed gap; of eachJi , in a closed
form. We use a ternary expansion, which is analogous to
usual decimal expansion. Any numberx in the unit interval
can be written in ternary form,

x5(
i 50

`
ai

3i , ai50,1, or 2. ~21!

A convenient characterization ofC1/3 is the set of all points
whose ternary expansion contains noai51, sinceai51 sig-
nifies a point in a gap removed as part ofJi @25#. The center
of the gap ofJ1 is c1

(1)51/2, and the two new gaps’ cente
of J2 are c2

(1)51/6 andc2
(2)55/6, which have the ternary

expansions

1

2
5

1

3
1

1

9
1

1

27
1¯50.111,

1

6
5

1

2
2

1

3
5

0

3
1

1

9
1

1

27
1¯50.0111, ~22!

5

6
5

1

2
1

1

3
5

2

3
1

1

9
1

1

27
1¯50.2111.

We write the general form for a centercn
( i ) ,

cn
~ i !50.b1b2¯bn21111, bi50 or 2, i 51,2, . . . ,2n21,

~23!

which lists the 2n centers ofJn gaps.
In order to mimic the dynamic effect of widening th

primary gap of the chaotic saddle, we consider a unit squ
in the two-dimensional plane, as shown in Fig. 10. We pla
the middle-1/3 Cantor set along the horizontal direction
y51. As y decreases, we linearly decrease the gaps of
Cantor set to zero aty50. Hence, although the Cantor aty
51 is middle 1/3, it is not middle 1/3 foryÞ1. The set at
y50 is in fact not Cantor-like. Figure 10 is thus qualitative
similar to Fig. 7 in that the parametery in Fig. 10 is equiva-
-

-

-

e

e

re
e
t
e

lent to s in Fig. 7. There is an infinite number of tongue
starting aty50. Specifically, the lines

Ln6
~y!56

y

mn
1cn , ~24!

wheremn52•3n, are right~1! or left ~2! edges of a tongue
This equation follows immediately from Eq.~23! and the
slope comes from the definition of an end point ofJn . Note
that there is such a tongue for each branch ofcn , and we
define a tongueTn as the open interior betweenLn2

(y) and

Ln1
(y), for a fixed centercn . So we see that for any fixed

yP(0,1#, a Cantor set is defined as

C~y!5@0,1#2G~y!, ~25!

where

G~y!5øn51
`

„Ln2
~y!,Ln1

~y!…, ~26!

whose measure is

m„C~y!…512(
i 50

`
y

3 S 2

3D i

512y, ~27!

and we note that corresponding to eachn, there are 2n21

gaps. The measure is independent of the location of the
tersections between the liney5const and the tongue bound
ariesLn6

(y). Fory.1, C(y)5O” , since all of the gaps over
lap simultaneously, and the Cantor set evaporates.

We can now investigate the intersection between the g
and an arbitrary straight line. For example, the line

x5 l ~y!5
y

r
1

1

2
~28!

starts at the main gap centerc151/2, but with a slope other
than 1/r 5m156, that of the main gap boundaryL1(y). We

FIG. 10. A model of the tongues, based scaling the middle-
Cantor set. The linel (y) intersects tongues of various width
which depends both on heighty, and on the level of the tongue in
question. This determines the width of flat spots of the devil’s st
case, the cumulative measure functiong(y) in Fig. 11.
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1734 PRE 58ERIK BOLLT AND YING-CHENG LAI
choose the line defined by, say, 1/r 57/4, as pictured in Fig.
10, which intersects the tongues in a manner similar to
situation of widening a noise-resisting gapM (s), described
in previous sections, but here we can perform many of
calculations in closed form.

Intersections between linesLn6
(y) and the linel (y) can

be found directly from Eqs.~24! and ~28!,

y5S cn21/r

1

2
71/mn

D , n.1. ~29!

The intersection betweenl (y), for 0<y<1, and the tongues
leaves a Cantor set, which we labelCl ,

Cl5$ l ~y!:0<y<1%2$ l ~y!:0<y<1%ù~øn50
` Tn!,

~30!

and we labelCl y
to be the projection ofCl onto they axis.

See Fig. 10.
Any positive monotone increasing functionf (y), re-

stricted toCl y
, will create a devil’s staircase function with

profile similar to those seen in Figs. 2~b! and 3. We choose
such a function: the measure ofCl y

ù@0,y# for example. Let

f ~y!5m~Cl y
ù@0,y# !5y2 (

n52

`

(
i 51

y<an
~ i ! ,bn

~ i !

2n22

~bn
~ i !2an

~ i !!,

~31!

wherey5an
( i ) andy5bn

( i ) are the left and right end points o
intersection between the tongue labeledTn

( i ) andl (y) accord-
ing to Eq. ~29!. Since there are 2n21 tonguesTn

( i ) , or 2n22

tongues to the right ofx51/2, there are up to 2n22 tongues
such thaty<bn

( i ) . We calculate the devil staircase functio

g~y!512
f ~y!

2
, ~32!

as shown in Fig. 11, by direct application of Eq.~31! ~using
a truncation of the infinite sum!, in conjunction with thecn

( i )

from Eq. ~23!.

FIG. 11. The cumulative measure functiong(y) due to inter-
secting l (y) with the scaled middle-1/3 Cantor set model of t
tongues.
e

e

Inspection of Fig. 10 reveals the explanation for the p
file of g(y). There are two factors regarding the behavior
g(y). ~1! If y is small, then the width of tonguesTn

( i ) tends to
be in a narrower state when they intersectl (y); and ~2! for
any given y, tonguesTn

( i ) are narrower thanTn21
( i ) , since

mn21,mn ~analogous to hyperolicity! and, hence, the gap
removed for largey are large, causing a precipitous decrea
of g(y). In other words, the Cantor setCl y

has its cumulative

measure densityf (y) weighted more heavily towards largey
and it is a multifractal. Geometrically, the situation is ana
gous to considering the profile of the topological entro
versus noise-resisting gap as in Sec. IV C. The main dif
ence is the way in which the tongues overlap: for this mod
the Tn all overlap simultaneously wheny.1, which is in
contrast to Sec. IV C, where the first overlap of tongues
curs for countably many different critical gap valuesscr .

The geometry extends to higher dimensions. In two
more dimensions, like codedn-bit regions define neighbor
hoods, or symbol bins, outlined by segments of~pre!iterates
of the symbol partition curve. Widening a gap around t
symbol partition curve propagates to the iterates of the p
tition, thus restricting the like-codedn-bit regions in a man-
ner analogous to the tongues in one dimension. Given a t
dimensional map, for example, a bifurcation diagra
graphing the phase space over a gap axiss could be used to
depict three-dimensional conelike symbol tongues, each
which pinches off at a critical gap width. The middle-1
Cantor set model of this section generalizes to a Serinpin
carpet whose measure can be controlled by a parameter
asy.

VI. DISCUSSION

The basic principle that makes nonlinear digital comm
nication with chaos possible lies in the fundamental link b
tween chaos and information. The evolution of a chaotic s
tem is unpredictable in the long term. In communication
sequence of events conveys information if the events are
fully predictable ~Shannon’s point of view of information
@3,4#!. Thus, the fundamental unpredictability of chaotic sy
tems implies that they can be regarded as sources that n
rally generate digital communication signals. By manipul
ing a chaotic system in an intelligent way, useful informati
can be communicated@1#.

A fundamental issue in communicating with chaos, as
in any digital communication scheme, is to select a code
that any message can be encoded into the signal to be t
mitted. For chaotic systems, this is intriguing because,
general, there are grammatical restrictions imposed by
natural dynamics of the system. Designing a code that ma
the best use of all the naturally occurring words is thus
paramount importance in order to realize communicati
The results of this paper provide strong evidence that suc
optimal code indeed exists for low-dimensional chaotic s
tems in general. We investigate the dynamics of coding
show that a practical coding scheme in communicating w
chaos usually involves the utilization of chaotic saddles e
bedded in a chaotic attractor. This, in fact, has the advan
of strong noise resistance, but with only insignificant loss
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the channel capacity. To better see this, imagine that
topological entropy of the chaotic saddle decreases o
slightly in a range of gap sizes (0,Ds). Say the noise ampli-
tude is Ds/10. Then the chaotic saddles with gap sizes
(Ds/10,Ds) are immune to noise, yet their channel capac
is only slightly less than that of the original chaotic attract
There are an infinite number of codes that can generate
otic saddles with gap sizes in (Ds/10,Ds). From the stand-
point of channel capacity and noise resistance, these c
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are optimal. Similar results appear to hold for tw
dimensional chaotic systems.
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