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Periodic-orbit theory of the blowout bifurcation
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This paper presents a theory for characterization of the blowout bifurcation by periodic orbits. Blowout
bifurcation in chaotic systems occurs when a chaotic attractor, lying in some symmetric invariant subspace,
becomes transversely unstable. We present an analysis and numerical results that indicate that the bifurcation
is mediated by changes in the transverse stabilitgrofnfinite number of unstable periodic orbits embedded
in the chaotic attractor There are two distinct groups of periodic orbits: one transversely stable and another
transversely unstable. The bifurcation occurs when some properly weighted transverse eigenvalues of these
two groups are balanced. Our results thus categorize the blowout bifurcation as a unique type of bifurcation
that involves an infinite number of periodic orbits, in contrast to most previously known bifurcations that are
mediated by only a finite number of periodic orbitS1063-651X%97)08610-9

PACS numbdss): 05.45+b

I. INTRODUCTION morphoseg4], which are triggered by the collision of peri-
odic orbits, usually of low period, embedded in different

A central problem in the study of nonlinear dynamical L ; .
) . . dynamical invariant sets. More recently, an exotic type of
systems is to understand how the asymptotic behavior alters’ . . . ’ .
asin structure was discovered in chaotic systems, that is, the

as a s¥stem param_eter changes. Qualltanve_ changes n t &sin of Wada. Wada basin boundaries are common fractal
system’s asymptotic behavior are callebifurcations

- . . boundaries of more than two basins of attraction. It was
v_vhereas the critical paramgter va!ues at which the blfurca'hown in Ref[5] that Wada basin boundaries are created by
tions occur are the bifurcation points. The phenomenon of, ¢, qqje-node bifurcation on the basin boundary. A direction
bifurcation is extremely common in nonlinear systems. FOlut intense recent investigation concerns bifurcation in dy-
instance, chaos typically arises from a nonchaotic statgamical systems with one or several symmetric invariant
through a series of bifurcations and the number of bifurca‘subspaces. In such systems, it was discovered that the rid-
tions involved in the creation of chaos can be as a few as ongling bifurcation, a bifurcation that leads to the creation of
or can be as many as infinite. Understanding various types qfddled basing6], is triggered by the loss of the transverse
the bifurcations has been one of the focuses in the study aftability of some periodic orbit, typically of low period, em-
nonlinear physical systenid]. Since almost all qualitative bedded in the chaotic attractor in the invariant subspate
changes in the system’s behavior are due to bifurcations, it i& common feature of all these major bifurcations is that
of paramount physical interest to characterize bifurcations inhere are onlyne or a fewperiodic orbits involved.
terms of fundamental quantities of the system. “There is The main purpose of this paper is to present a periodic-
nothing more fundamental than to characterize a bifurcatiomrbit theory for a recently discovered bifurcation in chaotic
in terms of the periodic orbits embedded in the natural dysystems. This is the so-call&tbwout bifurcationthat occurs
namics of the system.” Thus the knowledge of periodic or-in systems with a simple type of symmeiisee below for a
bits is the key to understand the bifurcation and, conseprecise description “Our main conclusion is that the blow-
quently, the key to understand the dynamics of the systemout bifurcation is fundamentally different from most known
Most known bifurcations in nonlinear dynamical systemsmajor bifurcations in that it involves an infinite number of
involve only a finite number of periodic orbits. Examples periodic orbits.” We provide a quantitative characterization
include the period-doubling bifurcatigf2] and the saddle- of the blowout bifurcation in terms of periodic orbits. A short
node bifurcation[1]. In a period-doubling bifurcation, a account of this work has been published recef@ly
stable periodic orbit of period becomes unstable and simul- A fundamental requirement for the blowout bifurcation is
taneously a stable periodic orbit of periog & created at the symmetry. The existence of symmetry in the system’s equa-
bifurcation[2]. In a saddle-node bifurcation, a pair of peri- tions often leads to a low-dimensional invariant subspace in
odic orbits, one stable and another unstable, is created as tltee phase space. Denote the invariant subspac8& bnd
parameter passes through the bifurcation pdihtOther ex-  assume there is a chaotic attractoiSinSinceS is invariant,
amples of bifurcations include sudden catastrophic events iimitial conditions inS generate trajectories that remainSn
chaotic systems such as crig&$ and basin boundary meta- forever. Trajectories offs, however, can either be attracted
towardsS or be repelled away from it, depending on a sys-
tem parameter. The transition from the former to the latter
*Electronic address: nagai@poincare.math.ukans.edu situations is theéblowout bifurcation[9]. Quantitatively, one
TAlso at Department of Mathematics, University of Kansas,can define an infinitesimal vector in the subspacthat is
Lawrence, KS 66045. Electronic address: transverseo S. The exponential growth rate of the vector is
lai@poincare.math.ukans.edu the transverse Lyapunov exponemienoted byA+. When
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A+ is negative S attracts nearby trajectories transversely and Xn+1=F(Xn),
hence the chaotic attractor 8is also an attractor in the full
phase space. IAt is positive, trajectories in the neighbor- Vor1=F Xy, @)G(Y,), (1)

hood of S are repelled away from it and consequently the
attractor inS is transversely unstable and it is hence not arwherexe RNs (Ng=1), ye RNt (Ny=1), Ng+ Nt=N, and
attractor of the full system. Blowout bifurcation occurs whena is the bifurcation parameter. The functi@y) satisfies
A+ changes from negative to positive values. There are inG(0)=0, so thaty=0 is the invariant subspacg The dy-
teresting physical phenomena associated with the blowoutamics inSis governed by the maftx), which has a chaotic
bifurcation. For example, near the bifurcation point whereattractor. The largest transverse Lyapunov expongnfor a
A+ is slightly negative, if there are attractors @fin the  typical trajectory on the chaotic attractor $nis given by
phase space, then typically the basin of the chaotic attractor
in Sis riddled with arbitrarily small holes that belong to the .
basin of the other attractof§]. WhenA+ is slightly positive, Ar= L'[nw L n; In|F (%, 'a)DG(y“)|yn:0' u, @
if there are no other attractors in the phase space, the dynam-
ics in the transverse subspateexhibits an extreme type of \herey is a randomly chosen vector T, Assume that a
temporally intermittent bursting behavior, tea-off inter- 4oyt bifurcation occurs at. . That is, as the parameter
mltter?cy[lo]_. Recent studies have also revealgd that a b'°YVpasses throughy,, A7 crosses zero from the negative side.
out bifurcation can lead to symmetry breaking in chaotic' \ve now qualitatively describe how periodic orbits are
systemd11]. involved in the blowout bifurcation. The key observation is
In this paper, we present guantitative characterization that the chaotic attractor i has embedded within itself an
of the blowout bifurcation by unstable periodic orbits em-infinite number of unstable periodic orbits and a blowout
bedded in the chaotic attractor in the invariant subsgce bifurcation is caused by the change in the transverse stability
[12]. In particular, we argue that near the bifurcation, thereof atypical trajectory with respect to the natural measunme
exist two groups of unstable periodic orbits, denoted®hy the chaotic attractor i5. Such a trajectory visits the neigh-
and X, each having an infinite number of members, oneborhoods of the infinite number of unstable periodic orbits
transversely stable and another transversely unstable, respémm time to time. The periodic orbits embedded in the cha-
tively. The sign of the transverse Lyapunov expong&ntof  otic attractor areatypical in the sense that they form a Le-
a typical chaotic trajectory i is determined by the relative besgue measure zero set. With probability one, randomly
weights of % andX,,: At is negative(positive when,  chosen initial conditions do not yield trajectories that exist
(2,) weighs over, (2;) (see Sec. Il for details At the  on unstable periodic orbits. Invariant measures produced by
bifurcation, the weights ok andX, are balanced. In con- unstable periodic orbits are thus atypical, and there is an in-
trast to most known bifurcations in chaotic systems that usufinite number of such atypical invariant measures embedded
ally involve only one or a few periodic orbit2—5,7, a  in a chaotic attractor. The natural measure, on the other hand,
blowout bifurcation is induced by changes in the transversés typical in the sense that it is generated by a trajectory
stability of an infinite number of unstable periodic orbits originated from any one of the randomly chosen initial con-
The numben\j_p of the unstable periodic orbits of perigel  ditions in the basin of attraction. In this sense, chaos can be
that change transverse stability in an arbitrarily small neighconsidered as being organized with respect to the unstable
borhood about the bifurcation point grows 3T%~eth, periodic orbits[15]. In systems that exhibit a blowout bifur-
wherehy is the topological entropy of the chaotic attractor €ation, the transverse stability of a typical trajectory is thus
ins. determined by the transverse stability of the infinite number
The rest of the paper is organized as follows. In Sec. 11°f unstable periodic orbits that the trajectory visits in differ-
we introduce our periodic-orbit theory for the blowout bifur- €Nt time intervals. Among these periodic orbits, some are
cation. In Sec. Ill, we present numerical examples with botHfransversely stable and the others are transversely unstable
one-dimensional and two-dimensional, hyperbolic and nonD€ar the bifurcation. If “more” periodic orbits are trans-
hyperbolic, chaotic dynamics in the invariant subspace. IrYersely stabléunstable, the typical trajectory is transversely
Sec. IV, we present discussions. A description of numericaptable(unstable. The bifurcation occurs when there are ap-

algorithms for computing periodic orbits in our numerical proximately equal number_s o.f the t_ransversely stable and the
examples is in the Appendixes. transversely unstable periodic orbits so that on average the

typical trajectory experiences an exactly equal amount of at-
traction towards and repulsion away from the invariant sub-
spaceS. Since there is an infinite number of periodic orbits
in the chaotic attractor, the blowout bifurcation must then
The basic ingredients for a system to exhibit a blowoutinvolve the change in the transverse stability of an infinite
bifurcation are the followind9,13,14: (i) the phase space number of periodic orbits.
contains an invariant subspaci) there is a chaotic attractor To quantitativelycharacterize the blowout bifurcation in
in the invariant subspace, atiii) the chaotic dynamics in terms of unstable periodic orbits, it is necessary to define the
the invariant subspace is coupled to the dynamics in théransverse stability of the periodic orbits. Let
transverse subspace. We thus consider the following class &§(j),X2(]),..-Xp(j) be thejth periodp orbit embedded in
N-dimensional discrete dynamical systems that capture ththe chaotic attractor irs, wherej=1,2,... Ny, N, is the
above three features: total number of the periog-orbits, and
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Xos1()=f(%:(j)), n=1,2,...p—1 (6) holds for nonhyperbolic maps as well, which was sup-
ported by strong numerical evidenc€/]. For periodic orbits
f(xp(1)=x1(j). (3)  of finite periodp (large, the summation in Eq(7) is ap-

proximately unity but not exactly. Thus we make use of the
VV_e defi_ne.the fQIIOWing transverse Lyapunov exponent forfollowing normalized natural measure associated withjthe
this periodic orbit: periodp periodic orbit:
1S L1 (%5(1). P)
Triy - . . 1 '
)= 2 In[Fn, DGO~y (@) woli)= 7 P . G)

p
gl [1/L1(%p(}),P)]

If )\g(j)<0 (>0), this periodp orbit is transversely stable
(unstable. Thus all the periogs orbits can be divided into
two groups: one transversely stable and another transversefguation (7) indicates that in the limipp—c, the natural

unstable. We then introduce the peripdransversely stable measure of the chaotic attractor is precisely characterized by

and unstable weights the probabilities of a visit to all the periodic orbits of period
p. At the blowout bifurcation point where the transverse
Np Lyapunov exponent of a typical trajectory on the chaotic
A;(a)=2 mo(HNR() . attractor becomes zero, we expect that the weights of the
=1 AT(})<0 transversely stable and transversely unstable periodic orbits
P (5) are balanced precisely. Setting
N
AYa)= 3 wp(INN() , A*Y @)= lim Ag*(a), ©
=1 N(1)>0 P

whereNf, anng are the numbers of the transversely stable"® formulate the following periodic-orbit theory of the

and unstable periog- orbits, respectively,N;+Ny=N,, blowout bifurcation:
andup(j) is the natural measure of a typical trajectory in the
neighborhood of thgth periodp orbit.

To compute the transversely stable and unstable weights

Aa)<|AS(a)| for a<ag,

in Eq. (5), it is necessary to compute the natural measure of AY(@)>|A%(a)| for a>aq, (10
a typical trajectory contained in the small neighborhood of
each periodic orbit. This measure is roughly the probability AYa)=|A%a)| for a=a,.

that the typical trajectory visits the neigborhood of the peri-
odic orbit. Intuitively, the probability is smaller if the peri-

odic orbit is more unstable or the magnitude of its unstable lll. NUMERICAL CONFIRMATION
eigenvalue is larger. Thus we expect the probability of a visit

. ; : To confirm our theory, it is necessary to find systems for
to be inversely proportional to the largest unstable eigen y y Y

which all the periodic orbits embedded in the chaotic attrac-
for in the invariant subspace can be computed. We have
thus selected the following maps 8 (i) the one-
dimensional doubling transformation,(ii) the two-

results in Refs[16,17], which relate the natural measure to
the infinite number ofatypical measures associated with all
unstz_ible Pe”Od'c _orb|t516]. For Fhe m‘r?lpc(x)’ let x, (1) b.e dimensional Kaplan-Yorke mapl9], and (iii) the two-
the jth fixed point of the p-times iterated map, i.e., 4 : 1
. ) o e -=» dimensional Haon map[20].
P(xp(j))=%p(J). Thus eachx,(j) is on a periodic orbit
whose period is eithgr or factors ofp. The natural measure ) _
of a chaotic attractor in a phase space redibis given by A. The doubling transformation
1 The full system is the two-dimensional version of E®).

w(Q)= lim E __ 6) with F(X,,,a) = aX,,
p—e xp(ne0 L1(Xp(]))
Xn+1= F(Xp) =2Xp(modd), (11)
whereL(x,(j)) is the magnitude of the expanding eigen-
value of the Jacobian matrif’(x) evaluated aK,(j) and Yni1=aX,9(Yn),

the summation is taken over all fixed pointsf&fx) in Q. If
the phase-space regidd contains the entire chaotic attrac- where thex dynamics is the doubling transformation that

tor, then generates a chaotic attractor with uniform invariant density
p(x)=1 for xe[0,1] and the functiong(y) satisfiesg(0)
lim 1 Y @ =0 and g’(0)=const (which we chose to be)l The

pee xpne0 L1(Xp())) Lyapunov exponent of the doubling transformation is In 2.

There are many choices fg(y), e.g.,g(y)=y(1—y) (the
Although Eq.(6) was derived under the condition that the logistic function andg(y) = (1/27)sin(2my) [11]. The trans-
mapf(x) be hyperbolid 18], it was conjectured16] that Eq.  verse Lyapunov exponent of E(L1) is
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FIG. 1. For the mode(11), (a) time seriesy, at «=2.6 (before FIG. 2. For the mode(lll),. (a) for all the period-8 orbitsA3(«)
the blowout bifurcation that occurs at=e) and(b) time seriesy,  (the transversely stable weight\g(«) (the transversely unstable
at a=2.8 (after the blowout bifurcation weighy, andA Ag(a)=Ag(a)—|Ag(a)| versusa near the blowout

bifurcation point. We see thaAg(«) crosses zero afwg
~2.702 28 (ag— a/~0.016). (b) For all the period-28 orbits,
10 1 AA,8(a) versusa. Now |ag— ag|~1078.
At(a)= lim 5,21 |n(axj)=f0 In(ax)p(x)dx=In a—1.
nN—o - s
12 Np
(42 A;(OZ):Mle )\g(j)|>\;(j)<0,
" (13
A blowout bifurcation thus occurs ai,=e=2.718 8 .. .,
whereA+<0 for a<a. andA+=0 for a=«.. The behav- p
iors of a typical trajectory of Eq(11) are qualitatively dif- A;‘,(a)=up2 No(DIT(j)>o-
ferent for values ofa before and after the bifurcation. For =1 P
a<a., atypical trajectory has lim,..y,=0 if there are no
other attractors in the two-dimensional phase spacg)(

except the one generated by the doubling transformation fpmeter interval_arpund the blowout bifurcation poiag
y=0, as shown in Fig. (8), wherey, versusn is plotted, =e and evenly distribute a large number of parameter values

a=2.6<e, andg(x)=(1/2m)sin(2my). For a>a., a typi- aLijn this interval. qu gaclm vglug, we c.omputeﬂfj(a)' and
cal trajectory no longer asymptotically approaclyes0 but ~ Ap(a) for all the distinct periodic orbits up to period 28.
instead, it can burst away frogn=0 intermittently, as shown (Forp=28, there are 9 586 395 distinct periodic orbitsig-
in Fig. 1(b), wherea=2.8>e. Figure 1b) represents a typi- ure 2@ shows the period-8 weightsz(a) andAg(«) (dot-
cal situation of on-off intermittenc10]. ted lineg versusa for a€[2.6,2.§. The solid line in Fig.
The unstable periodic orbits embedded in the chaotic at2(a) is AAg(a)=Ag(a)—|A§(a)| versusa. We obtainag
tractor of the doubling transformation can be computed ex=~2.702 28, whererg is the critical parameter value at which
plicitly (see Appendix A The eigenvalue of a periog-orbit ~ AAg(ag)=0. The difference betweetag and the theoretical
is 2P and, hence, the normalized natural measure containdaifurcation point o is Aag=|ag— a¢/~0.016, which is
in an arbitrarily small neighborhood of the orbit is identical rather large. However, as we examine periodic orbits of
for all periodp (or factors ofp) orbits [Eq. (8)]. We thus higher periods, the differencir,—a| decreases rapidly.
write up(j) = up. The stable and unstable weights in E5).  Figure 2b) showsAAg(@) versusa for ae[2.70,2.73.
become We obtaina,g~a.—2.31x 108 so thatA a,g~10 8. Fig-

NU

To verify our main result, Eq(10), we choose a small pa-
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FIG. 3. For the mode(l1), In(Ap) versusp. It can be seen that FIG. 4. For the mode(11), InWp versusp (closed circlel
In(Aap)~e "™, where hy=1In2 is the topological entropy of the whereN, is the number of periogh-orbits that changes from being
doubling transformation attractor. transversely stable to transversely unstable wheis increased

from 2.70 to 2.73. The upper curve with open circles idlliversus
ure 3 shows, on a semilogarithmic scale, the ertar, p, whereN, is the number of all the periog-orbits. Clearly, we
=|a,— | versus the periog for pe[8,28]. The data canbe haveN,~e"™ andN,~e"™.
roughly fitted by a straight line with a slope of abot0.64,
indicating the exponential scaling law fdre,,, N_pw ehrp. (15)
Aay~e oo, 14 Asa comparison, the dotted line in Fig. 4 shows the total

where the scaling exponent 0.64 is approximately the toponumbeer of distinct periodp orbits versusp (also on a
) ' . semilogarithmic scale the slope of which is an estimate of
logical entropy br=In 2) of the chaotic attractor of the dou- g k b

> _ ) the topological entro . We see that the two plots are
bling transformation. Thus, we expect that as the pepod polog Py — P

increases, the collective behavior of all the pernpdrbits practically paf‘f"”?" \.Nith the plot of lmp Versusp Shiﬁe.d .
o : ' downward. This indicates that a fraction of all the periodic

guantitatively described by the transversely stable and un- . . g .

stable weights in Eq(13), more and more precisely charac- orbits change their transverse stabilities near the blowout bi-

B e e e s
To analytically understand the scaling law, Et4), we pointa, only P

note from Eq.(13) thatAap~|AAp(ac)|~A,u(p), where shift of the plot N, versusp. Due to the scaling law,

Au(p) is the difference between the natural measure comEY- (15), there must be an infinite number of periodic orbits
puted from a typical trajectory and that computed from a”that change their transverse stabilities in arbitrarily small pa-

the periodp orbits. To estimatel u(p), we divide the unit rameter intervals about the bifurcation point. Figure 4 thus
interval in which the chaotic attractor lies intbbins so that strongly supports our claim that the blowout bifurcation in-

the size of each bin i€=1/N. The natural measure con- valves an infinite number of periodic orbits.

tained in each bin ig because it is uniform in the unit inter-

val. There are (2+1)/N fixed points of thepth-iterated B. The Kaplan-Yorke map

map in each bin. Since all periodic orbits of peripaf the We study the following three-dimensional version of Eq.
doubling transformation have the same eigenvalllewe (1) with a Kaplan-Yorke chaotic attractor in the invariant
obtain u(p)=[(2P*=1)/N]/2P=¢€(1=2"P). Thus we have subspace=0 (the x-y plane:
Au(p)=|u(p)—€|~2"P=exp(—pIn2), which gives Eq.

(14).

As we have argued in Sec. II, the fundamental character- Xn+1= YXnt+ — SiN(2my,),
istic that distinguishes a blowout bifurcation from other
known bifurcations is that it involves the change in the trans- Vis1=2y,(modl), (16)

verse stabilities of an infinite number of periodic orbits. To

verify this, we investigate the scaling with the period of the 1

number of periodic orbits that change from being trans- Zn+1=5— (aXp+ Byn)Sin(2wz,),
versely stable to being transversely unstable when the bifur- 2m

cation parametetr changes from slightly below to slightly h q ¢ The t L
abovea.. We find that this number increases exponentiallyW ere « and are parameters. Theé fransverse Lyapunov
exponent for a typical trajectory in the chaotic attractor in

with p. Figure 4 shows IrN_p versusp for pe[8,28], where

z=0is
N, is the number of periodic orbits of periquthat change
their transverse stabilities asis increased from 2.70 to 2.73. 1 n
The plot can be fitted by a straight line with a slope 0.62 A= lim = E InlaX,-+,8y,-|.
n :

(=hy), indicating the scaling law, now N j=1
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FIG. 5. Kaplan-Yorke chaotic attractor t=0.4. The attractor
is hyperbolic. 0.003 (b)
The Kaplan-Yorke map in the-y plane generates a hyper- 0.002 AA,,
bolic chaotic attractor with a positive Lyapunov exponent 0.001
In2. Figure 5 shows such an attractonat 0.4. All periodic -
orbits of the Kaplan-Yorke map can be calculated explicitly 2‘“ 0.000
(see Appendix B The expanding eigenvalues of all the 0.001 |
periodp orbits are 2. ChoosingB=0 (a rather arbitrary o _ 628317
choice, we find thata.=27 is the blowout bifurcation —0.002 %3y = 0
point, whereA <0 for a<a; andA+=0 for a=a,.
Figure Ga) shows the period-12 weightdj,(a) and '0'008_270 6.275 6.280 6.285 6290 6.295
1a@) (dotted line$ versusa for a€[6.0,6.3. The solid o

line in Fig. 6a) is AA(a)=A](a)—|A(a)| versusa.

We obtaine,,~6.3023, the critical parameter value at which  FIG. 6. For the mode(16), (a) for all the period-12 orbits in the
the transversely stable and unstable weights of all thé&aplan-Yorke attractorAi(a), Al (@), and AA (a)=A}ya)
period-12 orbits are balanced. The difference between —|Al (@) versus @ near the blowout bifurcation pointaf
and the blowout bifurcation point is Aaj,=|a,—a,  =27). We see thal A, (a) crosses zero a;,~6.3023, corre-
~0.0191, which is somewhat large. This difference dimin-SPonding to|a;,— ac|~0.0191.(b) For all the period-24 orbits in
ishes rapidly as the period of the periodic orbits increaseéfe Kaplan-Yorke attractorAAyy(«) versus a. Now | 20— ad
Figure 8b) shows AA,, (@) versusa. We obtain a,,~ =7x10°
6.283 17 andAay~7x10°. Figure {a) shows Ae,

=|a,—ag| versus the periogh for pe[11,24. As periodp
increases)A «, decreases exponentially with the scaling law

Aap~e %°® where the scaling exponent is again roughly Yn+1=Xn, (17)
In2, the topological entropy of the Kaplan-Yorke chaotic at-

tractor [21]. Figure 7b) shows InN_p versus p for p 1 .

€[11,24, whereN, is the number of periogh orbits that Zne1=5 - (aXy+ BYyn)sin2mz,),

change from being transversely stable to being transversely

unstable as is increased from 6.25 to 6.29. We obtain the yhere thex-y dynamics is described by the hien map at a
scaling lawN,~e®®® (the solid ling. The dotted line in Fig. parameter setting for which there is apparently a chaotic at-
7(b) is In N, versusp, whereN, is the total number of dis- tractor[20]. The Heon map is one of the very few model
tinct periodp orbits. This example illustrates that the con- systems for which there is a numerical algorithm to compute,
clusion that a blowout bifurcation involves an infinite num- in principle, all unstable periodic orbits of arbitrarily high
ber of periodic orbits is valid for the case where theperiods[22] (see Appendix € The Heon attractor is also
dynamics in the invariant subspace exists on a twoapparently nonhyperbolic because a rigorous computation of
dimensional hyperbolic chaotic attractor. the stable and unstable manifolf23] points towards the
existence of an infinite humber of tangency points of these
manifolds on the attractor. All the periodic orbits up to pe-
C. The Henon map riod 31 are computed. The transversely stable and unstable
weights are then computed as in Ef), based on the con-
We now consider the situation where the chaotic dynamjecture that the unstable periodic-orbit formulation of the
ics in the invariant subspace is nonhyperbolic. We study th@atural measurgeqgs.(6) and(8)] is also valid for nonhyper-
three-dimensional map bolic attractorg16,17. ChoosingB=0, we find numerically

Xns1=1.4—x340.3y,,
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— FIG. 8. For the model17), (a) for all the period-12 orbits,
FIG. 7. For the mode(lG),ﬁal) In(Aay) versusp and(b) In N, AS(a), Ala), andAA {a)=Alya)—|AS(a)| versusa near

versusp (filled circles, whereN,, is the number of periogh-orbits the blowout bifurcation point. We see that\ 1,(«) crosses zero at
that changes from being transversely stable to transversely unstab(Jie ~1.279 (ay,— a]~0.054). (b) For all the period-29 orbits,
Cc

when « is increased from 6.25 to 6.29. The upper curve isijn AA -3
versusa. Now —a|~6X10°.
versusp (open circley whereN, is the number of all periog- 2o(@) “ |azg= ex

i ~ h _~ h g, - . .
orbits. We haveN,~e"™ andN,~e"™. stabilities asa is increased from 1.31 to 1.35. We obtain

N,~e%*% (the solid ling. In Fig. 9b) the dotted line is the
total numberN, of all distinct periodp orbit N, versusp
. : . s plotted on a semilogarithmic scale. Figur@pthus indicates
uFlgure &3 shows the period-12 weightdj(a) and o1 eyen when the chaotic dynamics in the invariant sub-
Aa) (dotted lineg versusa for ¢ e[1.25,1.33. The solid  gp50e in nonhyperbolic, an infinite number of periodic orbits
line in Fig. 8@ is AAj(a)=Aj(a) —[Ala)| Versusa.  change their transverse stabilities about the blowout bifurca-
We Obtalna12~1 279 the critical parameter value at which tion. The somewhat |arge fluctuation in F|da9 is part'y
AA(@)=0. The difference betweer;, and bifurcation  due to nonhyperbolicity of the Hen attractor. It is also
point a; is Aay,=|ai,— a|~0.054. Figure &) shows clear that nonhyperbolicity causes the scaling exponent in
AAyo(@) versus a for ae[1.31,1.33. We obtain @ys  Eq. (18) to deviate from the topological entropin;~0.43
~1.327 s0 thath ap,e~6X 10>, Figure 9a) shows the error  for the Haon attractor, but nonetheless the scaling law is
Aay,=|a,— ac| versus the perioch for pe[10,3] on a still exponential.
semilogarithmic scale. The data can be roughly fitted by a The three numerical examples we have studied above ap-
straight line with a slope of about0.11, indicating the scal- parently all yield the same conclusion: “A blowout bifurca-
ing law tion is mediated by a change in the transverse stability of an
o1y infinite number of unstable periodic orbits embedded in the
Aapy~e P (18 chaotic attractor in the invariant subspace.”

that a blowout bifurcation occurs at.~1.333, whereA
<0 for a<a, andA1=0 for a=«..

Similar to the cases of the doubling transformation and the
Kaplan-Yorke map, we find that the number of the periodic
orbits that change their transverse stabilities in the vicinity of The main conclusion of this paper is that from the stand-
a¢ increases exponentially with the period, as shown in Figpoint of periodic orbits, blowout bifurcation is fundamentally
9(b), where InN, versusp is plotted forpe[15,31] andN different from most known bifurcations that involve a finite
is the number of periog- orbits that change their transverse number of periodic orbits. A blowout bifurcation involves

IV. DISCUSSION
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FIG. 9. For the model17), (a) In(Aay,) versusp and (b) In N, FIG. 10. For the mode(17) at a=1.23 (before the blowout

versusp (filled circles, whereN, is the number of periog- orbits bifurcation), (a) the locations of all the transversely stable periodic
that changes from being transversely stable to transversely unstabbebits of period 23 andb) the locations of all the transversely
when « is increased from 1.31 to 1.35. The upper curve idijn  unstable periodic orbits of period 23.

versusp (open circles We haveNp~eth ande~eth.

infinite number of unstable periodic orbits embedded in the
two distinct groups of unstable periodic orbits with different chaotic attractor, as quantified by a positive value of the
numbers of unstable directions. Take, for instance, the threaepological entropy, a subset of an infinite number of peri-
dimensional map, Eq(17). The two groups are the trans- odic orbits changes their numbers of unstable directions at
versely stable and unstable ones: Periodic orbits in théhe blowout bifurcation. An implication of this scenario is
former group have one unstable direction, while those in thehat the bifurcation occurs smoothly as a parameter changes,
latter group have two. Befor@ften the bifurcation when the as quantified by the smooth change of the transverse
transverse Lyapunov exponent of a typical trajectory on the.yapunov exponent through the bifurcation pojift13,14.
chaotic attractor is negativépositive), there are “more” We mention that the class of systems investigated in this
members in the transversely stalilmstable group, quanti-  paper, i.e., chaotic systems with an invariant subspace, math-
tatively described by the weights in E¢G). To visualize ematically described by Eql), are of physical interest.
these two groups of unstable periodic orbits, we plot, for EqThese occur naturally in systems with spatial symmetry and
(17), the locations of all the transversely stable and unstablén systems such as coupled oscillators that model a large
periodic orbits of period 23, as shown in Figs.(d0and variety of phenomena in physics, chemistry, biology, and
10(b), respectively, forr=1.23< « (before the blowout bi- ecology[24,13,25.
furcation. Clearly, there are more transversely stable peri- In order to characterize the blowout bifurcation by un-
odic orbits. After the bifurcation, there are more transverselystable periodic orbits, it is necessary to compute the locations
unstable periodic orbits, as shown in Figs(d)land 11b) of all periodic orbits up to reasonably high periods, which is
for a=1.4>a.. In fact, the sets of all the transversely stablein general a difficult task. However, we believe that our re-
and unstable periodic orbits exist on nonattracting chaotisults are general because our model, Eg.captures the
saddles embedded in the chaotic attractor. As the parametessential features of the blowout bifurcatif®13,14 and
increases towards the bifurcation point, an infinite number obur numerical examples include both one-dimensional and
periodic orbits belonging to the transversely stable grougwo-dimensional, hyperbolic and nonhyperbolic, chaotic dy-
switch continuously to the transversely unstable group. Th@amics in the invariant subspace. In particular, thexdte
bifurcation is triggered when the dynamical weigfis). (5)] map has been a paradigm in the study of chaotic systems.
of the two groups are balancezkactly Since there is an Finally, we stress that in this paper, although the periodic-
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@) DMS-962659, and by the University of Kansas.
2
T APPENDIX A: PERIODIC ORBITS
1 OF THE DOUBLING TRANSFORMATION
N The locations of the periodic orbits of the doubling trans-
=S 0 i \ formation can be obtained explicitly. At each iteration, the
/ map has two line segments of slope 2 in the unit square of
] - e the planex,, ; versusx,. The pth-iterated map hasP2ine
./”’( P segments in the unit square. Fixed points of pie-iterated
e map, which contain all periodic orbits of perigdor factors
-2 of p, are located at cross points of thesklihe segments
-2 -1 0 1 2 . . .
X with the linex,; 1=X,. Thus we have the following set of
n points that belong to different periodic orbits of peripdr
factors ofp:
2 (b) j
N P _1_
%\\\ Xp(l)=5p—7, 1=1335... 2P -1 (AD
1 NS
\“QX Starting with one such point, one can obtain the remaining
- \\‘\ \ p—1 points on the orbit by iterating the doubling transfor-
> 0 yz ) mation map. For example, fgr=4, we have
- — X(1)=F— k-5,
e ..//
) X (3)=2 & 12 o
2 " o 1 > W)=~ 15— 118 (A2)
Xn ’ 5 10 5 10
X4(B)=F—E— 15— 15,
FIG. 11. For the mod€(17) at = 1.4 (after the blowout bifur- xa(7)= %_}1_4_)1_3_>%,

cation), (a) the locations of all the transversely stable periodic orbits
of period 23 andb) the locations of all the transversely unstable

periodic orbits of period 23. where an arrow denotes doubling transformation.
orbit theory of't.ht.a blowout'bifurce}tion was confirmed nu- APPENDIX B: PERIODIC ORBITS
merically by utilizing exclusively discrete maps, we expect OF THE KAPLAN-YORKE MAP

the theory to be valid for continuous chaotic systems as well.

Our confidence relies on the well-known fact that the dynam- They dynamics in the Kaplan-Yorke map is the doubling
ics of a continuous flow can be faithfully represented by thatransformation. Thus thg coordinates of the locations of the
of a discrete map on a Poincaerface of sectiof26]. It has  periodic orbits are the same as these in Appendix A. Xhe
then become possible for our theory to be tested becaugordinates of thgth periodp orbit can be computed by
certain discrete map&ot many of them thoughallow for ~ noting that

the computation oéll periodic orbits up to some reasonably

high periods. As such, our numerical results can be regarded ) 1 e 1

as anindirect check for the blowout bifurcation in continu-  Xp+1(J) =YX+ p {¥yP7sin 27y, ())]

ous dynamical systems. It would certainly be interesting to

be able to check directly the applicability of our theory for + ypfzsir[ZTryf)(j)]Jr - +sin2mwyp(j)]}

continuous systems, but this demands a direct computation

of all unstable periodic orbits up to high periods for continu-

ous flows. While certain periodic orbits can be computed for ) ] .

continuous flows such as the Lorenz syst@, at present Settingx,1=Xx;, we obtain the« coordinate of one point on

we are not aware of any numerical procedure that allows foth€ j th periodic orbit of periocp,

a systematiaccomputation of all periodic orbits from a con-

tinuous system. . 1
Xp(1)= —=—

(B1)

p
p—igj ici
A=y & Y s2my (] (B2
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APPENDIX C: PERIODIC ORBITS OF THE HE NON MAP thus computed by solving the set of first-order coupled dif-

We rewrite the Haon map in the form ferential equations

dx,

dt

Xni1=a—X3+bX,_1. (C1)

=S Fa=Sy(=b) (b~ + 1)(~Xpi 1 +a—X]
Biham and Wenzel introduced a numerical technique to

compute all the unstable periodic orbits of thénda map
[22]. The idea is to construct the following Hamiltonian
function from the map:

+bx,_1), n=1,...p, (C3

whereS,= *+1 andx,. =X, . There are 2 combinations of
S,’s. For each combination, a randomly chosen initial con-

1 1 (dx,\2 n dition is utilized to solve Eq(C3). Converging solutions
H=3 ; " (H) +; (=D) 7 Xn(Xn+ 1= Xn-1) (x;'s,i=1, ... p) are taken to be the locations of a periodic
orbit of periodp. Choosing different combinations &,'s
1 1, yields different periodp orbits, provided that the solution to
“lptl]|axn—g x| (€2 Eq.(C3) converges. Diverging solutions to E@C3) are dis-

regarded. This method has proven to be very successful in
The locations of the periodic orbits correspond to the stableomputing all periodic orbits of the Hen map up to rea-
minima on the constant energy surface. A penodrbit is sonably high periods.
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