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Periodic-orbit theory of the blowout bifurcation

Yoshihiko Nagai* and Ying-Cheng Lai†

Department of Physics and Astronomy, Kansas Institute for Theoretical and Computational Science, University of Kansas
Lawrence, Kansas 66045
~Received 9 May 1997!

This paper presents a theory for characterization of the blowout bifurcation by periodic orbits. Blowout
bifurcation in chaotic systems occurs when a chaotic attractor, lying in some symmetric invariant subspace,
becomes transversely unstable. We present an analysis and numerical results that indicate that the bifurcation
is mediated by changes in the transverse stability ofan infinite number of unstable periodic orbits embedded
in the chaotic attractor. There are two distinct groups of periodic orbits: one transversely stable and another
transversely unstable. The bifurcation occurs when some properly weighted transverse eigenvalues of these
two groups are balanced. Our results thus categorize the blowout bifurcation as a unique type of bifurcation
that involves an infinite number of periodic orbits, in contrast to most previously known bifurcations that are
mediated by only a finite number of periodic orbits.@S1063-651X~97!08610-8#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

A central problem in the study of nonlinear dynamic
systems is to understand how the asymptotic behavior a
as a system parameter changes. Qualitative changes i
system’s asymptotic behavior are calledbifurcations,
whereas the critical parameter values at which the bifur
tions occur are the bifurcation points. The phenomenon
bifurcation is extremely common in nonlinear systems. F
instance, chaos typically arises from a nonchaotic s
through a series of bifurcations and the number of bifur
tions involved in the creation of chaos can be as a few as
or can be as many as infinite. Understanding various type
the bifurcations has been one of the focuses in the stud
nonlinear physical systems@1#. Since almost all qualitative
changes in the system’s behavior are due to bifurcations,
of paramount physical interest to characterize bifurcation
terms of fundamental quantities of the system. ‘‘There
nothing more fundamental than to characterize a bifurca
in terms of the periodic orbits embedded in the natural
namics of the system.’’ Thus the knowledge of periodic
bits is the key to understand the bifurcation and, con
quently, the key to understand the dynamics of the syste

Most known bifurcations in nonlinear dynamical system
involve only a finite number of periodic orbits. Example
include the period-doubling bifurcation@2# and the saddle-
node bifurcation@1#. In a period-doubling bifurcation, a
stable periodic orbit of periodp becomes unstable and simu
taneously a stable periodic orbit of period 2p is created at the
bifurcation @2#. In a saddle-node bifurcation, a pair of pe
odic orbits, one stable and another unstable, is created a
parameter passes through the bifurcation point@1#. Other ex-
amples of bifurcations include sudden catastrophic event
chaotic systems such as crises@3# and basin boundary meta
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morphoses@4#, which are triggered by the collision of per
odic orbits, usually of low period, embedded in differe
dynamical invariant sets. More recently, an exotic type
basin structure was discovered in chaotic systems, that is
basin of Wada. Wada basin boundaries are common fra
boundaries of more than two basins of attraction. It w
shown in Ref.@5# that Wada basin boundaries are created
a saddle-node bifurcation on the basin boundary. A direct
of intense recent investigation concerns bifurcation in d
namical systems with one or several symmetric invari
subspaces. In such systems, it was discovered that the
dling bifurcation, a bifurcation that leads to the creation
riddled basins@6#, is triggered by the loss of the transver
stability of some periodic orbit, typically of low period, em
bedded in the chaotic attractor in the invariant subspace@7#.
A common feature of all these major bifurcations is th
there are onlyone or a fewperiodic orbits involved.

The main purpose of this paper is to present a period
orbit theory for a recently discovered bifurcation in chao
systems. This is the so-calledblowout bifurcationthat occurs
in systems with a simple type of symmetry~see below for a
precise description!. ‘‘Our main conclusion is that the blow
out bifurcation is fundamentally different from most know
major bifurcations in that it involves an infinite number
periodic orbits.’’ We provide a quantitative characterizati
of the blowout bifurcation in terms of periodic orbits. A sho
account of this work has been published recently@8#.

A fundamental requirement for the blowout bifurcation
symmetry. The existence of symmetry in the system’s eq
tions often leads to a low-dimensional invariant subspace
the phase space. Denote the invariant subspace byS and
assume there is a chaotic attractor inS. SinceS is invariant,
initial conditions inS generate trajectories that remain inS
forever. Trajectories offS, however, can either be attracte
towardsS or be repelled away from it, depending on a sy
tem parameter. The transition from the former to the lat
situations is theblowout bifurcation@9#. Quantitatively, one
can define an infinitesimal vector in the subspaceT that is
transverseto S. The exponential growth rate of the vector
the transverse Lyapunov exponent, denoted byLT . When

,
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LT is negative,S attracts nearby trajectories transversely a
hence the chaotic attractor inS is also an attractor in the ful
phase space. IfLT is positive, trajectories in the neighbo
hood of S are repelled away from it and consequently t
attractor inS is transversely unstable and it is hence not
attractor of the full system. Blowout bifurcation occurs wh
LT changes from negative to positive values. There are
teresting physical phenomena associated with the blow
bifurcation. For example, near the bifurcation point whe
LT is slightly negative, if there are attractors offS in the
phase space, then typically the basin of the chaotic attra
in S is riddled with arbitrarily small holes that belong to th
basin of the other attractors@6#. WhenLT is slightly positive,
if there are no other attractors in the phase space, the dyn
ics in the transverse subspaceT exhibits an extreme type o
temporally intermittent bursting behavior, theon-off inter-
mittency@10#. Recent studies have also revealed that a blo
out bifurcation can lead to symmetry breaking in chao
systems@11#.

In this paper, we present aquantitative characterization
of the blowout bifurcation by unstable periodic orbits em
bedded in the chaotic attractor in the invariant subspacS
@12#. In particular, we argue that near the bifurcation, the
exist two groups of unstable periodic orbits, denoted bySs
and Su , each having an infinite number of members, o
transversely stable and another transversely unstable, re
tively. The sign of the transverse Lyapunov exponentLT of
a typical chaotic trajectory inS is determined by the relative
weights ofSs and Su : LT is negative~positive! when Ss
(Su) weighs overSu (Ss) ~see Sec. II for details!. At the
bifurcation, the weights ofSs andSu are balanced. In con
trast to most known bifurcations in chaotic systems that u
ally involve only one or a few periodic orbits@2–5,7#, a
blowout bifurcation is induced by changes in the transve
stability of an infinite number of unstable periodic orbit.
The numberNp of the unstable periodic orbits of periodp
that change transverse stability in an arbitrarily small nei
borhood about the bifurcation point grows asNp;ehTp,
wherehT is the topological entropy of the chaotic attract
in S.

The rest of the paper is organized as follows. In Sec.
we introduce our periodic-orbit theory for the blowout bifu
cation. In Sec. III, we present numerical examples with b
one-dimensional and two-dimensional, hyperbolic and n
hyperbolic, chaotic dynamics in the invariant subspace
Sec. IV, we present discussions. A description of numer
algorithms for computing periodic orbits in our numeric
examples is in the Appendixes.

II. THEORY

The basic ingredients for a system to exhibit a blowo
bifurcation are the following@9,13,14#: ~i! the phase spac
contains an invariant subspace,~ii ! there is a chaotic attracto
in the invariant subspace, and~iii ! the chaotic dynamics in
the invariant subspace is coupled to the dynamics in
transverse subspace. We thus consider the following clas
N-dimensional discrete dynamical systems that capture
above three features:
d
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xn115f~xn!,

yn115F~xn ,a!G~yn!, ~1!

wherexPRNS (NS>1), yPRNT (NT>1), NS1NT5N, and
a is the bifurcation parameter. The functionG~y! satisfies
G(0)50, so thaty50 is the invariant subspaceS. The dy-
namics inS is governed by the mapf~x!, which has a chaotic
attractor. The largest transverse Lyapunov exponentLT for a
typical trajectory on the chaotic attractor inS is given by

LT5 lim
L→`

1

L (
n51

L

lnuF~xn ,a!DG~yn!uyn50•uu, ~2!

whereu is a randomly chosen vector inRNT. Assume that a
blowout bifurcation occurs atac . That is, as the parametera
passes throughac , LT crosses zero from the negative sid

We now qualitatively describe how periodic orbits ar
involved in the blowout bifurcation. The key observation
that the chaotic attractor inS has embedded within itself a
infinite number of unstable periodic orbits and a blowo
bifurcation is caused by the change in the transverse stab
of a typical trajectory with respect to the natural measureon
the chaotic attractor inS. Such a trajectory visits the neigh
borhoods of the infinite number of unstable periodic orb
from time to time. The periodic orbits embedded in the ch
otic attractor areatypical in the sense that they form a Le
besgue measure zero set. With probability one, rando
chosen initial conditions do not yield trajectories that ex
on unstable periodic orbits. Invariant measures produced
unstable periodic orbits are thus atypical, and there is an
finite number of such atypical invariant measures embed
in a chaotic attractor. The natural measure, on the other h
is typical in the sense that it is generated by a traject
originated from any one of the randomly chosen initial co
ditions in the basin of attraction. In this sense, chaos can
considered as being organized with respect to the unst
periodic orbits@15#. In systems that exhibit a blowout bifur
cation, the transverse stability of a typical trajectory is th
determined by the transverse stability of the infinite num
of unstable periodic orbits that the trajectory visits in diffe
ent time intervals. Among these periodic orbits, some
transversely stable and the others are transversely uns
near the bifurcation. If ‘‘more’’ periodic orbits are trans
versely stable~unstable!, the typical trajectory is transversel
stable~unstable!. The bifurcation occurs when there are a
proximately equal numbers of the transversely stable and
transversely unstable periodic orbits so that on average
typical trajectory experiences an exactly equal amount of
traction towards and repulsion away from the invariant s
spaceS. Since there is an infinite number of periodic orb
in the chaotic attractor, the blowout bifurcation must th
involve the change in the transverse stability of an infin
number of periodic orbits.

To quantitativelycharacterize the blowout bifurcation i
terms of unstable periodic orbits, it is necessary to define
transverse stability of the periodic orbits. Le
x1( j ),x2( j ),...,xp( j ) be the j th period-p orbit embedded in
the chaotic attractor inS, where j 51,2, . . . ,Np , Np is the
total number of the period-p orbits, and
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xn11~ j !5f„xn~ j !…, n51,2, . . . ,p21

f„xp~ j !…5x1~ j !. ~3!

We define the following transverse Lyapunov exponent
this periodic orbit:

lp
T~ j !5

1

p (
n51

p

lnuF~xn ,a!DG~0!uxn5xn~ j ! . ~4!

If lp
T( j ),0 (.0), this period-p orbit is transversely stable

~unstable!. Thus all the period-p orbits can be divided into
two groups: one transversely stable and another transve
unstable. We then introduce the period-p transversely stable
and unstable weights

Lp
s~a!5(

j 51

Np
s

mp~ j !lp
T~ j !U

l
p
T~ j !,0

,

~5!

Lp
u~a!5(

j 51

Np
u

mp~ j !lp
T~ j !U

l
p
T~ j !.0

,

whereNp
s andNp

u are the numbers of the transversely sta
and unstable period-p orbits, respectively,Np

s1Np
u5Np ,

andmp( j ) is the natural measure of a typical trajectory in t
neighborhood of thej th period-p orbit.

To compute the transversely stable and unstable wei
in Eq. ~5!, it is necessary to compute the natural measure
a typical trajectory contained in the small neighborhood
each periodic orbit. This measure is roughly the probabi
that the typical trajectory visits the neigborhood of the pe
odic orbit. Intuitively, the probability is smaller if the per
odic orbit is more unstable or the magnitude of its unsta
eigenvalue is larger. Thus we expect the probability of a v
to be inversely proportional to the largest unstable eig
value of the periodic orbit. To be precise, we make use of
results in Refs.@16,17#, which relate the natural measure
the infinite number ofatypical measures associated with a
unstable periodic orbits@16#. For the mapf~x!, let xp( j ) be
the j th fixed point of the p-times iterated map, i.e.
fp

„xp( j )…5xp( j ). Thus eachxp( j ) is on a periodic orbit
whose period is eitherp or factors ofp. The natural measure
of a chaotic attractor in a phase space regionV is given by

m~V!5 lim
p→`

(
xp~ j !PV

1

L1„xp~ j !…
, ~6!

where L1„xp( j )… is the magnitude of the expanding eige
value of the Jacobian matrixDfp(x) evaluated atxp( j ) and
the summation is taken over all fixed points offp(x) in V. If
the phase-space regionV contains the entire chaotic attra
tor, then

lim
p→`

(
xp~ j !PV

1

L1„xp~ j !…
51. ~7!

Although Eq. ~6! was derived under the condition that th
mapf~x! be hyperbolic@18#, it was conjectured@16# that Eq.
r

ely
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~6! holds for nonhyperbolic maps as well, which was su
ported by strong numerical evidence@17#. For periodic orbits
of finite period p ~large!, the summation in Eq.~7! is ap-
proximately unity but not exactly. Thus we make use of t
following normalized natural measure associated with thej th
period-p periodic orbit:

mp~ j ![
1/L1„xp~ j !,p…

(
j 51

Np

@1/L1„xp~ j !,p…#

. ~8!

Equation ~7! indicates that in the limitp→`, the natural
measure of the chaotic attractor is precisely characterized
the probabilities of a visit to all the periodic orbits of perio
p. At the blowout bifurcation point where the transver
Lyapunov exponent of a typical trajectory on the chao
attractor becomes zero, we expect that the weights of
transversely stable and transversely unstable periodic o
are balanced precisely. Setting

Ls,u~a!5 lim
p→`

Lp
s,u~a!, ~9!

we formulate the following periodic-orbit theory of th
blowout bifurcation:

Lu~a!,uLs~a!u for a,ac ,

Lu~a!.uLs~a!u for a.ac , ~10!

Lu~a!5uLs~a!u for a5ac .

III. NUMERICAL CONFIRMATION

To confirm our theory, it is necessary to find systems
which all the periodic orbits embedded in the chaotic attr
tor in the invariant subspaceS can be computed. We hav
thus selected the following maps inS: ~i! the one-
dimensional doubling transformation,~ii ! the two-
dimensional Kaplan-Yorke map@19#, and ~iii ! the two-
dimensional He´non map@20#.

A. The doubling transformation

The full system is the two-dimensional version of Eq.~1!
with F(xn ,a)5axn ,

xn115 f ~xn!52xn~mod1!,
~11!

yn115axng~yn!,

where thex dynamics is the doubling transformation th
generates a chaotic attractor with uniform invariant dens
r(x)51 for xP@0,1# and the functiong(y) satisfiesg(0)
50 and g8(0)5const ~which we chose to be 1!. The
Lyapunov exponent of the doubling transformation is ln
There are many choices forg(y), e.g.,g(y)5y(12y) ~the
logistic function! andg(y)5(1/2p)sin(2py) @11#. The trans-
verse Lyapunov exponent of Eq.~11! is
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LT~a!5 lim
n→`

1

n (
j 51

n

ln~axj !5E
0

1

ln~ax!r~x!dx5 ln a21.

~12!

A blowout bifurcation thus occurs atac5e52.718 28 . . . ,
whereLT,0 for a,ac andLT>0 for a>ac . The behav-
iors of a typical trajectory of Eq.~11! are qualitatively dif-
ferent for values ofa before and after the bifurcation. Fo
a,ac , a typical trajectory has limn→`yn50 if there are no
other attractors in the two-dimensional phase space (x,y)
except the one generated by the doubling transformatio
y50, as shown in Fig. 1~a!, whereyn versusn is plotted,
a52.6,e, andg(x)5(1/2p)sin(2py). For a.ac , a typi-
cal trajectory no longer asymptotically approachesy50 but
instead, it can burst away fromy50 intermittently, as shown
in Fig. 1~b!, wherea52.8.e. Figure 1~b! represents a typi-
cal situation of on-off intermittency@10#.

The unstable periodic orbits embedded in the chaotic
tractor of the doubling transformation can be computed
plicitly ~see Appendix A!. The eigenvalue of a period-p orbit
is 2p and, hence, the normalized natural measure conta
in an arbitrarily small neighborhood of the orbit is identic
for all period-p ~or factors ofp! orbits @Eq. ~8!#. We thus
write mp( j )5mp . The stable and unstable weights in Eq.~5!
become

FIG. 1. For the model~11!, ~a! time seriesyn at a52.6 ~before
the blowout bifurcation that occurs atac5e! and~b! time seriesyn

at a52.8 ~after the blowout bifurcation!.
in

t-
-

ed

Lp
s~a!5mp(

j 51

Np
s

lp
T~ j !ul

p
T~ j !,0 ,

~13!

Lp
u~a!5mp(

j 51

Np
u

lp
T~ j !ul

p
T~ j !.0 .

To verify our main result, Eq.~10!, we choose a small pa
rameter interval around the blowout bifurcation pointac
5e and evenly distribute a large number of parameter val
a in this interval. For eacha value, we computeLp

s(a) and
Lp

u(a) for all the distinct periodic orbits up to period 28
~For p528, there are 9 586 395 distinct periodic orbits.! Fig-
ure 2~a! shows the period-8 weightsL8

s(a) andL8
u(a) ~dot-

ted lines! versusa for aP@2.6,2.8#. The solid line in Fig.
2~a! is DL8(a)[L8

u(a)2uL8
s(a)u versusa. We obtaina8

'2.702 28, wherea8 is the critical parameter value at whic
DL8(a8)50. The difference betweena8 and the theoretica
bifurcation point ac is Da8[ua82acu'0.016, which is
rather large. However, as we examine periodic orbits
higher periods, the differenceuap2acu decreases rapidly
Figure 2~b! showsDL28(a) versusa for aP@2.70,2.73#.
We obtaina28'ac22.3131028 so thatDa28;1028. Fig-

FIG. 2. For the model~11!, ~a! for all the period-8 orbits,L8
s(a)

~the transversely stable weight!, L8
u(a) ~the transversely unstabl

weight!, andDL8(a)[L8
u(a)2uL8

s(a)u versusa near the blowout
bifurcation point. We see thatDL8(a) crosses zero ata8

'2.702 28 (ua82acu'0.016). ~b! For all the period-28 orbits,
DL28(a) versusa. Now ua282acu;1028.
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ure 3 shows, on a semilogarithmic scale, the errorDap
[uap2acu versus the periodp for pP@8,28#. The data can be
roughly fitted by a straight line with a slope of about20.64,
indicating the exponential scaling law forDap ,

Dap;e20.64p, ~14!

where the scaling exponent 0.64 is approximately the to
logical entropy (hT5 ln 2) of the chaotic attractor of the dou
bling transformation. Thus, we expect that as the periop
increases, the collective behavior of all the period-p orbits,
quantitatively described by the transversely stable and
stable weights in Eq.~13!, more and more precisely chara
terizes the blowout bifurcation.

To analytically understand the scaling law, Eq.~14!, we
note from Eq.~13! that Dap;uDLp(ac)u;Dm(p), where
Dm(p) is the difference between the natural measure co
puted from a typical trajectory and that computed from
the period-p orbits. To estimateDm(p), we divide the unit
interval in which the chaotic attractor lies intoN bins so that
the size of each bin ise51/N. The natural measure con
tained in each bin ise because it is uniform in the unit inter
val. There are (2p61)/N fixed points of thepth-iterated
map in each bin. Since all periodic orbits of periodp of the
doubling transformation have the same eigenvalue 2p, we
obtain m(p)5@(2p61)/N#/2p5e(1622p). Thus we have
Dm(p)5um(p)2eu;22p5exp(2p ln 2), which gives Eq.
~14!.

As we have argued in Sec. II, the fundamental charac
istic that distinguishes a blowout bifurcation from oth
known bifurcations is that it involves the change in the tra
verse stabilities of an infinite number of periodic orbits. T
verify this, we investigate the scaling with the period of t
number of periodic orbits that change from being tra
versely stable to being transversely unstable when the b
cation parametera changes from slightly below to slightly
aboveac . We find that this number increases exponentia
with p. Figure 4 shows lnNp versusp for pP@8,28#, where
Np is the number of periodic orbits of periodp that change
their transverse stabilities asa is increased from 2.70 to 2.73
The plot can be fitted by a straight line with a slope 0.6
('hT), indicating the scaling law,

FIG. 3. For the model~11!, ln(Dap) versusp. It can be seen tha
ln(Dap);e2hTp, where hT5 ln2 is the topological entropy of the
doubling transformation attractor.
o-

n-

-
l

r-

-

-
r-

y

Np;ehTp. ~15!

As a comparison, the dotted line in Fig. 4 shows the to
numberNp of distinct period-p orbits versusp ~also on a
semilogarithmic scale!, the slope of which is an estimate o
the topological entropyhT . We see that the two plots ar
practically parallel, with the plot of lnNp versusp shifted
downward. This indicates that a fraction of all the period
orbits change their transverse stabilities near the blowout
furcation. Reducing the range in whicha changes around the
bifurcation pointac only causes a further parallel downwa
shift of the plot Np versus p. Due to the scaling law,
Eq. ~15!, there must be an infinite number of periodic orb
that change their transverse stabilities in arbitrarily small
rameter intervals about the bifurcation point. Figure 4 th
strongly supports our claim that the blowout bifurcation i
volves an infinite number of periodic orbits.

B. The Kaplan-Yorke map

We study the following three-dimensional version of E
~1! with a Kaplan-Yorke chaotic attractor in the invaria
subspacez50 ~the x-y plane!:

xn115gxn1
1

p
sin~2pyn!,

yn1152yn~mod1!, ~16!

zn115
1

2p
~axn1byn!sin~2pzn!,

where a and b are parameters. The transverse Lyapun
exponent for a typical trajectory in the chaotic attractor
z50 is

LT5 lim
n→`

1

n (
j 51

n

lnuaxj1byj u.

FIG. 4. For the model~11!, ln Np versusp ~closed circles!,
whereNp is the number of period-p orbits that changes from bein
transversely stable to transversely unstable whena is increased
from 2.70 to 2.73. The upper curve with open circles is lnNp versus
p, whereNp is the number of all the period-p orbits. Clearly, we
haveNp;ehTp andNp;ehTp.
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The Kaplan-Yorke map in thex-y plane generates a hype
bolic chaotic attractor with a positive Lyapunov expone
ln2. Figure 5 shows such an attractor atg50.4. All periodic
orbits of the Kaplan-Yorke map can be calculated explic
~see Appendix B!. The expanding eigenvalues of all th
period-p orbits are 2p. Choosingb50 ~a rather arbitrary
choice!, we find that ac52p is the blowout bifurcation
point, whereLT,0 for a,ac andLT>0 for a>ac .

Figure 6~a! shows the period-12 weightsL12
s (a) and

L12
u (a) ~dotted lines! versusa for aP@6.0,6.3#. The solid

line in Fig. 6~a! is DL12(a)[L12
u (a)2uL12

s (a)u versusa.
We obtaina12'6.3023, the critical parameter value at whi
the transversely stable and unstable weights of all
period-12 orbits are balanced. The difference betweena12

and the blowout bifurcation pointac is Da12[ua122acu
'0.0191, which is somewhat large. This difference dim
ishes rapidly as the period of the periodic orbits increas
Figure 6~b! shows DL24(a) versus a. We obtain a24'
6.283 17 andDa24'731026. Figure 7~a! shows Dap

[uap2acu versus the periodp for pP@11,24#. As periodp
increases,Dap decreases exponentially with the scaling la
Dap;e20.58p, where the scaling exponent is again rough
ln2, the topological entropy of the Kaplan-Yorke chaotic
tractor @21#. Figure 7~b! shows lnNp versus p for p
P@11,24#, whereNp is the number of period-p orbits that
change from being transversely stable to being transver
unstable asa is increased from 6.25 to 6.29. We obtain t
scaling lawNp;e0.64p ~the solid line!. The dotted line in Fig.
7~b! is ln Np versusp, whereNp is the total number of dis-
tinct period-p orbits. This example illustrates that the co
clusion that a blowout bifurcation involves an infinite num
ber of periodic orbits is valid for the case where t
dynamics in the invariant subspace exists on a tw
dimensional hyperbolic chaotic attractor.

C. The Hénon map

We now consider the situation where the chaotic dyna
ics in the invariant subspace is nonhyperbolic. We study
three-dimensional map

FIG. 5. Kaplan-Yorke chaotic attractor atg50.4. The attractor
is hyperbolic.
t

e

-
s.

-

ly

-

-
e

xn1151.42xn
210.3yn ,

yn115xn , ~17!

zn115
1

2p
~axn1byn!sin~2pzn!,

where thex-y dynamics is described by the He´non map at a
parameter setting for which there is apparently a chaotic
tractor @20#. The Hénon map is one of the very few model
systems for which there is a numerical algorithm to comput
in principle, all unstable periodic orbits of arbitrarily high
periods@22# ~see Appendix C!. The Hénon attractor is also
apparently nonhyperbolic because a rigorous computation
the stable and unstable manifolds@23# points towards the
existence of an infinite number of tangency points of the
manifolds on the attractor. All the periodic orbits up to pe
riod 31 are computed. The transversely stable and unsta
weights are then computed as in Eq.~5!, based on the con-
jecture that the unstable periodic-orbit formulation of th
natural measure@Eqs.~6! and~8!# is also valid for nonhyper-
bolic attractors@16,17#. Choosingb50, we find numerically

FIG. 6. For the model~16!, ~a! for all the period-12 orbits in the
Kaplan-Yorke attractor,L12

s (a), L12
u (a), and DL12(a)[L12

u (a)
2uL12

s (a)u versus a near the blowout bifurcation point (ac

52p). We see thatDL12(a) crosses zero ata12'6.3023, corre-
sponding toua122acu'0.0191.~b! For all the period-24 orbits in
the Kaplan-Yorke attractor,DL24(a) versus a. Now ua242acu
'731026.
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that a blowout bifurcation occurs atac'1.333, whereLT
,0 for a,ac andLT>0 for a>ac .

Figure 8~a! shows the period-12 weightsL12
s (a) and

L12
u (a) ~dotted lines! versusa for aP@1.25,1.35#. The solid

line in Fig. 8~a! is DL12(a)[L12
u (a)2uL12

s (a)u versusa.
We obtaina12'1.279, the critical parameter value at whic
DL12(a)50. The difference betweena12 and bifurcation
point ac is Da12[ua122acu'0.054. Figure 8~b! shows
DL29(a) versus a for aP@1.31,1.35#. We obtain a29
'1.327 so thatDa29'631023. Figure 9~a! shows the error
Dap[uap2acu versus the periodp for pP@10,31# on a
semilogarithmic scale. The data can be roughly fitted b
straight line with a slope of about20.11, indicating the scal
ing law

Dap;e20.11p. ~18!

Similar to the cases of the doubling transformation and
Kaplan-Yorke map, we find that the number of the perio
orbits that change their transverse stabilities in the vicinity
ac increases exponentially with the period, as shown in F
9~b!, where lnNp versusp is plotted forpP@15,31# andNp
is the number of period-p orbits that change their transvers

FIG. 7. For the model~16!, ~a! ln(Dap) versusp and ~b! ln Np

versusp ~filled circles!, whereNp is the number of period-p orbits
that changes from being transversely stable to transversely uns
when a is increased from 6.25 to 6.29. The upper curve is lnNp

versusp ~open circles!, whereNp is the number of all period-p
orbits. We haveNp;ehTp andNp;ehTp.
a

e
c
f
.

stabilities asa is increased from 1.31 to 1.35. We obta
Np;e0.45p ~the solid line!. In Fig. 9~b! the dotted line is the
total numberNp of all distinct period-p orbit Np versusp
plotted on a semilogarithmic scale. Figure 9~b! thus indicates
that even when the chaotic dynamics in the invariant s
space in nonhyperbolic, an infinite number of periodic orb
change their transverse stabilities about the blowout bifur
tion. The somewhat large fluctuation in Fig. 9~a! is partly
due to nonhyperbolicity of the He´non attractor. It is also
clear that nonhyperbolicity causes the scaling exponen
Eq. ~18! to deviate from the topological entropy~hT'0.43
for the Hénon attractor!, but nonetheless the scaling law
still exponential.

The three numerical examples we have studied above
parently all yield the same conclusion: ‘‘A blowout bifurca
tion is mediated by a change in the transverse stability of
infinite number of unstable periodic orbits embedded in
chaotic attractor in the invariant subspace.’’

IV. DISCUSSION

The main conclusion of this paper is that from the stan
point of periodic orbits, blowout bifurcation is fundamental
different from most known bifurcations that involve a fini
number of periodic orbits. A blowout bifurcation involve

ble

FIG. 8. For the model~17!, ~a! for all the period-12 orbits,
L12

s (a), L12
u (a), andDL12(a)[L12

u (a)2uL12
s (a)u versusa near

the blowout bifurcation point. We see thatDL12(a) crosses zero a
a12'1.279 (ua122acu'0.054). ~b! For all the period-29 orbits,
DL29(a) versusa. Now ua292acu'631023.
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two distinct groups of unstable periodic orbits with differe
numbers of unstable directions. Take, for instance, the th
dimensional map, Eq.~17!. The two groups are the trans
versely stable and unstable ones: Periodic orbits in
former group have one unstable direction, while those in
latter group have two. Before~after! the bifurcation when the
transverse Lyapunov exponent of a typical trajectory on
chaotic attractor is negative~positive!, there are ‘‘more’’
members in the transversely stable~unstable! group, quanti-
tatively described by the weights in Eq.~5!. To visualize
these two groups of unstable periodic orbits, we plot, for E
~17!, the locations of all the transversely stable and unsta
periodic orbits of period 23, as shown in Figs. 10~a! and
10~b!, respectively, fora51.23,ac ~before the blowout bi-
furcation!. Clearly, there are more transversely stable p
odic orbits. After the bifurcation, there are more transvers
unstable periodic orbits, as shown in Figs. 11~a! and 11~b!
for a51.4.ac . In fact, the sets of all the transversely stab
and unstable periodic orbits exist on nonattracting cha
saddles embedded in the chaotic attractor. As the param
increases towards the bifurcation point, an infinite numbe
periodic orbits belonging to the transversely stable gro
switch continuously to the transversely unstable group. T
bifurcation is triggered when the dynamical weights@Eq. ~5!#
of the two groups are balancedexactly. Since there is an

FIG. 9. For the model~17!, ~a! ln(Dap) versusp and ~b! ln Np

versusp ~filled circles!, whereNp is the number of period-p orbits
that changes from being transversely stable to transversely uns
when a is increased from 1.31 to 1.35. The upper curve is lnNp

versusp ~open circles!. We haveNp;ehTp andNp;ehTp.
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infinite number of unstable periodic orbits embedded in
chaotic attractor, as quantified by a positive value of
topological entropy, a subset of an infinite number of pe
odic orbits changes their numbers of unstable directions
the blowout bifurcation. An implication of this scenario
that the bifurcation occurs smoothly as a parameter chan
as quantified by the smooth change of the transve
Lyapunov exponent through the bifurcation point@9,13,14#.
We mention that the class of systems investigated in
paper, i.e., chaotic systems with an invariant subspace, m
ematically described by Eq.~1!, are of physical interest
These occur naturally in systems with spatial symmetry a
in systems such as coupled oscillators that model a la
variety of phenomena in physics, chemistry, biology, a
ecology@24,13,25#.

In order to characterize the blowout bifurcation by u
stable periodic orbits, it is necessary to compute the locati
of all periodic orbits up to reasonably high periods, which
in general a difficult task. However, we believe that our
sults are general because our model, Eq.~1! captures the
essential features of the blowout bifurcation@9,13,14# and
our numerical examples include both one-dimensional
two-dimensional, hyperbolic and nonhyperbolic, chaotic d
namics in the invariant subspace. In particular, the He´non
map has been a paradigm in the study of chaotic system

Finally, we stress that in this paper, although the period

ble

FIG. 10. For the model~17! at a51.23 ~before the blowout
bifurcation!, ~a! the locations of all the transversely stable period
orbits of period 23 and~b! the locations of all the transversel
unstable periodic orbits of period 23.
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orbit theory of the blowout bifurcation was confirmed n
merically by utilizing exclusively discrete maps, we expe
the theory to be valid for continuous chaotic systems as w
Our confidence relies on the well-known fact that the dyna
ics of a continuous flow can be faithfully represented by t
of a discrete map on a Poincare´ surface of section@26#. It has
then become possible for our theory to be tested beca
certain discrete maps~not many of them though! allow for
the computation ofall periodic orbits up to some reasonab
high periods. As such, our numerical results can be rega
as anindirect check for the blowout bifurcation in continu
ous dynamical systems. It would certainly be interesting
be able to check directly the applicability of our theory f
continuous systems, but this demands a direct computa
of all unstable periodic orbits up to high periods for contin
ous flows. While certain periodic orbits can be computed
continuous flows such as the Lorenz system@27#, at present
we are not aware of any numerical procedure that allows
a systematiccomputation of all periodic orbits from a con
tinuous system.
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APPENDIX A: PERIODIC ORBITS
OF THE DOUBLING TRANSFORMATION

The locations of the periodic orbits of the doubling tran
formation can be obtained explicitly. At each iteration, t
map has two line segments of slope 2 in the unit square
the planexn11 versusxn . The pth-iterated map has 2p line
segments in the unit square. Fixed points of thepth-iterated
map, which contain all periodic orbits of periodp or factors
of p, are located at cross points of these 2p line segments
with the line xn115xn . Thus we have the following set o
points that belong to different periodic orbits of periodp or
factors ofp:

xp~ j !5
j

2p21
, j 51,3,5, . . . ,2p2121. ~A1!

Starting with one such point, one can obtain the remain
p21 points on the orbit by iterating the doubling transfo
mation map. For example, forp54, we have

x4~1!5 1
15→ 2

15→ 4
15→ 8

15 ,

x4~3!5 3
15→ 6

15→ 12
15→ 9

15 ,
~A2!

x4~5!5 5
15→ 10

15→ 5
15→ 10

15 ,

x4~7!5 7
15→ 14

15→ 13
15→ 11

15 ,

where an arrow denotes doubling transformation.

APPENDIX B: PERIODIC ORBITS
OF THE KAPLAN-YORKE MAP

They dynamics in the Kaplan-Yorke map is the doublin
transformation. Thus they coordinates of the locations of th
periodic orbits are the same as these in Appendix A. Thx
coordinates of thej th period-p orbit can be computed by
noting that

xp11~ j !5gpx11
1

p
$gp21sin@2pyp

1~ j !#

1gp22sin@2pyp
2~ j !#1•••1sin@2pyp

p~ j !#%.

~B1!

Settingxp115x1 , we obtain thex coordinate of one point on
the j th periodic orbit of periodp,

xp
1~ j !5

1

p~12gp! (
i 51

p

gp2 isin@2pyp
i ~ j !#. ~B2!

The remainingp21 x coordinates of the periodic orbit ca
be obtained by either iterating the map or rearranging
order of summation in Eq.~B2!.
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APPENDIX C: PERIODIC ORBITS OF THE HE´ NON MAP

We rewrite the He´non map in the form

xn115a2xn
21bxn21 . ~C1!

Biham and Wenzel introduced a numerical technique
compute all the unstable periodic orbits of the He´non map
@22#. The idea is to construct the following Hamiltonia
function from the map:

H5
1

2 (
n

1

bn S dxn

dt D 2

1(
n

~2b!2nFxn~xn112xn21!

2S 1

b
11D S axn2

1

3
xn

3D G . ~C2!

The locations of the periodic orbits correspond to the sta
minima on the constant energy surface. A period-p orbit is
s
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thus computed by solving the set of first-order coupled d
ferential equations

dxn

dt
5SnFn5Sn~2b!2n~b2111!~2xn111a2xn

2

1bxn21!, n51, . . . ,p, ~C3!

whereSn561 andxp115x1 . There are 2p combinations of
Sn’s. For each combination, a randomly chosen initial co
dition is utilized to solve Eq.~C3!. Converging solutions
~xi ’s, i 51, . . . ,p! are taken to be the locations of a period
orbit of periodp. Choosing different combinations ofSn’s
yields different period-p orbits, provided that the solution to
Eq. ~C3! converges. Diverging solutions to Eq.~C3! are dis-
regarded. This method has proven to be very successfu
computing all periodic orbits of the He´non map up to rea-
sonably high periods.
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