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Characterization of blowout bifurcation by unstable periodic orbits
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Blowout bifurcation in chaotic dynamical systems occurs when a chaotic attractor, lying in some invariant
subspace, becomes transversely unstable. We establish quantitative characterization of the blowout bifurcation
by unstable periodic orbits embedded in the chaotic attractor. We argue that the bifurcation is mediated by
changes in the transverse stability ofan infinite number of unstable periodic orbits. There are two distinct
groups of periodic orbits: one transversely stable and another transversely unstable. The bifurcation occurs
when some properly weighted transverse eigenvalues of these two groups are balanced.
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Recently, a novel type of bifurcation has been discove
in chaotic dynamical systems@1,2#. This is the so-called
‘‘blowout bifurcation’’ that occurs in dynamical system
with a symmetric invariant subspace. LetS be the invariant
subspace in which there is a chaotic attractor. SinceS is
invariant, initial conditions inS result in trajectories that re
main inS forever. Whether the chaotic attractor inS is also
an attractor in the full phase space depends on the sign o
largest Lyapunov exponentL' computed for trajectories in
S with respect to perturbations in the subspaceT which is
transverseto S. WhenL' is negative,S attracts trajectories
transversely in the vicinity ofS and, hence, the chaotic a
tractor inS is an attractor in the full phase space. IfL' is
positive, trajectories in the neighborhood ofS are repelled
away from it and, consequently, the attractor inS is trans-
versely unstable and it is hence not an attractor in the
phase space. Blowout bifurcation occurs whenL' changes
from negative to positive values. There are distinct phys
phenomena associated with the blowout bifurcation. For
ample, near the bifurcation point whereL' is negative, if
there are other attractors in the phase space, then typic
the basin of the chaotic attractor inS is riddled@3#. WhenL'

is slightly positive, if there are no other attractors in t
phase space, the dynamics in the transverse subspaceT ex-
hibits an extreme type of temporally intermittent bursti
behavior, the on-off intermittency@4,5#. Recent study has
also revealed that blowout bifurcation can lead to symme
breaking in chaotic systems@6#.

In the study of chaos theory, it is important to be able
understand a bifurcation in terms of unstable periodic or
of the system because the knowledge of periodic orbits u
ally yields a great deal of information about the dynam
@7–9#. Periodic orbits are known to be responsible for ma
different types of bifurcations in chaotic systems. For e
ample, the period-doubling bifurcation@10# and the saddle-
node bifurcation are bifurcations of periodic orbits. Ca
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strophic events in chaotic systems such as crises@11# and
basin boundary metamorphoses@12# are triggered by colli-
sion of periodic orbits, usually of low period, embedded
different dynamical invariant sets. The birth of Wada ba
boundaries, meaning common boundaries of more than
basins of attraction, is caused by a saddle-node bifurca
on the basin boundary@13#. More recent study indicates tha
the riddling bifurcation, bifurcation that gives birth to
riddled basin, is triggered by the loss of transverse stab
of some periodic orbit of low period embedded in the chao
attractor inS @14#. In view of the role of periodic orbits
played in these major bifurcations, it is desirable to study
blowout bifurcation by periodic orbits. In this regard, As
win, Buescu, and Stewart have noticed that as a system
rameter changes towards the blowout bifurcation point, m
and more atypical invariant measures become transver
unstable@2#. At the bifurcation, the natural measure of th
chaotic attractor inS becomes unstable.

In this paper, we establish aquantitative characterization
of the blowout bifurcation by unstable periodic orbits em
bedded in the chaotic attractor in the invariant subspaceS. In
particular, we argue that near the bifurcation, there exist
groups of periodic orbitsSs andSu , each having an infinite
number of members, one transversely stable and ano
transversely unstable, respectively. The sign of the larg
transverse Lyapunov exponentL' is determined by the rela
tive weights ofSs andSu : L' is negative~positive! when
Ss ~Su! weighs overSu ~Ss!. ~A precise definition of the
‘‘weights’’ will be described in the sequel.! At the bifurca-
tion, the weights ofSs andSu are balanced. In contrast t
most known bifurcations in chaotic systems that usually
volve only one or a few periodic orbits@10–14#, blowout
bifurcation is induced by a change in the transverse stab
of an infinite number of unstable periodic orbits. The num-
berN̂p of the unstable periodic orbits of periodp that change
transverse stability in an arbitrarily small neighborhood
the bifurcation points grown asN̂p;ehTp, wherehT is the
topological entropy of the chaotic attractor inS.

We consider the following general class ofN-dimensional
dynamic systems,

xn115f~xn!, ~1!

zn115F~xn,a!G~zn!,
:
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where xPRNi ~Ni>1!, zPRN' ~N'>1!, Ni1N'5N, and
a is the bifurcation parameter. Assume that the funct
G(z) satisfiesG(0)50 so that z50 is the invariant sub-
spaceS. The dynamics inS is described by the mapf~x!
which has a chaotic attractor. There is an infinite num
of unstable periodic orbits embedded in this attractor. Eq
tion ~1! represents a typical system for which blowo
bifurcation can occur@1,2#. The largest transverse Lya
punov exponent L' is given by L'5 limL→`(1/L)
3(n51

L lnuF(xn,a)DG(zn)uzn50•uu, whereu is a randomly

chosen vector inRN'. Let ac be the blowout bifurcation
point so that as the parametera passes throughac , L'

crosses zero from the negative side. The goal of this pap
to relate, quantitatively, the transverse stability of the infin
number of unstable periodic orbits embedded inS to L' .

Our approach is to study a model system that is sim
but captures typical features of the blowout bifurcation,
which unstable periodic orbits of high periods and their d
namical properties can be computed numerically. In parti
lar, we consider the following three-dimensional version
Eq. ~1!:

xn115a2xn
21byn, ~2!

yn115xn ,

zn115~a xn1byn!g~zn!,

where the invariant subspaceS is defined byz50 and,
hence, it is two dimensional@x[(x,y)#. The dynamics inS
is given by the He´non mapf~x!, and we choosea51.4 and
b50.3, a parameter setting for which it is believed that
map has a chaotic attractor@15#. The functiong(z) satisfies
g(0)50 andg8(0)5const~which for simplicity is chosen to
be 1!. There are many choices forg(z), e.g.,g(z)5z(12z)
~the logistic function! @5#, g(z)5(1/2p)sin~2pz! @6#, etc.
The transverse Lyapunov exponent of Eq.~2! is L'5
limn→`(1/n)S j51

n lnuaxj1byj u. Restricting our study to the
case whereb50 ~without loss of generality!, we find nu-
merically that a blowout bifurcation occurs atac'1.333,
whereL',0 for a,ac andL'>0 for a>ac . To see the
transverse stability of distinct unstable periodic orbits,
note that at a given parameter valuea, the x-interval
@xmin ,xmax# in which the attractor lies can be divided in
two subintervals:@xmin ,xc(a)# ~the transversely attractin
interval! and (xc(a),xmax# ~the transversely repelling inter
val!, wherexc(a)51/a. In these two subintervals, the in
stantaneous derivative in thez equation evaluated atz50
satisfies]zn11 /]zn5axn,1 ~attracting! and ]zn11 /]zn5
axn.1 ~repelling!. Periodic orbits of high periods typically
have their orbit points in both the attracting and repelli
regions. A periodic orbit can then be either transvers
stable or transversely unstable. Letx1( j ),x2( j ), . . . ,xp( j ) be
the j th period-p orbit, wherej51,2, . . . ,Np (Np being the
total number of the period-p orbits!, xn11( j )5f@xn( j )# for
n51,2, . . . ,p21, and f@xp( j )#5x1( j ). We define the fol-
lowing transverse Lyapunov exponent for this orbit:
n
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lp~ j !5
1

p (
n51

p

lnU ]zn11

]zn
U
zn50,xn5x~ j !

U
5 lna1

1

p (
n51

p

lnxn~ j !. ~3!

If lp( j ),0 ~.0!, this period-p orbit is transversely stable
~unstable!. Thus, all the period-p orbits can be divided into
two groups: one transversely stable and another transve
unstable. We then define the following period-p transversely
stable and unstable weights,

Lp
s~a!5(

j51

Np
s

mp~ j !lp~ j !ulp~ j !,0 , ~4!

Lp
u~a!5 (

j51

Np
u

mp~ j !lp~ j !ulp~ j !.0 ,

whereNp
s andNp

u are the numbers of the transversely sta
and unstable period-p orbits, respectively,Np

s1Np
u5Np , and

mp( j ) is the natural measure of typical trajectories on t
chaotic attractor which stay close to thej th period-p orbit.
As p→`, intuitively the probability measure of all the
period-p orbits becomes a good approximation of the natu
measure of the attractor@9#. Let Ls,u(a)5limp→`Lp

s,u(a).
Our claims are as follows:~i! Lu(a),uLs(a)u for a,ac,
andLu(a).uLs(a)u for a.ac; ~ii ! the blowout bifurcation
occurs whenLu(a)5uLs(a)u.

We now present numerical verifications. To start, w
compute, within the limitation of our computing source, a
the unstable periodic orbits of the He´non chaotic attractor up
to period-31 by using the method of Biham and Wenzel@16#.
To computemp( j ), we use the theory developed by Grebo
Ott, and Yorke@9#, which relates the natural measure of
areaA containing part of the attractor to the expanding
genvalues of all the unstable periodic orbits enclosed in
area. Specifically, for a two-dimensional hyperbolic m
f~x!, the natural measure ofA is given by@9#

m~A!5 lim
p→`

(
xjpPA

1

L1~xjp ,p!
, ~5!

whereL1(xjp ,p) is the largest expanding eigenvalue of t
j th period-p orbit, and the summation is taken over all fixe
points of f p(x) in A. It was conjectured in Ref.@9# that Eq.
~5! holds approximately for nonhyperbolic maps, and r
evant works lended credence to this conjecture@8#. We thus
use the following approximation for the quantitymp( j ) in
Eq. ~4!:

mp~ j !'
1/L1~xjp ,p!

(
j51

Np

@1/L1~xjp ,p!#

. ~6!
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Next, we choose a small parameter interval aboutac and
evenly distribute a large number of parameter valuesa
in this interval. For eacha value, we computeLp

s(a)
and Lp

u(a) for those computed distinct periodic orbit
~For p531, there are 37936 distinct orbits.! Figure 1~a!
shows the period-12 weightsL12

s ~a! and L12
u (a) ~dotted

lines! versusa for aP@1.25,1.35#. The solid line in Fig.
1~a! is DL12(a)[L12

u (a)2uL12
s (a)u versus a. We ob-

tain a12'1.279, the critical parameter value at whic
DL12(a)50. The difference betweena12 and bifurcation
point ac is Da12[ua122acu;0.054, which is somewha
large. But as we examine higher periodic orbits, the diff
ence tends to decrease rapidly. Figure 1~b! showsDL29(a)
versusa for aP@1.31,1.35#. We obtaina29'1.327 so that
Da29'631023. Figure 2 shows the errorDap[uap2acu
versus the periodp for pP@10,31# on a semilogarithmic
scale. The data can be roughly fitted by a straight line wit
slope of about20.11, indicating thatDap;e20.11p @17#.
Thus, we expect that as the periodp increases, the collective
behavior of all the period-p orbits, quantitatively described
by the transversely stable and unstable weights in Eq.~4!,
more and more precisely characterizes the blowout bifu
tion.

As the period increases, the number of the periodic or
that changes transverse stability in the vicinity ofac in-
creases exponentially. Figure 3 shows lnN̂p versusp for p

FIG. 1. ~a! For all the period-12 orbits,L12
s (a) ~the transversely

stable weight!, L12
u (a) ~the transversely unstable weight! and

DL12(a)[L12
u (a)2uL12

s (a)u versusa near the blowout bifurca-
tion point. We see thatDL12(a) crosses zero ata12'1.279
(ua122acu'0.054).~b! For all the period-29 orbits,DL29(a) ver-
susa. Now, ua292acu'631023.
-

a

a-

ts

P@15,31#, where N̂p is the number of period-p orbits that
changes from being transversely stable to being transver
unstable asa is increased from 1.31 to 1.35. We hav
N̂p;e0.45p ~the solid line!. As a comparison, the dotted lin
in Fig. 3 shows the total number of distinct period-p orbitNp
versusp ~also on a semilogarithmic scale!, the slope of
which is an estimate of the topological entropy. Wh
smaller parameter intervals aboutac are examined, we ob
serve that the plot of lnN̂p versusp is shifted downwards
parallelly, indicating a robut scalingN̂p;ehTp. The key ob-
servation is that asp→`, an infinitge number of distinct
periodic orbits change from being transversely stable to
ing transversely unstable in a parameter interval aboutac ,
no matter how small the interval is. Thus,blowout bifurca-
tion is mediated by change in the transverse stability of
infinite number of unstable periodic orbits embedded in
chaotic attractor in the invariant subspace.

We stress that in order to characterize the blowout bif
cation by unstable periodic orbits, it is necessary to comp
the locations of all periodic orbits up to reasonably hi
periods, which is in general a difficult task. However, w
believe that our results are general because the He´non map,
which we use to model the dynamics in the invariant su
space, has been a paradigm in the study of chaotic syst

FIG. 2. ln(Dap) versusp.

FIG. 3. lnN̂p versusp ~filled circles!, whereN̂p is the number of
period-p orbits that changes from being transversely stable to tra
versely unstable whena is increases from 1.31 to 1.35. The upp
curve is lnNp versusp ~open circles!, whereNp is the number of
distinct period-p orbits. We haveNp;ehTp and N̂p;ehTp.
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Furthermore, our model system Eq.~2! captures the essentia
features of the blowout bifurcation@1,2#. We have also tested
cases where the dynamics in the invariant subspace is
dimensional and have obtained similar results@18#. Thus, we
feel safe in concluding that blowout bifurcation is a uniq
type of bifurcation that is mediated byan infinite numberof
unstable periodic orbits.
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