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Characterization of blowout bifurcation by unstable periodic orbits
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Blowout bifurcation in chaotic dynamical systems occurs when a chaotic attractor, lying in some invariant
subspace, becomes transversely unstable. We establish quantitative characterization of the blowout bifurcation
by unstable periodic orbits embedded in the chaotic attractor. We argue that the bifurcation is mediated by
changes in the transverse stability ai infinite number of unstable periodic orhitEhere are two distinct
groups of periodic orbits: one transversely stable and another transversely unstable. The bifurcation occurs
when some properly weighted transverse eigenvalues of these two groups are balanced.
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Recently, a novel type of bifurcation has been discoveredtrophic events in chaotic systems such as cridd$ and
in chaotic dynamical systemisl,2]. This is the so-called basin boundary metamorphoss?] are triggered by colli-
“blowout bifurcation” that occurs in dynamical systems sion of periodic orbits, usually of low period, embedded in

subspace in which there is a chaotic attractor. SiSdis boundaries, meaning common boundaries of more than two

invariant, initial conditions irS result in trajectories that re- Psins of attraction, is caused by a saddle-node bifurcation
main in S forever. Whether the chaotic attractor&is also ohn th%gﬁsm 8$unda_r[)13].bl_\;lore r_eceantudy lndlg_atﬁs that

: . : the riddling bifurcation, bifurcation that gives birth to a
an attractor in the full phase space depends on the sign of the . L o
largest Lyapunov exp%nemt Fc)omputé)d for trajectorigs in riddled basu_1, is trlggered by thg loss of transverse stabll|py
S with respect 1o perturbatiéns in the subspaceshich is of some periodic orbit of low period embedded in the chaotic

henA. i . : ) attractor inS [14]. In view of the role of periodic orbits
transverseto S. When A, is negative,S attracts trajectories  javed in these major bifurcations, it is desirable to study the

transversely in the vicinity of and, hence, the chaotic at- powout bifurcation by periodic orbits. In this regard, Ash-
tractor in S is an attractor in the full phase space.Af is  in, Buescu, and Stewart have noticed that as a system pa-
positive, trajectories in the neighborhood 8fare repelled  rameter changes towards the blowout bifurcation point, more
away from it and, consequently, the attractorSns trans-  and more atypical invariant measures become transversely
versely unstable and it is hence not an attractor in the fullinstable[2]. At the bifurcation, the natural measure of the
phase space. Blowout bifurcation occurs when changes chaotic attractor irS becomes unstable.

from negative to positive values. There are distinct physical In this paper, we establishquantitative characterization
phenomena associated with the blowout bifurcation. For exef the blowout bifurcation by unstable periodic orbits em-
ample, near the bifurcation point wherg is negative, if bedded in the chaotic attractor in the invariant subsiSade
there are other attractors in the phase space, then typicallparticular, we argue that near the bifurcation, there exist two
the basin of the chaotic attractor &is riddled[3]. WhenA,  groups of periodic orbit& and%,, each having an infinite

is slightly positive, if there are no other attractors in thenumber of members, one transversely stable and another
phase space, the dynamics in the transverse sub3page transversely unstable, respectively. The sign of the largest
hibits an extreme type of temporally intermittent burstingtransverse Lyapunov exponedt is determined by the rela-
behavior, the on-off intermittenc§4,5]. Recent study has tve weights of%;andX,: A, is negative(positive when

also revealed that blowout bifurcation can lead to symmetry~s (>u) Weighs over, (). (A precise definition of the
breaking in chaotic systenis]. weights” will be described in the sequglAt the bifurca-

In the study of chaos theory, it is important to be able totion, the weights of%; and %, are balanced. In contrast to

understand a bifurcation in terms of unstable periodic orbit§nOSt known bifurcations in chaotic systems that usually in-

A . volve only one or a few periodic orbitsl0—14], blowout
of the system because the knowledge of periodic orbits YSWiturcation is induced by a change in the transverse stability

ally yields. a 'great'deal of information about the dynamicsof an infinite number of unstable periodic orbifhe num-
[7-9]. Periodic orbits are known to be responsible for manybe”\Ip of the unstable periodic orbits of perirthat change

different types of bifurcations in chaotic systems. For ®transverse stability in an arbitrarily small neighborhood of
ample, the period-doubling bifurcatidd0] and the saddle- y rarty 9

. . . . - . i i i ~ahtp i
node bifurcation are bifurcations of periodic orbits. Cata-th€ Pifurcation points grown ail,~e"™", wherehy is the
topological entropy of the chaotic attractor $a

We consider the following general classfdimensional
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wherexe RN (N, =1), ze RNt (N, =1), N,+N, =N, and
a is the bifurcation parameter. Assume that the function Np(j)=
G(2) satisfiesG(0)=0 so thatz=0 is the invariant sub-

spaceS. The dynamics inS is described by the mafix) 1P
which has a chaotic attractor. There is an infinite number =Ina+—2 INXn(j). 3
of unstable periodic orbits embedded in this attractor. Equa- Pn=1

tion (1) represents a typical system for which blowout
bifurcation can occur{1,2]. The largest transverse Lya-

pun(L)v exponentA, is given by Ai:_“mb“‘(lll‘) (unstable. Thus, all the periogs orbits can be divided into
X2 1In[F (Xn, @)DG(zn) |z, —0- U], whereu is a randomly 46 groups: one transversely stable and another transversely
chosen vector ilk™:. Let «; be the blowout bifurcation unstable. We then define the following peripdransversely
point so that as the parameter passes throughw,, A, stable and unstable weights,
crosses zero from the negative side. The goal of this paper is
to relate, quantitatively, the transverse stability of the infinite
number of unstable periodic orbits embeddedito A, .

Our approach is to study a model system that is simple Ap(e@)= 2, mp(DNp(Dx i) <o0 4
but captures typical features of the blowout bifurcation, for
which unstable periodic orbits of high periods and their dy-

9Zn+1

p
> In o

1
Pn=1

2,=0x,=x(]j)

If Xp(j)<<O (>0), this periodp orbit is transversely stable

N

k-1

namical properties can be computed numerically. In particu- Ng
lar, w nsider the following three-dimensional version of ; ;
ar, gco sider the following three-dimensional version o Ag(a)=_ Mp(l))\p(l)h i)=0,
Eqg. (1): =1 p
Xns1=a—X2+by,, 2 whereNj andN, are the numbers of the transversely stable

and unstable periog-orbits, respectivelyN;+Ny=N,, and
mp(j) is the natural measure of typical trajectories on the
Yis1=Xn, chaotic attractor which stay close to thtn periodp orbit.
As p—oo, intuitively the probability measure of all the
periodp orbits becomes a good approximation of the natural
Zns1=(aXy+ BYn)9(Z,), measure of the attract¢®]. Let ASY(a)=lim,_..A;"(a).
Our claims are as follows(i) AY(a)<|AS(a)| for a<a,
andA'(a)>|A%(a)| for a> ag; (ii) the blowout bifurcation
where the invariant subspacg is defined byz=0 and, occurs whem\Y(a)=[A%(a)|.
hence, it is two Qimension@kz(x,y)]. The dynamics irS We now present numerical verifications. To start, we
is given by the Heon mapf(x), and we choosa=1.4 and  compute, within the limitation of our computing source, all
b=0.3, a parameter setting for which it is believed that thethe unstable periodic orbits of the hien chaotic attractor up
map has a chaotic attractfit5]. The functiong(z) satisfies to period-31 by using the method of Biham and Werj2é].
9(0)=0 andg’(0)=const(which for simplicity is chosen to  To computeu,(j), we use the theory developed by Grebogi,
be 1. There are many choices fg(z), e.9.,9(z)=2z(1—2z)  Ott, and Yorke[9], which relates the natural measure of an
(the logistic function [5], g(z)=(1/27)sin(27z) [6], etc.  areaA containing part of the attractor to the expanding ei-
The transverse Lyapunov exponent of E@®) is A, =  genvalues of all the unstable periodic orbits enclosed in this
lim,_..(1/n)27_ In|ax;+ By;j|. Restricting our study to the area. Specifically, for a two-dimensional hyperbolic map
case whergz=0 (without loss of generality we find nu-  f(x), the natural measure & is given by[9]
merically that a blowout bifurcation occurs ai.~1.333,
where A <0 for a<a, and A, =0 for =a.. To see the 1
transverse stability of distinct unstable periodic orbits, we w(A)=Ilm > ———,
note that at a given parameter valug the x-interval pw xpeA L1(Xjp,P)
[ XminsXmax] IN Which the attractor lies can be divided into
two subintervals]Xn,Xc(@)] (the transversely attracting
interva) and (X.(@),Xmax (the transversely repelling inter-
val), wherex.(a)=1/a. In these two subintervals, the in-
stantaneous derivative in theequation evaluated a=0
satisfies 9z, 1/ 9z,= ax,<1 (attracting and dz,,,/9z,=

©)

whereL (X, ,p) is the largest expanding eigenvalue of the
jth periodp orbit, and the summation is taken over all fixed
points off P(x) in A. It was conjectured in Ref9] that Eq.
(5) holds approximately for nonhyperbolic maps, and rel-
ax,>1 (repelling. Periodic orbits of high periods typically €vant works lended credence to this conjecfie We thus
have their orbit points in both the attracting and repellinguS€ the following approximation for the quantipy,(j) in
regions. A periodic orbit can then be either transversel)ﬁq' (4):

stable or transversely unstable. xg{j),Xx(j), - - - X,(j) be

the jth periodp orbit, wherej=1,2,... ,N, (N, being the . 1L1(Xjp ,P)

total number of the periog- orbits), .. 1(j)=f[x,(j)] for mp())~ T : (6)
n=1.2,...,p—1, andf[x,(j)]=x.(j). We define the fol- [1L1(X,,p)]

lowing transverse Lyapunov exponent for this orbit: j=1 P
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€[15,31, whereN,, is the number of periog- orbits that
changes from being transversely stable to being transversely
unstable ase is increased from 1.31 to 1.35. We have
N,~e%*® (the solid ling. As a comparison, the dotted line

in Fig. 3 shows the total number of distinct peripbrbit N,
versusp (also on a semilogarithmic scajethe slope of
which is an estimate of the topological entropy. When

N o smaller parameter intervals abowf are examined, we ob-
L% P - . .
0.04 ‘ 29, | | 13 | serve that the plot of N, versusp is shifted downwards
1.31 1.32 1.33 1.34 1.35 parallelly, indicating a robut scalingp~e“T”. The key ob-
a servation is that ap—o, an infinitge number of distinct

FIG. 1. (a) For all the period-12 orbits\$,() (the transversely ~Periodic orbits change from being transversely stable to be-

stable weight AYj (@) (the transversely unstable weighand iNg transversely unstable in a parameter interval alQut
AA (@) =AY a)—|AS ()| versusa near the blowout bifurca- NO matter how small the interval is. Thuslpwout bifurca-

tion point. We see thatAA;(a) crosses zero ak;,~1.279 tion is mediated by change in the transverse stability of an
(la1o— | ~0.054).(b) For all the period-29 orbitsh\ Ao @) ver-  infinite number of unstable periodic orbits embedded in the
susa. Now, |ag— ag|~6x 1073, chaotic attractor in the invariant subspace.
We stress that in order to characterize the blowout bifur-

cation by unstable periodic orbits, it is necessary to compute
Next, we choose a small parameter interval abeytand the locations of all periodic orbits up to reasonably high
evenly distribute a large number of parameter valdees periods, which is in general a difficult task. However, we
in this interval. For eacha value, we computeAj(a)  believe that our results are general because theoRlenap,
and A‘,j(a) for those computed distinct periodic orbits. Which we use to model the dynamics in the invariant sub-
(For p=31, there are 37936 distinct orbjtsFigure 1a) space, has been a paradigm in the study of chaotic systems.
shows the period-12 weight&$,(«) and Aj,(«) (dotted
lines versusa for ae[1.25,1.33. The solid line in Fig.

1@ is AA(a)=AY(a)—|A3,(a)| versus . We ob- 12

tain aq,~1.279, the critical parameter value at which 104 lope = 0.42
AA(a)=0. The difference betweem;, and bifurcation siope = 5.

point a, is Aa,=|a;,—a/~0.054, which is somewhat 8+

large. But as we examine higher periodic orbits, the differ- ="

ence tends to decrease rapidly. Figutb) ShowsA A 5¢( @) = 61

versusa for ae[1.31,1.33. We obtaina,4~1.327 so that 4

Aapg~6x10"2 Figure 2 shows the erroha,=|a,— o K slope=045
versus the periop for pe[10,31 on a semilogarithmic 2+ n

scale. The data can be roughly fitted by a straight line with a o N,

slope of about—0.11, indicating thatAa,~e™ *¥ [17]. 12 16 20 24 28 392
Thus, we expect that as the peripdncreases, the collective P

behavior of all the periogh orbits, quantitatively described
by the transversely stable and unstable weights in (Eg.
more and more precisely characterizes the blowout bifurca- g 3. Ier versusp (filled circles, whereNp is the number of

tion. o o _ periodyp orbits that changes from being transversely stable to trans-
As the period increases, the number of the periodic orbitgersely unstable whea is increases from 1.31 to 1.35. The upper
that changes transverse stability in the vicinity @f in-  curve is IlN, versusp (open circles whereN,, is the number of

creases exponentially. Figure 3 showsllnversusp for p distinct periodp orbits. We haveN,~e"™ and &Ip~eth.
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Furthermore, our model system E@) captures the essential We thank T. Téand P. Gaspard for useful discussions.

features of the blowout bifurcatidr,2]. We have also tested This work was sponsored by the Air Force Office of Scien-

cases where the dynamics in the invariant subspace is orific Research, Air Force Materiel Command, USAF, under
dimensional and have obtained similar res[di8]. Thus, we  Grant No. F49620-96-1-0066. This work was also supported
feel safe in concluding that blowout bifurcation is a uniqueby NSF under Grant No. DMS-962659, by the General
type of bifurcation that is mediated @&n infinite numbeof  Research Fund at the University of Kansas, and by the
unstable periodic orbits. NSF/K*STAR EPSCoR Program in Kansas.
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