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Characterization of the natural measure by unstable periodic orbits
in nonhyperbolic chaotic systems
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The natural measure of a chaotic set in a phase-space region can be related to the dynamical properties of all
unstable periodic orbits embedded in part of the chaotic set contained in that region. This result has been
rigorously shown to be valid for hyperbolic chaotic systems. Chaotic sets encountered in most physical
situations, however, are typically nonhyperbolic. The purpose of this paper is to test the goodness of the
unstable periodic-orbit characterization of the natural measure for nonhyperbolic chaotic systems. We first
directly compare the natural measure from a typical trajectory on the chaotic set with that evaluated from
unstable periodic orbits embedded in the set. As an indirect check, we then compute the difference between the
long-time average values of physical quantities evaluated with respect to a typical trajectory and those com-
puted from unstable periodic orbits. Results with the He´non map for which periodic orbits can be enumerated
lend credence to the conjecture that the unstable periodic-orbit theory of the natural measure is applicable to
nonhyperbolic chaotic systems.@S1063-651X~97!02012-6#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

An important problem in the study of chaotic systems
to compute long-term statistics such as averages of phy
quantities, Lyapunov exponents, dimensions, and other
variants of the probability density or the measure. The in
est in the statistics lies in the fact that trajectories of de
ministic chaotic systems are apparently random and ergo
These statistical quantities, however, arephysically meaning-
ful only when the measure being considered is the one g
erated by a typical trajectory in phase space. This measu
called the natural measure@1# and it is invariant under the
evolution of the dynamics. Therefore, it is of paramou
physical importance to be able to understand and to be
to characterize the natural measure@2# in terms of fundamen-
tal dynamical quantities. There is nothing more fundamen
than to express the natural measure in terms of the peri
orbits embedded in a chaotic attractor.

A key contribution along these lines was made in Ref.@3#,
in which Grebogi, Ott, and Yorke obtained an expression
the invariant natural measure in terms of the magnitude
the eigenvalues of the unstable periodic orbits embedde
the chaotic attractor. They proved@3# the correctness of thei
expression, but only for the special case of an hyperb
dynamics@4#. The validity of their results for physical situ
ations, which are typically nonhyperbolic, remained, ho
ever, only a conjecture. The purpose of this paper is to p
vide evidence for the applicability of the results of Ref.@3# to
nonhyperbolic chaotic systems and hence to validate t
conjecture.

To begin, we review some fundamental properties o
chaotic system. Due to ergodicity, trajectories on a cha
set exhibit a sensitive dependence on initial conditio
Moreover, the long-time probability distribution generat
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by a typical trajectory on the chaotic set is generally high
singular. Take a chaotic attractor, for example. A trajecto
originated from a random initial condition in the basin
attraction visits different parts of the attractor with drastica
different probabilities. Call regions with high probabilitie
‘‘hot’’ spots and regions with low probabilities ‘‘cold’’
spots. Such hot and cold spots in the attractor can in gen
be interwoven on arbitrarily fine scales. In this sense, cha
attractors are said to possess a multifractal structure. Du
this singular behavior, one utilizes the concept of natu
measure to characterize chaotic attractors@1#. To obtain the
natural measure, one covers the chaotic attractor with a
of cells and examines the frequency with which a typic
trajectory visits these cells in the limit that both the length
the trajectory goes to infinity and the size of the grid goes
zero@5#. Except for an initial condition set of Lebesgue me
sure zero in the basin of attraction, these frequencies in
cells are the natural measure. Specifically, letf (x0 ,T,e i) be
the amount of time that a trajectory from a random init
conditionx0 in the basin of attraction spends in thei th cov-
ering cellCi of edge lengthe i in a timeT. The probability
measure of the attractor in the cellCi is

m i5 lim
e i→0

lim
T→`

f ~x0 ,T,e i !

T
. ~1!

The measure is callednatural if it is the same for all ran-
domly chosen initial conditions, that is, for all initial cond
tions in the basin of attraction except for a set of Lebesg
measure zero. The spectrum of an infinite number of fra
dimensions quantifies the behavior of the natural meas
@6#.

As a physical example, we consider a forced damped p
dulum

dx

dt
5y, ~2!
6531 © 1997 The American Physical Society
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dy

dt
520.05y2sinx12.5 sint.

Figure 1~a! shows, on the stroboscopic surface of sect
defined at discrete timestn52pn, n51,..., a trajectory of
1.53105 points on the chaotic attractor, where the absci
and the ordinate are the anglex(tn) and the angular velocity
y(tn)[dx/dtu tn of the pendulum, respectively. Figure 1~b!

shows the one-dimensional probability distribution on t
attractor aty522. To obtain Fig. 1~b!, we define a one-
dimensional array of 1000 rectangular cells in thex direction
at y522. The size of each cell is 2p/100030.06. We then
compute, from a trajectory of 107 points on the surface o
section ~after a sufficiently long initial transient!, the fre-
quencies of visit of the trajectory to each cell. In fact, pro
ability distributions on any line intersecting the chaotic

FIG. 1. For the forced damped pendulum system~2!, ~a! a tra-
jectory of 1.53105 points on the chaotic attractor on the strob
scopic surface of section and~b! the distribution of the natura
measure in a one-dimensional array of 1000 rectangular cells in
x direction aty52. The size of each cell is 2p/100030.06. Nu-
merically, the total measure contained in the attractor is normal
to unity. Apparently, the natural measure is singular.
n

a

-
-

tractor exhibit a similar behavior. These results sugges
highly singular probability distribution on the chaotic attra
tor.

It is known that a chaotic attractor has embedded wit
itself an infinite number of unstable periodic orbits. The
periodic orbits areatypical in the sense that they form
Lebesgue measure zero set. With probability one, rando
chosen initial conditions do not yield trajectories that ex
on unstable periodic orbits. Invariant measures produced
unstable periodic orbits are thus atypical and there are
infinite number of such atypical invariant measures emb
ded in a chaotic attractor. The hot and cold spots are a
flection of these atypical measures. The natural measure
the other hand, is typical in the sense that it is generated
a trajectory originated from any one of the randomly chos
initial conditions in the basin of attraction. A typical trajec
tory visits a fixed neighborhood of any one of the period
orbits from time to time. Thus chaos can be considered
being organized with respect to the unstable periodic or
@7#. An interesting question is then how the natural meas
is related to the infinite number of atypical invariant me
sures embedded in the attractor.

In 1988, Grebogi, Ott, and Yorke addressed this fun
mental question in Ref.@3#, in which they derived, for the
special case of hyperbolic chaotic systems@4#, a formula
relating the natural measure of the chaotic set in the ph
space to the expanding eigenvalues of all the periodic or
embedded in the set. Specifically, consider anN-dimensional
map M ~x!. Let xip be the i th fixed point of the
p-times-iterated map, i.e.,M p(xip)5xip . Thus eachxip is on
a periodic orbit whose period is eitherp or a factor ofp. The
natural measure of a chaotic attractor in a phase-space re
S is given by

m~S!5 lim
p→`

(
xipPS

1

L1~xip ,p!
, ~3!

whereL1(xip ,p) is the magnitude of the expanding eige
value of the Jacobian matrixDM p(xip) and the summation is
taken over all fixed points ofM p(x) in S. The derivation of
this formula was done under the assumption that the ph
space can be divided into cells via a Markov partition,
condition that is generally satisfied in hyperbolic chaotic s
tems. Explicit verification of this formula was done for se
eral analyzable hyperbolic maps@3#. Equation~3! is theoreti-
cally significant and interesting because it provides
fundamental link between the natural measure and var
atypical invariant measures embedded in a chaotic attrac

In this paper we present evidence for the validity of E
~3! for nonhyperbolic chaotic sets. We take two approach
~i! a direct check, to compare the natural measure compu
from a typical trajectory with that computed from unstab
periodic orbits according to Eq.~3!, and ~ii ! an indirect
check, to compare the average physical quantities compu
from a typical trajectory with those computed from the pe
odic orbits. Results with the He´non map for which periodic
orbits can be enumerated lend credence to the conjecture
the unstable periodic-orbit theory of the natural measure
applicable to nonhyperbolic chaotic systems. A short acco
of this work has been discussed recently@8#.

The rest of the paper is organized as follows. In Sec. II
describe the rigorous derivation of Eq.~3! for hyperbolic

he
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56 6533CHARACTERIZATION OF THE NATURAL MEASURE BY . . .
chaotic systems@3#. In Sec. III we lay out our approaches
verify Eq. ~3! for nonhyperbolic chaotic systems. In Sec.
we test Eq.~3! for nonhyperbolic chaotic attractors. In Se
V we provide evidence for the validity of Eq.~3! for nonhy-
perbolic chaotic saddles. In Sec. VI we present a discuss

II. UNSTABLE PERIODIC-ORBIT THEORY
OF THE NATURAL MEASURE

FOR HYPERBOLIC CHAOTIC SYSTEMS

To obtain Eq.~3! @3#, we first cover the chaotic set with
grid of partitioning cells, each being confined by segments
the stable and unstable manifolds. If the cells are small c
pared to the size of the phase-space region in which
chaotic set lies, each cell can be regarded as being recta
lar, as shown in Fig. 2~a!, where the horizontal and vertica
sides are segments of the stable and unstable manifolds
spectively. Denote this cell byCi . Now imagine that we
choose a large number of initial conditions according to
natural measure. The natural measure contained in the ceCi
is the fraction of trajectories that return toCi in the limit
where the number of iterationsn→`. Let x0 be an initial
condition in the cellCi , as shown in Fig. 2~a!. Due to recur-
rence or ergodicity, the trajectory fromx0 returns to some

FIG. 2. ~a! Initial conditionx0 in the cellCi and the pointxp that
returns toCi after p iterations.~b! Rectanglee f gh maps to rect-
anglee8 f 8g8h8 after p iterations. There must then be a fixed poi
xip of the p-times-iterated map inCi .
n.

f
-
e

gu-

re-

e

point xp in Ci , say, afterp iterations, as shown in Fig. 2~a!.
Let ab be the horizontal line segment throughx0 ending at
the two unstable-manifold segments andc8d8 be the vertical
line segment throughxp ending at the two stable-manifol
segments, as shown in Fig. 2~b!. Sinceab is parallel to the
stable-manifold segments and sincex0 maps toxp after p
iterations, the image ofab under thep-times-iterated map
M p(x) is a shorter horizontal line segmenta8b8 straddling
xp . Similarly, thepth preimage ofc8d8 is a shorter vertical
line segmentcd straddlingx0 . Now construct two rectangle
e f gh and e8 f 8g8h8 with side lengths (ab,cd) and
(a8b8,c8d8), respectively, as shown in Fig. 2~b!. We see
that the rectanglee f gh maps to the rectanglee8 f 8g8h8 un-
der M p(x). Since both rectangles have a common overl
ping region and since the dynamics is contracting in the h
zontal direction and expanding in the vertical direction, the
must be at least one point in the overlapping region wh
location is not influenced by the action of thepth-iterated
map M p(x). That is, there must be an unstable fixed po
xip of M p(x) in the overlapping region in cellCi .

To estimate the contribution to the natural measure fr
the fixed pointxip , we assume thatc8d8 has a lengthe. Thus
we havee/L1(xip) for the length ofcd, whereL1(xip) is the
unstable~expanding! eigenvalue of the fixed pointxip . Since
the natural measure is uniform along the unstable direct
we see that associated with the unstable fixed pointxip , the
fraction of trajectories that returns toCi in p iterations is

@e/L1~xip!#/e51/L1~xip!.

Taking into consideration all the unstable fixed points co
tained inCi and taking the limitp→`, we obtain Eq.~3!.

The above argument applies to situations where a g
partition of the phase space exists such that the shorter
segmentsa8b8 andcd in Fig. 2~b! are completely contained
in the cell Ci . For hyperbolic systems, such a partition e
ists, which is the Markov partition@9#. Therefore, Eq.~3! is
rigorously valid for hyperbolic dynamical systems@3#. The
argument becomes problematic for nonhyperbolic syste
A grid of cells in which each cellCi looks like the cell in
Fig. 2 cannot be constructed because of the set of an infi
number of tangency points between the stable and unst
manifolds@4#. Due to this difficulty, it is not clear whether
rigorous argument can be constructed for nonhyperbolic c
otic sets in a similar way. Therefore, the applicability of E
~3! to nonhyperbolic chaotic systems remains only a conj
ture.

III. NUMERICAL METHODS

We study two-dimensional invertible maps, which in pri
ciple can be obtained from a system of three-dimensio
ordinary differential equations through a Poincare´ surface of
section. A possible way to test the applicability of Eq.~3! to
nonhyperbolic chaotic systems is by systematic and ex
sive numerical computation. Specifically, we perform t
following two tests.

(i) Direct check.We cover the chaotic set with a fine gri
of cells and compute the natural measurem i in each non-
empty cell Ci according to Eq.~1!. We then compute the
measurem i(p) that is due toall the fixed points of the
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6534 56YING-CHENG LAI
p-times-iterated map contained in each cellCi according to
Eq. ~3!. Let

Dm~p![A(
i 51

N

@m i~p!2m i #
2/N, ~4!

whereN is the number of cellsCi with nonzero natural mea
sure. We find thatDm(p) decreases exponentially as th
periodp increases,

Dm~p!;exp~2ap!, ~5!

wherea.0 is the scaling exponent. Equation~5! indicates
that the natural measure computed from the periodic or
approaches exponentially the one computed from a typ
trajectory, thereby validating Eq.~3!.

(ii) Indirect check.We compare the average values
physical quantities with respect to the natural measure ev
ated from typical trajectories and those evaluated from
unstable periodic orbits. Consider a smooth scalar func
F(x,y) that represents some physical quantity of interest.
^F& be the average value ofF(x,y) evaluated with respect to
the natural measure given by Eq.~1! and let^F&(p) be the
same function evaluated from the approximation of the na
ral measure in terms of all fixed points of th
p-times-iterated map as given by Eq.~3!. For a typical tra-
jectory $xn ,yn%n50

` on the chaotic set,̂F& can be computed
using the time average and ergodicity of the chaotic set

^F&5E F~x,y!dm5 lim
N→`

1

N (
n51

N

F~xn ,yn!, ~6!

whereaŝ F&(p) is computed via

^F&~p!5 (
j 51

N~p!

m j~p!F1

p (
i 51

p

F~xji ,yji !G , ~7!

where (xji ,yji ) ( i 51, . . . ,p) are thej th fixed points of the
p-times-iterated map andN(p) is the total number of the
fixed points of thep-times-iterated map, which scales withp
as

N~p!;ehTp. ~8!

The scaling exponenthT is the topological entropy of the
chaotic set. We find again that for both nonhyperbolic c
otic attractors and nonhyperbolic chaotic saddles the dif
enceDF(p)[u^F&(p)2^F&u decreases exponentially as th
periodp increases:

DF~p!;exp~2ap!, ~9!

thereby furnishing further credance to the conjecture that
~3! applies to nonhyperbolic chaotic systems as well.

From Eq.~3!, we see that ifS is a phase-space region th
contains the entire chaotic set, we have

m~S!5 lim
p→`

(
i 51

N~p!
1

L1~xip ,p!
51.
ts
al

u-
e
n
t

-

-
r-

q.

For finite but large period p, the quantity
( i 51

N(p)@1/L1(xip ,p)# is close to unity, but it is not exactly
equal to unity. Thus we use the following rescaled value
m j (p) in Eq. ~7!:

m j~p!5
1/L1~xjp ,p!

(
i 51

N~p!

1/L1~xip ,p!

, j 51, . . . ,N~p!. ~10!

IV. NONHYPERBOLIC CHAOTIC ATTRACTORS

In order to be able to test the applicability of Eq.~3! to
nonhyperbolic chaotic systems, it is necessary to choos
model for whichall unstable periodic orbits of up to reaso
ably high periods can be computed numerically. We cho
the Hénon map@10#

xn115a2xn
21byn , yn115xn . ~11!

We studya51.4 andb50.3, a parameter setting for whic
the map apparently possesses a chaotic attractor. The a
tor is apparently nonhyperbolic because a rigorous comp
tion of the stable and unstable manifolds@11# points towards
the existence of an infinite number of tangency points
these manifolds on the attractor. Figure 3 shows the distr
tion of the natural measure on the attractor, where a grid
1283128 cells is used to cover the region~22<x<22,
22<y<2! in which the attractor lies and a trajectory o
length 107 from a random initial condition is used to com
pute the natural measure contained in each cell. The qua
m i in Eq. ~4! in each nonempty cellCi is approximately the
fraction of time that the trajectory visits the cell. The dist
bution of m i is apparently singular.

The Hénon map is one of the very few model systems
which there is a numerical algorithm to compute, in pri
ciple, all unstable periodic orbits of arbitrarily high period
@12#. We have computed all the periodic orbits up to peri
30. Figure 4~a! shows the locations of all 4498 periodic o

FIG. 3. Distribution of the natural measure on the He´non attrac-
tor, where a grid of 1283128 cells is used to cover the regio
~22<x<22, 22<y<2! in which the attractor lies and a trajec
tory of length 107 from a random initial condition is used to com
pute the natural measure contained in each cell.
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56 6535CHARACTERIZATION OF THE NATURAL MEASURE BY . . .
bits of period 25. The plot resembles that of the attrac
itself, indicating that the periodic orbits are apparently de
on the attractor. Figure 4~b! showsN(p) versusp for 9<p
<30 on a logarithmic scale, the slope of which is appro
mately the topological entropyhT of the attractor. The plot
giveshT50.41660.003.

A. Direct check

When a 1283128 grid of cells is used to cover the regio
22<(x,y)<2 in Fig. 3, we find that there are 909 no
empty cells that a trajectory of 107 iterations on the chaotic
attractor visits. We then compute, in each nonempty cell,
the fixed pointsxip of the p-times-iterated map and the
associated expanding eigenvaluesL1(xip ,p) to obtain the
quantitym i(p) in Eq. ~4!. Figure 5~a! shows lnDm(p) versus
p for 6<p<30. We observe the scaling relation~5!, where
a'0.14 is the scaling exponent. Thus we see that the qu
titative characterization of the natural measure of the cha
attractor by unstable periodic orbits becomes exponenti

FIG. 4. ~a! Locations of all 4498 periodic orbits of period 2
embedded in the He´non attractor.~b! N(p), the number of periodic
orbits of periodp, versusp for 9<p<30 on a logarithmic scale
The slope of the fitted straight line is approximately the topologi
entropyhT of the attractor, which ishT50.41660.003.
r
e

-

ll

n-
ic
ly

accurate as the periodp increases. Asymptotically, we hav
Dm(p)→0, indicating the applicability of Eq.~3! to nonhy-
perbolic chaotic sets. It is interesting to note that the som
what large fluctuations in Fig. 5~a! is partly due to the fact
that there are fewer periodic orbits of lower periodp, since
their number increases withp exponentially, where the ex
ponential rate is the topological entropy. Figure 5~b! shows
the period-p natural measure of the entire attractormS(p)
[( i 51

N(p)m i(p) versus p. It can be seen thatmS(p) ap-
proaches unity rapidly asp increases. The dashed line in Fi
5~a! is lnDm(p) versusp, but the quantitym i(p) is rescaled
by mS(p), as in Eq.~10!. The rescaled plot has a slope sim
lar to the unscaled one~the solid line!, but the fluctuations
are smaller. We find that Eq.~5! appears to hold regardles
of the fineness of the grid used to cover the attractor.
instance, plots almost identical to those in Fig. 5~a! are ob-
tained when grids 64364 and 2563256 are used. Thus we
expect Eq.~3! to be valid for any phase-space region co
taining part of the chaotic set in nonhyperbolic systems.

To understand theexponentialscaling law~5!, we utilize
a simple one-dimensional analyzable model: the doub
transformationxn1152xnmod(1). All periodic orbits of pe-
riod p of this map have the same eigenvalue 2p. Divide the
unit interval into N bins so that the size of each bin ise
51/N. The natural measure contained in each bin ise be-
cause it is uniform in the unit interval. There are (2p

61)/N fixed points of thepth-fold map in each bin so tha
m i(p)5@(2p61)/N#/2p5e(1622p). Thus we have
Dm(p)5um i(p)2eu;22p5exp(2p ln2). Notice that the

l

FIG. 5. For the He´non chaotic attractor,~a! lnDm(p) versusp.
We have, approximately,Dm(p);e20.14p. ~b! Total period-p natu-
ral measuremS(p) computed from Eq.~3! using all the period-p
orbits. The total measure approaches to unity asp increases. The
dashed line in~a! is ln Dm(p) versusp, but the quantitym i(p) is
rescaled bymS(p).
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6536 56YING-CHENG LAI
scaling exponent for the doubling transformation is ln
which is the topological entropy. This is due to the fact th
the natural measure is uniform and all periodic-orbit poi
have the same eigenvalue. For more complicated nonhy
bolic systems, such as the one in our numerical example
natural measure is highly nonuniform and the posit
Lyapunov exponents of all the period-p orbits are not the
same but obey some probability distribution with width pr
portional toAp @13#. Thus the scaling exponent in Eq.~5! is
less than the topological entropy. We have also checked
scaling ~5! for another hyperbolic map, the Kaplan-York
map@14#, and have found that the exponent is approximat
the topological entropy. It is thus interesting to note th
nonhyperbolicity makes the scaling exponent deviate fr
the topological entropy, but nonetheless the scaling law
still exponential.

B. Indirect check

For concreteness, we choose the following two smo
functions~rather arbitrarily! for a numerical test:

F1~x,y!5exp~x21y2!,

F2~x,y!5cos
p

4
~x1y!1sin

p

4
~x1y!. ~12!

To compute^F1& and ^F2& we use 106 trajectories, each
having a length of 500 and resulting from a random init

FIG. 6. ~a! Average value^F1&(p) of the physical function
F1(x,y)5exp(x21y2) computed from all periodic orbits of perio
p. As the periodp increases,̂ F1&(p) asymptotically approache
^F1&, the average value computed from a typical trajectory.~b!
DF1(p)[u^F1&(p)2^F1&u versusp on a semilogarithmic scale
The plot suggests the scaling relation~9!.
,
t
s
er-
he

he

y
t

is

h

l

condition in the region20.5<(x,y)<0.5. The first 500 it-
erations are discarded for each trajectory. We obtain^F1&
534.13560.005 and ^F2&'0.98160.001. Figure 6~a!
shows^F1&(p) versusp. It can be seen that^F1&(p) rapidly
converges to^F1& as p increases. Figure 6~b! shows
DF1(p)[u^F1&(p)2^F1&u versusp on a semilogarithmic
scale. The plot can be fit roughly by a straight line, indicati
the scaling relation~9!, where the scaling exponenta is the
slope of the fit, which is approximately20.1960.07. Fig-
ures 7~a! and 7~b! show the same computation forF2(x,y),
where now the scaling exponent is approximately20.19
60.08. We note that there are large fluctuations in Figs. 6~b!
and 7~b!, resulting in large uncertainties in the estimation
the slopes. This is because we compute orbits only up
period 30. There is in principle no difficulty in computin
periodic orbits of higher periods, but the task has beco
practically infeasible at present. Despite uncertainties in
slopes, we see that Eq.~9! approximately holds for both
F1(x,y) andF2(x,y) with scaling exponents similar to tha
in Eq. ~5!. These results thus suggest that Eq.~9! holds re-
gardless of the details of the physical function, thereby p
viding additional support for Eq.~3! for nonhyperbolic cha-
otic attractors.

V. NONHYPERBOLIC CHAOTIC SADDLES

We now consider nonhyperbolic chaotic saddles. For
Hénon map atb50.3, a crisis occurs atac'1.426, after
which the chaotic attractor becomes a nonattracting cha
saddle@15#. Figure 8~a! shows a trajectory of 1.53105 points

FIG. 7. ~a! Average value^F2&(p) of the physical function
F2(x,y)5cos(p/4)(x1y)1sin(p/4)(x1y) computed from all pe-
riodic orbits of periodp. As the periodp increases,̂ F2&(p) ap-
proaches rapidlŷF2&. ~b! DF2(p)[u^F2&(p)2^F2&u versusp on
a semilogarithmic scale. The plot suggests the same scaling rel
~9! with a similar scaling exponent to that in Fig. 6~b!.
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56 6537CHARACTERIZATION OF THE NATURAL MEASURE BY . . .
the chaotic saddle fora51.5. The trajectory is computed b
using the PIM-triple method~where PIM denotes proper in
terior maximum! that is particularly designed for findin
continuous trajectories on chaotic saddles in tw
dimensional maps@16#. Computation of angles between th
stable and unstable directions reveals that the angle ca
arbitrarily close to zero, suggesting that the chaotic saddl
Fig. 8~a! is nonhyperbolic@17#. Figure 8~b! shows the distri-
bution of the natural measure on the chaotic saddle, whe
grid of 1283128 cells is used to cover the region22
<(x,y)<2 in which the chaotic saddle lies and 1000 traje
tories on the saddle, each having length 104, are used to
compute the natural measure contained in each cell.
natural measure is apparently highly singular. To verify E
~3!, we compute the periodic orbits embedded in the cha
saddle for periods up to 28. We did not go to higher perio
due to computer limitation, as the topological entropy of t
chaotic saddle is larger than that of the chaotic attracto
a51.4. Figure 9~a! shows the locations of all 4566 period
orbits of period 22. A comparison between Figs. 9~a! and
8~a! suggests that these periodic orbits appear to be dens
the chaotic saddle. Figure 9~b! shows lnN(p) versusp, from
which the topological entropy of the chaotic saddle is e

FIG. 8. ~a! Trajectory of 1.53105 points for the chaotic saddle
at a51.5 of the He´non map.~b! Highly singular distribution of the
natural measure on the chaotic saddle.
-
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mated to behT50.45860.008.
For nonattracting chaotic saddles, the natural meas

about thej th periodic orbit of periodp needs to be modified
to ep/t/L j , wheret is the average lifetime of an ensemble
trajectories staying in some phase-space region contai
the chaotic saddle@3#. But this modification does not affec
the rescaled natural measure defined in Eq.~10!. Figures
10~a! and 10~b! show lnDF1(p) and lnDF2(p) versusp, re-
spectively, where the asymptotic values^F1& and ^F2& are
computed by using 104 PIM-triple trajectories on the chaoti
saddle, each having length 1000 with 1000 preiterations.
plots can be roughly fit by straight lines, the slopes of wh
are20.2160.05 and20.2360.07 for Figs. 10~a! and 10~b!,
respectively. Thus we see that the periodic-orbit charac
ization of the natural measure seems to hold for nonhyp
bolic chaotic saddles as well.

VI. DISCUSSION

In summary, we have presented evidence for the valid
of the theory that relates the natural measure to unst

FIG. 9. ~a! Locations of all 4566 periodic orbits of period 2
embedded in the chaotic saddle in Fig. 8~a!. ~b! lnN(p) versusp,
from which we obtain the topological entropy of the chao
saddle: hT50.45860.008.
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periodic orbits for nonhyperbolic chaotic attractors and c
otic saddles. Our conclusion is that such a theory, wh
previously shown to be valid for hyperbolic systems@3#, is
apparently correct for nonhyperbolic chaotic systems t
Unstable periodic orbits play a pivotal role in determini
the dynamics on chaotic sets. These orbits are the fundam
tal building blocks of chaotic sets since they support
natural measure, apparently even for nonhyperbolic set
indicated by our numerical investigations herein. Dynami
invariants such as the Lyapunov exponents, topological
tropy, and even the spectrum of fractal dimensions of a c
otic set, hyperbolic or not, can now be determined based
the natural measures expressed in terms of the unstable

FIG. 10. ~a! lnDF1(p) and~b! lnDF2(p) versusp for the chaotic
saddle in Fig. 8~a!. Both plots suggest the scaling relation~9!.
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riodic orbits embedded in the set. The periodic-orbit theo
is conceptually appealing and is potentially useful for furth
theoretical or even practical developments@18,19#.

In order to characterize the natural measure by unsta
periodic orbits, it is necessary to compute the locations of
periodic orbits up to reasonably high periods, which is
general a difficult taskeven for discrete maps. However, we
believe that our results for nonhyperbolic chaotic systems
general because our numerical example, the He´non map, has
been a paradigm in the study of chaotic systems.

We stress in this paper that although the periodic-o
theory of the natural measure was confirmed numerically
utilizing exclusively discrete maps, we expect the theory
be valid for continuous chaotic systems as well. Our con
dence relies on the well-known fact that the dynamics o
continuous flow can be faithfully represented by that o
discrete map on a Poincare´ surface of section@20#. It has
then become possible for Eq.~3! to be tested because certa
discrete maps~not many of them, though! allow for the com-
putation of all periodic orbits up to some reasonably hig
periods. As such, our numerical results can be regarded a
indirect check for the periodic-orbit characterization of th
natural measure for continuous dynamical systems. It wo
certainly be interesting to be able to check the applicabi
of our theory for continuous systems directly, but this d
mands a direct computation ofall unstable periodic orbits up
to high periods for continuous flows. While certain period
orbits can be computed for continuous flows such as
Lorenz system@21#, at present we are not aware of any n
merical procedure that allows for asystematiccomputation
of all periodic orbits from a continuous system.
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