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Scaling laws for noise-induced temporal riddling in chaotic systems
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Departments of Physics and Astronomy and of Mathematics, The University of Kansas, Lawrence, Kansas 66045

~Received 20 January 1997!

Recent work has considered the situation of riddling where, when a chaotic attractor lying in an invariant
subspace istransversely stable, the basin of the attractor can be riddled with holes that belong to the basin of
another attractor. The existence of invariant subspace often relies on certain symmetry of the system, which is,
however, a nongeneric property as system defects and small random noise can destroy the symmetry. This
paper addresses the influence of noise on riddling. We show that riddling can actually be induced by arbitrarily
small noise even in parameter regimes where one expects no riddling in the absence of noise. Specifically, we
argue that when there are attractors located off the invariant subspace, the basins of these attractors can be
temporally riddled even when the chaotic attractor in the invariant subspace istransversely unstable. We
investigate universal scaling laws for noise-induced temporal riddling. Our results imply that the phenomenon
of riddling is robust, and it can be more prevalent than expected before, as noise is practically inevitable in
physical systems.@S1063-651X~97!01410-4#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Symmetry and invariance are common in mathemat
models of physical systems@1#. Such intrinsic properties in
the system’s equations can lead to intriguing and interes
dynamical consequences. The notion of symmetry and
variance is, however,nongenericbecause realistic system
imperfections and/or environmental noise can destroy sys
symmetry. An important question in the study of dynamic
systems is then how the phenomena derived from the inv
ant properties in the models manifest themselves in prac
situations where system defects and noise are inevitable

This paper concerns a study of the effect of noise
chaotic systems with an invariant subspace. Specifically,
consider the following class ofN-dimensional dynamica
systems:

xn115f~xn!1high order terms ofyn1esn
x ,

~1!

yn115G~xn ,yn ,p!1esn
y ,

wherexPRNS (NS>1), yPRNT (NT>1), NS1NT5N, f~x!
is a nonlinear map that can exhibit chaos,e is the noise
amplitude ~small!, sn

x and sn
y are random variables with

smooth probability distributions, andp is the bifurcation pa-
rameter. The vector functionG(x,y,p) satisfies the condition
G(x,0,p)50 so thaty50 is an invariant subspace of th
system in the absence of noise. That is, in the noiseless
ation, if a trajectory starts from an initial condition withy0
50, then the trajectory hasyn50 for all subsequent itera
tions. In general, the invariant subspace can be regarde
resulting from a simple type of symmetry in the functio
G(x,y,p), e.g.,G(x,2y,p)52G(x,y,p). In this paper we
restrict our study to the case where the dynamics in the
variant subspace, governed by the mapf~x!, is chaotic. The
largest Lyapunov exponent for the dynamics in the invari
subspace is therefore positive. For trajectories lying in
invariant subspace, their transverse stability is determined
the following largest transverse Lyapunov exponent:
561063-651X/97/56~4!/3897~12!/$10.00
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lnU]yn11

]yn
U

yn50

•uU , ~2!

whereu is a random unit vector in the transverse subsp
RNT.

Chaotic systems with an invariant subspace, mathem
cally described by Eq.~1!, are of physical interest. The
occur naturally in systems with spatial symmetry. Anoth
important class of such systems is coupled oscillators
model a large variery of phenomena in physics, chemis
biology, and ecology. Consider, for example, the followi
system ofN coupled identical chaotic oscillators:

dxi

dt
5F~xi !1e(

j
H~xi2xj !, i 51, . . . ,N ~3!

where the statexi of each oscillator, when isolated, is ch
otic, and the coupling is represented by the strengthe and the
function H(xi2xj ) which satisfies the propertyH(0)50.
The synchronous statexi(t)5xj (t) ( i , j 51, . . . ,N) is obvi-
ously a solution to Eq.~3!. In such a case, the dynamic
equation is identical for each oscillator so that oscillato
started being synchronized remain so forever. Thus the s
space defined byxi(t)5xj (t) ( i , j 51, . . . ,N) is an invariant
subspace in which the dynamics is chaotic@2–4#.

A series of recent works has revealed that there are
usual but interesting consequences in dynamical syst
with an invariant subspace. A striking phenomenon is
occurrence ofriddling in these systems@3–9#. When there is
a chaotic attractor in the invariant subspace and anothe
tractor ~say, nonchaotic! off the invariant subspace, ifLT is
negative so that the chaotic attractor is stable with respec
transverse perturbations, the basin of the chaotic attractor
be riddled with holes of arbitrarily small size belonging
the basin of the attractor off the invariant subspace@5#. An
important implication of riddling is that the prediction of th
final asymptotic attractor for specific parameter and init
conditions becomes extremely difficult. It has been dem
3897 © 1997 The American Physical Society
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3898 56YING-CHENG LAI
strated that the onset of riddling, or the riddling bifurcatio
is typically induced by the loss of the transverse stability
some periodic orbits of low periods embedded in the cha
attractor@8#. The riddling bifurcation is also called the bub
bling bifurcation @3# from the viewpoint of invariant mea
sures. Note that in the parameter regime where there is
dling, LT remains negative. As the system parameterp
changes further passing through a critical pointpc , LT can
become positive. This is referred to as the blowout bifur
tion after which typical trajectories on the chaotic attrac
become transversely unstable@7,3#. After the blowout bifur-
cation, riddling of the chaotic attractor in the invariant su
space disappears.

As we have mentioned, the notion of invariant subspac
nongeneric. An arbitrarily small amount of asymmetry in th
system and/or random noise in the environment render
possible confinement of trajectories in the subspace whic
invariant in the absence of asymmetry and/or noise. In r
istic noisy systems, one thus expects the chaotic attracto
the invariant subspace to become a chaotic transient. An
teresting question is whether the dynamical phenomeno
riddling associated with the notion of invariant subspaceper-
sists in practical situations where noise is inevitable. In th
regard, for parameter values slightly above the riddling
furcation ~or bubbling bifurcation!, it has been shown tha
asymmetry and/or noise convert the chaotic attractor in
invariant subspace into a superpersistent chaotic trans
and there are universal scaling laws associated with the
otic transients@8,10#. Thus, if one observes the system
practical time scales, the superlong transient chaos ca
regarded as ‘‘sustained’’ chaos. In this case, the concep
riddling is still meaningful.

In this paper we address the influence of noise on ridd
in parameter regimes about the blowout bifurcation. W
present analysis and numerical verification which indic
that small noise can actuallyinduceriddling for the class of
system described by Eq.~1! near the blowout bifurcation
Thus, quite contrary to intuition, there are situations wh
noise does not destroy riddling completely but instead c
ates riddling down to the scale comparable to the noise
plitude. Specifically, we argue thatboth below and abovethe
blowout bifurcation, if there are coexisting attractors loca
off the invariant subspace, riddling in the temporal basins
these attractors can still occur when there is small-amplit
noise present. We call this type of riddling thenoise-induced
temporal riddling. For parameter values below the blowo
bifurcation point, noise destroys riddling of the chaotic
tractor in the invariant subspace, but noise creates temp
riddling for attractors off the invariant subspace. For para
eter values above the blowout bifurcation, noise can a
induce temporal riddling for the attractors off the invaria
subspace. This is particularly intriguing because in this ca
if there is no noise, riddling of the chaotic attractor in t
invariant subspace disappears since it is transversely
stable.The main implication is that the phenomenon of r
dling may be more prevalent than expected before, as n
is inevitable in practical situations. Thus, although invarian
subspaces are atypical, physical consequences due to
persist or can even be induced by internal and/or exte
disturbances in realistic environments. A short account
this work has been reported in@9#.
,
f
ic

d-

-
r

-

is

-
is
l-
in
n-
of

i-

e
nt,
a-

be
of

g
e
e

e
-
-

d
f
e

-
ral
-
o

t
e,

n-

se

em
al
f

We stress that riddling induced by noise istemporalin the
sense that the fine structure of the basin of an attractor is
varying due to noise. Given an initial condition, noise m
make it eventually asymptote to one of the coexisting attr
tors. For the same initial condition, noise can kick it into t
basin of another attractor at a different time. The riddl
basins induced by noise are thus not spatially fixed in
phase space. Noise-induced riddling is therefore only tem
ral and its gross structure is defined only in spatial sca
which are larger than the noise amplitude. This is fundam
tally different from the notion of riddled basins in the a
sence of noise in which arbitrarily fine structures of the ba
are fixed in time. In this case, riddling is spatial because
reference to time is needed.

The rest of the paper is organized as follows. In Sec. II
give a general argument to the phenomenon of noise-indu
temporal riddling. In Sec. III we consider a simple mod
where noise-induced temporal riddling and the associa
scaling laws can be obtained analytically. Based on
analysis with this solvable model, we argue that the sca
laws are universal. In Sec. IV we study a numerical mo
which is a realization of the general model Eq.~1! and verify
the universal scaling laws. Discussions are presented
Sec. V.

II. NOISE-INDUCED TEMPORAL RIDDLING

We now present a qualitative argument for the pheno
enon of noise-induced temporal riddling. Sincepc is the
blowout bifurcation point, we haveLT,0 for p,pc and
LT>0 for p>pc @11#. Let S be the invariant subspace. As
sume there are two attractors, denoted byA and B, one
above and another belowS. When noise is absent, forp
&pc there are two Cantor-like closed sets of positive L
besgue measure in the phase space, one above and an
belowS. These sets are transversely stable. Points in the
are attracted towardsS and hence they belong to the basin
the chaotic attractor inS. Since the Cantor-like sets ar
closed and have positive measures, the basin of the cha
attractor inS is riddled. The complement sets of the tw
Cantor-like closed sets are two open dense sets that belo
the basins of the attractorsA andB, respectively. This situ-
ation is shown schematically in Fig. 1. Forp*pc , the
Cantor-like sets are still transversely stable but they h
Lebesgue measure zero and henceS is now transversely un-
stable. In this case, the chaotic attractor inS becomes a re-
peller in the transverse direction, and trajectories above~be-
low! S are repelled away fromS and are eventually attracte
to A(B). The entire phase-space regions above and beloS
are the basins of attraction for typical trajectories to the
tractorsA andB, respectively. Therefore there is no riddlin
for p*pc when there is no noise.

To see how small noise can induce temporal riddling,
note that the Cantor-like sets become ‘‘fattened’’ in t
phase space in the presence of small noise. For bothp below
pc andp abovepc , trajectories can come arbitrarily close
S due to the transversely stable Cantor-like sets. So, the
a nonzero probability that trajectories aboveS can be kicked
acrossS and be attracted towardsB due to noise, as shown in
Fig. 1. The initial conditions in the fattened Cantor-like s
aboveS can thus be in the basin ofB ~the noise-induced
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temporal basin ofB! and form a riddled structure. By sym
metry, the basin ofA belowS is also temporally riddled. We
emphasize that the temporal riddling of the attractors ofS
occurs on both sides ofpc , but in the phase space, the ri
dling is observable only at spatial scales larger than the n
amplitude.

The above argument for noise-induced temporal riddl
is only qualitative. To quantify it, we consider a simple an
lyzable model for which noise-induced temporal riddling c
be understood fairly completely and universal scaling la
can be derived.

III. AN ANALYZABLE MODEL

A. Model description and scaling laws

We consider an analyzable model@6,9# with additive
noise. For simplicity, we emphasize two-dimensional ph
space, so the invariant subspace is one dimensional.
main part of the model is the following two-dimensional m
defined in the region 0<x<1 and21,y,1:

xn115 H ~1/a!xn1esn for xn,a
~1/b!~xn2a!1esn for xn.a,

~4!

yn115 H cyn1esn for xn,a and uyu,1
dyn1esn for xn.a and uyu,1,

where 0,a,1, b512a, c.1, 0,d,1, and esn is the
small noise term. Whene50, the invariant subspace~line! is
y50 in which there is a chaotic attractor with Lyapuno
exponentLx5a ln(1/a)1b ln(1/b).0. They dynamics in-
volves both expansion and contraction in21<y<1. As-
suming that there are two fixed-point attractors located
( x̄,6 ȳ), whereȳ.1 and 0, x̄,1, and further assuming tha
a trajectory withuyu.1 approaches exponentially to one
the fixed points, we write the dynamics in theuyu.1 region
as

xn115 x̄1e2lx~xn2 x̄!, ~5!

FIG. 1. A schematic illustration of two invariant sets in th
phase space forp near the blowout-bifurcation pointpc . One is
open dense and transversely unstable, another is transversely
but closed. The two symmetric closed sets above and belowS cor-
respond to the noise-induced basins.
se

g
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yn115H ȳ1e2ly~yn2 ȳ! for yn>1

2 ȳ1e2ly~yn1 ȳ! for yn<21,

wherelx.0 andly.0. The model is schematically show
in Fig. 2~a!. The transverse Lyapunov exponent for trajec
ries confined to the invariant line is

L'5a ln c1b ln d.

Thus, if a is the bifurcation parameter, a blowout bifurcatio
occurs at

ac5
u ln du

~ ln c1u ln du!
, ~6!

whereL'>0 for a>ac andL',0 for a,ac . Fore50 and
a,ac , the basin of they50 chaotic attractor is riddled in
the region~0<x<1, 21<y<1!. For e50 anda>ac , this
chaotic attractor is transversely unstable and, so, except
set of Lebesgue measure zero, the upper half plane (y.0)
and the lower half plane (y,0) are the basins of they5
1 ȳ andy52 ȳ attractors, respectively. ForeÞ0 anda near
ac , as described in Sec. II, there is a nonzero probability t
the trajectory from an initial condition in the upper~lower!
unit square asymptotes to the fixed-point attractor

able

FIG. 2. Schematic illustration for~a! the analyzable model Eqs
~4! and~5!, and~b! the random-walk picture with initial and bound
ary conditions in the diffusion approximation.
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2 ȳ ( ȳ). Thus there are now noise-induced temporal bas
in the upper and lower unit squares in parameter regim
about the blowout bifurcation.

We now quantitatively characterize the noise-induc
temporal riddling. First, we consider scaling of the fracti
of noise-induced temporal basins. Say we fix a line segm
0<x<1 at y5y0*0 and choose a large number of initi
conditions from it. IfeÞ0, a fraction of these initial condi
tions is in the basin of the fixed-point attractor at2 ȳ. De-
note this fraction byFe . Apparently,Fe depends both one
and ony0 . For fixed y0 , as e increases, we expectFe to
increase because it is more likely for a trajectory to be kick
throughy50 by larger noise. For fixed noise amplitudee, if
the line segment is further away fromy50, it is less likely
for an initial condition to be in the2 ȳ basin. Thus we expec
Fe to decrease asy0 increases at fixede. We find that for
small e andy0 , Fe obeys the algebraic scaling law

Fe;emy0
2g , ~7!

wherem.0 andg.0 are the scaling exponents that satis
m5g.

Second, we consider the probability for two nearby init
conditions to asymptote to different attractors. Specifica
we choose two initial conditions which ared distance apart
on a line segment 0<x<1 at y0 , whered!1. Let ^PU(d)&
be the probability for these two initial conditions to asym
tote to different attractors. This probability is thus the unc
tain probability with respect to small perturbationd. We find
that ^PU(d)& scales algebraically withd,

^PU~d!&;da, ~8!

where the scaling exponenta is positive but its value is very
close to zero; it is called the uncertainty exponent@12#. As
we will see later,a being close to zero has significant co
sequence regarding the predictability of the final asympt
attractor of the system for specific initial conditions and p
rameters.

The scaling laws~7! and ~8! are the main quantitative
results of this paper. We emphasize that the notion of ba
here is only in the probabilistic sense. Under the influence
noise, apparently there are no fixed basins in the phase s
Temporal riddling occurs at scales which are larger than
noise amplitude. Thus, given an initial condition, the mea
ingful question to ask concerns theprobability of whether
this initial condition is in the1 ȳ basin or in the2 ȳ basin.

B. Random walk and diffusion approximation

Concentrating on they.0 half plane and defining
Yn[2 ln yn for y<1, in the noise-free case we obtain
random walk in terms ofYn for the y dynamics:Yn115
gn1Yn , where gn5 c̄[2 ln c,0 with probability a and
gn5d̄[2 ln d.0 with probability b512a. We are inter-
ested in the parameter regime near the blowout bifurca
because in this case,on averagethe trajectory moves slowly
in they direction and, hence, the random walk can in gene
be solved by using the diffusion approximation. L
P(Y,Y0 ,n) be the probability distribution function forY
s
s

d

nt

d

l
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-
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-

in
f
ce.
e
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n

l

~given thatx0 is chosen randomly on the horizontal line se
ment aty5y0 , 0<x0<1!, we obtain the following diffusion
equation forP(Y,Y0 ,n) @13#:

]P

]n
1n

]P

]Y
5D

]2P

]Y2 , ~9!

where n5ac̄1bd̄52L' is the average drift, andD
[ 1

2 Š(dY2^dY&)2
‹5 1

2 ab( c̄2d̄)2 is the diffusion coefficient
~the averagê & is with respect to initial random values o
x0!. For concreteness, we treat the case wherea*ac . The
case wherea&ac can be treated similarly. Fora*ac we
have n&0, indicating that on average,Y gradually ap-
proaches 0~or y→1!. For y*1, the trajectory rapidly as-
ymptotes to the fixed point atȳ and hence there is an absor
ing barrier for the random walker atY50. Thus we have the
boundary condition

P~0,Y0 ,n!50. ~10!

Since all initial conditions start fromy0 , where 0,y0,1 ~or
Y0.0,! we have the initial condition

P~Y,Y0,0!5d~Y2Y0!. ~11!

To model the effect of noise, we note that once a traject
falls within distancee of y50, it can tunnel throughy50
and asymptotes to they52 ȳ attractor. Roughly, there is a
absorbing boundary for the random walker atē[ ln(1/e)
.0. As a crude approximation, we have the followin
boundary condition:

P~ ē,Y0 ,n!50. ~12!

Figure 2~b! shows schematically the boundary and init
conditions~10!–~12! for the random walker. The diffusion
equation~9!, together with Eqs.~10!–~12!, can be solved by
using the standard Laplace-transformation method@13#. Let-
ting

P̄~Y,Y0 ,s![E
0

`

P~Y,Y0 ,n!e2sndn

be the Laplace transform ofP(Y,Y0 ,n), we obtain from Eq.
~9! the following second-order ordinary differential equatio
for P̄(Y,Y0 ,s):

D
d2P̄~Y,Y0 ,s!

dY2 1L'

dP̄~Y,Y0 ,s!

dY
2sP̄~Y,Y0 ,s!

52d~Y2Y0!. ~13!

With the boundary conditions~10! and ~12!, and the condi-
tion that P̄(Y,Y0 ,s) is continuous atY0 , we obtain the so-
lution

P̄~Y,Y0 ,s!5 H A@el1Y2e~l12l2! ē 1l2Y#, Y>Y0

AB~el1Y2el2Y!, Y,Y0
~14!

where the coefficientsA andB are given by
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A5
1

D~l22l1!

e2l2Y02e2l1Y0

e~l12l2! ē 21
,

~15!

B5
el1Y02e~l12l2! ē 1l2Y0

el1Y02el2Y0
,

and

l15 1
2 h~D21!,

l252 1
2 h~D11!,

~16!

h5L' /D.0,

D5A114Ds/~L'
2 !.

C. Scaling of the fraction of noise-induced temporally
riddled basins

We can now calculateFe , the fraction of the noise-
induced temporally riddled basins. Since approximately,
jectories in the upper unit square falling within distancee of
y50 are considered as being able to penetrate througy
50 and to asymptote to the fixed-point attractor at2 ȳ, Fe is
roughly the total probability flux through the absorbin
boundary atY5 ē for the random walker. From the diffusio
equation~9!, the instantaneous flux throughY5 ē ~the prob-
ability throughē per unit time! is

f e~n!5dP~ ē,Y0 ,n!ug2 ē 2D
dP~Y,Y0 ,n!

dY U
Y5 ē

52D
dP~Y,Y0 ,n!

dY U
Y5 ē

. ~17!

The fractionFe is given by

Fe5 lim
n→`

Fe~n!,

whereFe(n) is the flux throughY5 ē in time n,

Fe~n!5E
0

n

f e~n!dn52E
0

n

D
dP~Y,Y0 ,n!

dY U
Y5 ē

dn.

~18!

The Laplace transform ofFe(n) is

F̄e~s!5E
0

`

Fe~n!e2sndn52
D

s

dP̄~Y,Y0 ,s!

dY
U

Y5 ē

5
el1 ē

s

~e2l2Y02e2l1Y0!

e~l12l2! ē 21
. ~19!

Note thatF̄e(s) has a pole ats50 and a branch singularity a
s* 52L'

2 /(4D),0 ~the solutions50 from l15l2 is not a
pole!. Performing the inverse Laplace transform and not
that the contribution from the branch singularity ats* gives
a term which is proportional toe2s* n and thus vanishes in
the limit n→`, we see that the only contribution toFe
comes from the pole ats50. We obtain
-

g

Fe5
ehY021

eh ē 21
5

y0
2h21

e2h21
. ~20!

One may arrive at the same conclusion by computing
total probability flux intoY50 (y51) ~Appendix A!. In the
limits e→0 and y0→0, we obtain the scaling law Eq.~7!
with the scaling exponents given by

m5g5h5
L'

D
. ~21!

The equality ofm and g can also be seen via a dimensio
argument. Sincee andy0 have the same physical dimensio
~distances!, while Fe is just a number, one must havem
5g from Eq. ~7!. Due to symmetry, the same scaling hol
for the fraction of they51 ȳ basin in the lower unit square
~0<x<1, 21,y,0!. Since the scaling exponenth de-
pends only onL'52n and D, which are the two funda-
mental parameters in the diffusion approximation, we exp
the scaling law Eq.~7! to hold universallyfor noise-induced
temporal riddling in the parameter regime whereL' is small
so that the diffusion approximation is valid, regardless of
details of the system.

The algebraic scaling law~7! betweenFe and the noise
amplitudee at fixed y0 or betweenFe and y0 at fixed e is
valid when e or y0 are small. Sayinge or y0 is small is
meaningful only in the relative sense: they are small co
pared with one, the size of phase-space region over wh
the diffusion process takes place. Thus, if the attractors
located far away from the invariant liney50, say at6`,
and if the diffusion process occurs in a large region, say fr
Y52` to ` ~corresponding to fromy50 to y5`!, we
expect the algebraic scaling laws~7! to be generally valid.
This can in fact be derived@9# by using a slightly modified
model of Eq.~4! in which we assume that the expanding a
contracting dynamics iny extends fromy52` to y5
1`. The symmetric attractors in this case are located ay
56`. See Appendix B for details.

D. The uncertainty exponent

The scaling law for the uncertain probability^PU(d)& can
be derived by using the results in Secs. III B and III C.
similar derivation for parameter regimes below but near
blowout bifurcation was done in Ref.@6#, where noiseless
situations were studied in which the chaotic attractor in
invariant subspace is transversely stable and riddling is w
respect to this chaotic attractor. In our case, the param
regime is immediately above the blowout bifurcation so th
the chaotic attractor in the invariant subspace is transver
unstable, and riddling in our case is noise induced, is tem
ral, and is with respect to the attractors off the invaria
subspace.

We consider two pointsx0 and (x01d) at y0!1, where
d!1 and both points are contained in the horizontal u
interval @0,1#. These two points thus constitute a small su
interval of sized. Since thex dynamics is expanding, the
subinterval will attain a size of order 1 after, say,n(d) itera-
tions. Assume that the expanded interval is still contained
@0,1# and it is vertically aty where 0,y,1. Let p1(e) and
p2(e) be the probabilities that, under the influence of noi
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3902 56YING-CHENG LAI
a randomly chosen initial condition in the horizontal un
interval aty asymptotes to the1 ȳ and2 ȳ attractors, respec
tively. We havep1(e)1p2(e)51. For small noise ampli-
tude, we have, from Eq.~20!, p2(e)'(y2h21)eh. Since
we are dealing with the parameter regime above the blow
bifurcation where the invariant line is transversely repellin
we have, typically,y@y0 if n(d)@1. Thus we expect mos
initial conditions in the horizontal unit interval aty to be in
the temporal basin of they51 ȳ attractor. Hence we hav
p1(e)'1 andp2(e)'0. The probabilityPU(d) thatx0 and
(x01d) asymptote to different attractors is given by

PU~d!52p1~e!p2~e!'2p2~e!'2~y2h21!eh. ~22!

Sincey can be anywhere betweene and 1, we see thatY[
2 ln y can be in between 0 andē with probability distribution
P„Y,Y0 ,n(d)…, where the time is restricted ton(d). Thus
the average value ofPU(d), or the uncertain probability, is
given by

^PU~d!&;E
0

ē
2~ehY21!ehP„Y,Y0 ,n~d!…dY

52ehE
0

ē
~ehY21!

3S 1

2p i E2 i`1s

i`1s

Pn~Y,Y0 ,s!esn~d!dsD dY,

~23!

where Pn(Y,Y0 ,s) is the Laplace transform o
P„Y,Y0 ,n(d)…, ands is chosen so that all singularities are
the left of the integration path ins and so that the integral in
s converges. From Eq.~23!, we see that the dependence
^PU(d)& on d only appears inn(d). To expressn(d) in
terms ofd, we refer to the random-walk picture. Assumin
that it takesnu steps of step sized̄.0 andnd steps of step
size c̄,0 for the walker to travel fromY0 to Y, we have

Y5Y01nud̄1ndc̄,
~24!

n~d!5nu1nd .

Noting that an upward and a downward step inY corre-
sponds tox’s falling in the interval (a,1) and (0,a), respec-
tively, we have the following condition for the small interv
of sized to expand horizontally to a length of approximate
one:

dS 1

aD ndS 1

bD nu

'1. ~25!

Combining Eqs.~24! and ~25!, and usingLx5a ln(1/a)
1b ln(1/b) andL'5a ln c1b ln d5auc̄ u2bd̄, we obtain

n~d!'
~12L' /uc̄u!ln~1/d!1~Y2Y0!~b/uc̄u!ln~b/a!

Lx2~L' /uc̄u!ln~1/a!
.

~26!
ut
,

f

We note thatLx is on the order of 1. Immediately above th
blowout bifurcation, we haveL'*0. Thus the terms involv-
ing L' in Eq. ~26! are negligible, and we have

n~d!'
1

Lx
lnS 1

d D1~Y2Y0!K, ~27!

where K[(1/Lx)(b/uc̄u)ln(b/a) is a constant. Substituting
Eq. ~27! into Eq. ~23! and rearranging the integrations wit
respect tos andY, we obtain

^PU~d!&5E
2 i`1s

i`1s

expF s

Lx
lnS 1

d D GH~s!ds, ~28!

where the functionH(s) is given by

H~s!5
ehe2sKY0

ip E
0

ē
~ehY21!esKYP̄~Y,Y0 ,s!dY. ~29!

From Eq.~28!, we see that the scaling of^PU(d)& with d is
determined by terms which behave like

expF s*

Lx
lnS 1

d D G5d2s* /Lx, ~30!

where s* ’s are the singularities of the functionH(s). Ex-
plicit evaluation ofH(s) in Eq. ~29! @14# indicates thatH(s)
has no poles but it has a branch singularity ats* 5
2L'

2 /(4D). Substitution of this branch singularity into Eq
~28! yields the scaling law~8! with the uncertainty exponen
given by

a5L'
2 /~4DLx!. ~31!

In the parameter regime near the blowout bifurcation wh
L''0, we see that the uncertainty exponent behaves
L'

2 , which is then very close to zero. Thus decreasingd in a
range which has the noise amplitudee as its lower bound
yields no substantial decrease in^PU(d)&. Regardingd as
the precision in the specification of the initial condition, w
see that for temporally riddled basins induced by noise,
provement ind above the noise level leads to no appare
improvement in our ability to predict, probabilistically, th
asymptotic attractor. This is typical of riddled basins@5,6#.
We mention that the uncertainty exponent for riddling of t
chaotic attractor in the invariant subspace in noiseless si
tions has the same form@6#.

IV. NUMERICAL VERIFICATION

To verify our assertion that the scaling laws~7! and ~8!
associated with noise-induced riddling are general near
blowout bifurcation regardless of details of the system,
consider the following two-dimensional version of Eq.~1!:

xn115 f ~xn!1qyn
21esn

x ,
~32!

yn115pxnyn1yn
31esn

y ,

wheresn
x ,sn

yP@21,1# are uniform random numbers,e!1
is the noise amplitude,p.0 andq are parameters. In Eq
~32!, both the invariant subspace (y50) and the transverse
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subspace are one dimensional. Note that noise only aff
the dynamics in the vicinity of the invariant liney50, as the
noise term is negligible whenuyu is large. For illustrative
purpose, we choosef (x) to be the doubling transformatio
2x mod(1) that generates a chaotic attractor with a unifo
invariant density r(x)51 for xP@0,1# and a positive
Lyapunov exponentLx5 ln 2. The transverse Lyapunov ex
ponent is given by

L'5E lnupxur~x!dx5E
0

1

lnupxudx5 ln p21. ~33!

The blowout-bifurcation point ispc5e52.718 28 . . . .
From they equation in Eq.~32!, we see that forp.0, if
uynu.1, thenuyn11u.uynu. Thusy56` are the two attrac-
tors symmetrically located with respect toy50.

We first consider the noiseless case wheree50. For p
&pc , we haveL'&0 so that the chaotic attractor of th
doubling transformation aty50 is also an attractor of the
full phase space, the basin of which is riddled with ho
belonging to the basins of they56` attractors. This is
shown in Figs. 3~a! and 3~b! for p52.6 (L''20.0445) and
q50.1, where the black dots denote the basin of they50
chaotic attractor. In Fig. 3~a!, a grid of 204832048 initial
conditions is chosen in the unit square 0,(x,y)<1. If the
trajectory resulting from an initial condition reachesy
51000, the initial condition is regarded as belonging to
basin of they51` attractor, and if the trajectory come
within 10212 of y50 for successive 1000 iterations, the in
tial condition is regarded as being in the basin of they50
attractor. Since all initial conditions havey.0 and sincee
50, we observe that no trajectory goes to they52` attrac-
tor. Figure 3~b! is an enlargement of the region~0.4<x
<0.6, 0,y<0.05! in Fig. 3~a! in which a grid of
102431024 initial conditions is chosen. The set of bla
dots~the basin of they50 attractor! exhibits typical features
of riddling @5,6#: for any black dot, there are white region
arbitrarily nearby that correspond to the basin of they5
1` attractor. Forp*pc , we haveL'*0 so that they50
chaotic attractor is no longer transversely stable. In this c
y56` are the only global attractors of the system. Sin
e50, there is no tunneling throughy50 of trajectories and,
consequently, the basins of they51` and 2` attractors
are y.0 andy,0, respectively, and the basin boundary
the one-dimensional liney50.

Next we consider the case where noise is present. Fp
&pc , trajectories can no longer stay in they50 chaotic
attractor forever due to noise. This attractor is therefore n
global attractor in the full phase space. Since the influenc
noise is negligible for largeuyu, the y56` attractors are
still the global attractors of the system. In this case, the ba
of the y52` (1`) attractor iny.0 (y,0) is temporally
riddled, as shown~black dots! for e510212 in Fig. 4~a! in
which a grid of 204832048 initial conditions is chosen in
the unit square, and an initial condition is regarded as
longing to the basin ofy52` if the trajectory resulting
from it falls belowy521000. Blank regions correspond t
the temporal basin of they51` attractor which is deter-
mined by the numerical criteriony.1000. Figure 4~b! is an
enlargement of the region~0.4<x<0.6, 0,y<0.05! in Fig.
ts

s

e

e,
e

a
of

in

e-

4~a!, where the initial conditions are chosen over a grid
102431024. Figures 4~a! and 4~b! exhibit riddling structures
similar to those seen in Figs. 3~a! and 3~b!, but the riddling
here is noise induced, is thus temporal, and is with respec
the y52` attractor iny.0.

With noise, the interesting case isp*pc ~above the blow-
out bifurcation!. In this case, noise can also induce tempo
riddling between the basins of they51` and 2` attrac-
tors, while no riddling occurs even for they50 chaotic at-
tractor in the absence of noise. Figure 5~a! shows the basin of
the y52` attractor iny.0 ~black dots!, where the param-
eter setting is p52.8.pc (L''0.0296), q50.1, e
510212, and initial conditions are chosen over a grid
409634096 in the unit square. Figure 5~b! shows an enlarge
ment of part of Fig. 5~a! for a grid of 204832048 initial
conditions in 0.4<x<0.6 and 0,y<0.05. Similar structures
are observed. Note that the features exhibited in Figs.~a!
and 5~b! are similar to those in Figs. 3~a! and 3~b!, but Figs.
5~a! and 5~b! are associated with the noise-induced tempo
riddling of the y52` attractorabovethe blowout bifurca-
tion, whereas Figs. 3~a! and 3~b! correspond to riddling of

FIG. 3. When noise is absent, riddled basin~black dots! of the
chaotic attractor in the invariant subspacey50 below the blowout
bifurcation:~a! in the unit square; and~b! enlargement of~a! in the
region ~0.4<x<0.6, 0,y<0.05!. Parameter setting isp52.6
,pc , and q50.1. The transverse Lyapunov exponent isL''
20.0445.
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the chaotic attractor in the invariant subspace in the abse
of noisebelow the blowout bifurcation.

To verify the scaling law~7!, we first compute the frac
tion of points Fe on a fixed liney0*0 that belong to the
temporal basin of they52` attractor ase changes. Figure 6
shows log10 Fe versus log10 e for p52.8, q50.1 and
10212,e<1026, where 106 initial conditions are chosen o
the line y50.01. We see that the plot can be roughly fitt
by a straight line, indicating an algebraic scaling relati
betweenFe and e: Fe;em, where the scaling exponent
m'0.050. Next, we computeFe at a fixed noise amplitudee
as y0 (y0*0) increases. Figure 7 shows log10 Fe versus
log10 y0 for 10212,y0<1026, wheree510212, and 106 ini-
tial conditions are used. We also obtain an algebraic sca
relation: Fe;y0

2g , where the scaling exponent isg
'0.065. We see thatm andg have similar values.

To check the universality of the scaling law~7!, we note
that in our numerical model, the transverse Lyapunov ex
nent isL'5 ln p21 and the diffusion coefficient is given b

FIG. 4. For p52.6,pc and q50.1, noise-induced temporall
riddled basin of they52` attractor: ~a! in the unit square 0
,(x,y)<1; and~b! in the region~0.4<x<0.6, 0,y<0.05!. The
noise is uniform in@2e,e# with amplitudee510212. Note that in
this case, noise renders transversely unstable they50 chaotic at-
tractor, but the basin of they52` (1`) attractor is temporally
riddled in y.0 (y,0) down to the scale of the noise level.
ce

g

-

FIG. 5. Forp52.8.pc ~L''0.0296, above the blowout bifur
cation! and q50.1, noise-induced temporally riddled basin of th
y52` attractor:~a! in the unit square 0,(x,y)<1; and~b! in the
region ~0.4<x<0.6, 0,y<0.05!. The noise is the same as in Fig
4. Note that in this case, there would be no riddling if noise
absent: the entirey.0 half plane is the basin of they51` attrac-
tor except a set of Lebesque measure zero without noise.

FIG. 6. At y050.01, on a logarithmic scale, the probabilityFe

that a randomx0 asymptotes to they52` attractor versus the
noise amplitudee. The plot indicates that roughly,Fe;e0.05. Other
parameters arep52.8 andq50.1.
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D5
1

2 E S ]yn11

]yn
U

yn50

2K ]yn11

]yn
U

yn50
L D 2

r~xn!dxn

5
1

2 E @ ln~px!2L'#2r~x!dx5
1

2
. ~34!

Thus we have for the algebraic scaling exponenth52(ln p
21) for p*pc . For p52.8, we haveh50.059. This agrees
fairly well with the numerical values ofm'0.050 andg
'0.065.

We now compute the scaling of the uncertain probabi
^PU(d)&. To do this we fixp52.8 andq50.1 ~the same
parameter setting as in Figs. 5 and 6!, and choose a large
number of pairs (N0) of initial conditions of distanced apart
at y051026 under noise of amplitudee510215. This rather
small noise level is used because^PU(d)& is meaningful
only whend@e. For each pair, we determine if the initia
conditions go to different attractors. If yes, this pair is unc
tain with respect to perturbationd. For fixedd, we increase
N0 until the number of uncertain pairs of initial condition
reaches 1000. We then have^PU(d)&'1000/N0 , whereN0
>1000. Figure 8 shows log10̂ PU(d)& versus log10 d for e
!10210<d<1022. We see that the plot can be roughly fi

FIG. 7. At e510212, for p52.8 andq50.1, Fe versusy0 on a
logarithmic scale. Roughly, we haveFe;y0

20.065.

FIG. 8. The uncertainty probabilitŷPU(d)& versusd on a loga-
rithmic scale. The plot can be roughly fitted by a straight lin
verifying the scaling law~8!. The dashed line is the theoretic
prediction. Note that the uncertainty exponent is very close to z
-

ted by a straight line, indicating the algebraic scaling law~8!.
The slope of the straight line, or the uncertainty exponent
0.00660.001. The theoretical prediction, however, givesa
5(ln p21)2/(4D ln 2)'631024, which is one order of
magnitude smaller than the numerical value. This rat
large discrepancy is, however, somewhat expected bec
the theoretical exponent is proportional to the square of
transverse Lyapunov exponentL' , which is itself a very
small number near the blowout bifurcation. We see from F
8 that the numerical fluctuations in̂PU(d)& are quite large.
It is thus impractical to expect to be able to extract a slo
from Fig. 7 that is on the order of 1024 with good precision.
Increasingp further away frompc yields larger values for
L' . Therefore one might expect to obtain an improv
agreement ina when p.pc but not close topc . However,
the theoretical prediction~8! is only valid for p*pc . Thus
we are forced to rely on qualitative agreement for the sca
law between̂ PU(d)& andd, which appears to be algebra
from Fig. 8. Numerical computation does indicate, nevert
less, that the uncertainty exponent for noise-induced tem
ral riddling is extremely small, as we have verified for
number of parameter values in the vicinity ofpc . Such small
values of the uncertainty exponent imply an extreme ins
sitivity of the uncertain probabilitŷ PU(d)& to changes in
the precision of the initial condition. Figure 8 indicates th
^PU(d)& decreases only slightly when one raises the pre
sion ~corresponding to decreased! over eight orders of mag
nitude. Therefore, in practical terms, any attempt in a hop
better predict the system’s asymptotic attractor by improv
the measurement of initial conditions and parameters of
system will fail for situations of noise-induced temporal ri
dling.

V. DISCUSSIONS

The presence of invariant properties is common in th
retical models of natural systems. Symmetry is perhaps
of the most often encountered properties in physical, che
cal, and biological systems. Such invariant properties usu
lead to interesting dynamical consequences and hence
have been tremendously helpful to our understanding of
system’s dynamics. One should, however, be cautious a
these invariant properties because they are usually not
neric. That is to say, any defect in the system or small ex
nal noise could completely wipe out properties such as s
metry. A key question is therefore whether the physi
consequences caused by the system’s invariant prope
still persist in noisy environment, and how.

When the system is chaotic and its equations hav
simple kind of symmetry, situations often arise where th
is an invariant subspace and there is a chaotic attractor in
invariant subspace. If the system is perfect and there is
noise, the presence of a chaotic attractor in the invar
subspace can lead to unusual but interesting dynamical
nomena such as riddling and on-off intermittency@16,17#,
which have recently become an active forefront research
in chaotic dynamics. Since the occurrence of riddling d
pends on the system’s possessing a perfect invariant
space, an important question is whether riddling is still o
servable in practical situations where noise is inevitable
this regard, recent work has shown that in a parameter

,

o.
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gime near the birth of riddling~riddling bifurcation!, which
is triggered by the loss of transverse stability of some lo
period periodic orbits embedded in the chaotic attractor
the invariant subspace, riddling manifests itself@8,10# in a
form of superpersistent chaotic transient@15#. The lifetime of
such a chaotic transient is so extremely long when symm
breaking and/or the noise amplitude are small, that riddl
is practically observable near the riddling bifurcation. Blo
out bifurcation, on the other hand, occurs when a sys
parameter increases further away from the riddling bifur
tion point and when typical trajectories in the chaotic attr
tor in the invariant subspace become transversely unsta
After the blowout bifurcation, there are infinitely more pe
odic orbits embedded in the chaotic attractor that are tra
versely unstable than those that are transversely stable@18#.
A question that has remained uninvestigated is whether
dling is still observable when the system is in a noisy en
ronment and is in the parameter regime about the blow
bifurcation.

This paper gives an affirmative answer to the above qu
tion. In particular, we argue that when there are attrac
~not necessarily chaotic! located off the invariant subspace,
situation easily encountered in chaotic systems, small n
can in fact induce temporal riddling between the basins
these attractors even beyond the blowout bifurcation.
note that near but below the blowout bifurcation, noise
stroys riddling of the chaotic attractor in the invariant su
space and replaces it by a chaotic transient which isnot
superpersistent@6#. Beyond the blowout bifurcation, riddling
disappears because the chaotic attractor in the invariant
space is unstable. Thus we see that riddling of the cha
attractor in the invariant subspace is practicallyunobservable
in parameter regimes about the blowout-bifurcation po
What is physically observable in this case is the tempo
riddling between attractors off the invariant subspace, wh
occurs bothbelowandabovethe blowout-bifurcation point,
as demonstrated qualitatively and quantitatively in this
per. Thus, in different forms, riddling can occur in wide p
rameter regimes about the blowout-bifurcation point. T
universal scaling laws associated with the noise-indu
temporal riddling have been obtained in this paper. Si
noise is inevitable in reality, we expect riddling to occ
commonly in dynamical systems with symmetry.
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APPENDIX A: FLUX THROUGH Y50
IN THE DIFFUSION APPROXIMATION

The instantaneous probability flux through the absorb
boundary atY50 from abovein Y is
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f 0~n!52dP~0,Y0 ,n!uY501D
dP~Y,Y0 ,n!

dY U
Y50

5D
dP~Y,Y0 ,n!

dY U
Y50

.

The flux throughY50 from above in timen is F0(n)
5*0

nf 0(n)dn, for which the Laplace transform is

F0~s!5
D

s

dP̄~Y,Y0 ,s!

dY
U

Y50

52
1

s

el1Y02e~l12l2! ē 1l2Y0

e~l21l1!Y0@e~l12l2! ē 21#
.

Performing the inverse Laplace transform and taking
limit n→` ~so only the pole ats50 has a contribution to the
flux!, we obtain the following fraction of initial conditions
that asymptote to the fixed-point attractor atȳ:

F05
eh ē 2ehY0

eh ē 21
.

Thus we haveFe1F051, which is expected because eve
tually all initial conditions chosen from the upper unit squa
asymptote either to the attractor atȳ or to the one at2 ȳ. In
fact, it is straightforward to check from direct integration th
the total fraction of trajectories ine<y<1 is zero in the
limit of n→`. Denote this fraction byF1 . We haveF1

5 limn→`F1(n), where

F1~n!5E
e

1

P~y,y0 ,n!dy.

The Laplace transform ofF1(n) is

F1~s!5E
0

ē
P̄~Y,Y0 ,s!dY52

1

s

1
1

s

el1Y0~el1 ē 21!1el1 ē 1l2Y0~e2l2 ē 21!

e~l11l2!Y0@e~l12l2! ē 21#
.

Picking the contribution from the pole ats50, we obtain
F150 in then→` limit.

APPENDIX B: FRACTION OF NOISE-INDUCED
TEMPORALLY RIDDLED BASINS FOR MAPS

WITH ATTRACTORS AT INFINITY

We consider a slightly modified map of Eq.~4! in which
the y map is no longer restricted touyu<1. In this case, the
random-walk picture is good for2`,Y,` ~corresponding
to 0,y,1`!. The diffusion approximation is thus valid
near the blowout bifurcation for2`,Y,`. In this case,
the absorbing boundary condition atY50 (y51) does not
apply. With the initial condition Eq.~11! and the boundary
condition Eq.~12!, we obtain the solution to the diffusion
equation,
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P̄~Y,Y0 ,s!5 HC1el1Y1C2el2Y for Y.Y0

C3el1Y for Y,Y0 , ~B1!

where the coefficients are

C25
1

D~l12l2!
exp~2l2Y0!,

C152C2 exp@~l22l1!ē #, ~B2!

C35C2$exp@~l22l1!Y0#2exp@~l22l1!ē #%.

Let F1(n) be the probability that the walker has not reach
within e of y50 at timen. The Laplace transform ofF1(n)
is given by

F̄1~s!5E
2`

ē
P̄~Y,Y0 ,s!dY. ~B3!

Substituting Eqs.~B1! and ~B2! into Eq. ~B3!, we obtain
r
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F̄1~s!51/s2~1/s!exp@2l2~Y02 ē !#. ~B4!

Performing the inverse-Laplace transform by noting th
there are a pole ats50 and a branch singularity ats5s*
[2L'

2 /4D,0, we obtain

F1~n!512exp@2l2~s50!~Y02 ē !#

2
1

s*
exp@2l2~s5s* !~Y02 ē !#exp~s* n!.

In the limit n→`, F1(n) is the probability that the random
walker has never reachedY>ē (y<e) and henceF1(`) is
the fraction of they51` basin in the upper half plane
Therefore the noise-induced fraction of points aty0.0 that
belong to they52` basin is given by

Fe512 lim
n→`

F1~n!5exp@h~Y02 ē !#;ehy0
2h ,

which is the scaling law~7!.
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