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Scaling laws for noise-induced temporal riddling in chaotic systems
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Recent work has considered the situation of riddling where, when a chaotic attractor lying in an invariant
subspace itransversely stablehe basin of the attractor can be riddled with holes that belong to the basin of
another attractor. The existence of invariant subspace often relies on certain symmetry of the system, which is,
however, a nongeneric property as system defects and small random noise can destroy the symmetry. This
paper addresses the influence of noise on riddling. We show that riddling can actually be induced by arbitrarily
small noise even in parameter regimes where one expects no riddling in the absence of noise. Specifically, we
argue that when there are attractors located off the invariant subspace, the basins of these attractors can be
temporally riddled even when the chaotic attractor in the invariant subspatcanssersely unstablewve
investigate universal scaling laws for noise-induced temporal riddling. Our results imply that the phenomenon
of riddling is robust, and it can be more prevalent than expected before, as noise is practically inevitable in
physical systemq.51063-651X97)01410-4

PACS numbd(s): 05.45+4+b

I. INTRODUCTION

1V ay
A= lim 3 In’ ntl , )
Symmetry and invariance are common in mathematical M- V1 N=1 n
models of physical systenj4]. Such intrinsic properties in
the system’s equations can lead to intriguing and interesting’hereu is a random unit vector in the transverse subspace
dynamical consequences. The notion of symmetry and inR\T.
variance is, howevemongenerichecause realistic system  Chaotic systems with an invariant subspace, mathemati-
imperfections and/or environmental noise can destroy systegally described by Eq(1), are of physical interest. They
symmetry. An important question in the study of dynamicaloccur naturally in systems with spatial symmetry. Another
systems is then how the phenomena derived from the invarimportant class of such systems is coupled oscillators that
ant properties in the models manifest themselves in practicanodel a large variery of phenomena in physics, chemistry,
situations where system defects and noise are inevitable. biology, and ecology. Consider, for example, the following
This paper concerns a study of the effect of noise orsystem ofN coupled identical chaotic oscillators:

chaotic systems with an invariant subspace. Specifically, we

yn:O

consider the following class oN-dimensional dynamical %: . BV
systems: e F(xl)+e§j: Hxi—x), i=1,...N (3
¥nt1=f(x,) +high order terms ofy,+eay, (1)  Where the stata; of each oscillator, when isolated, is cha-
otic, and the coupling is represented by the stremgthd the
Yn+1=G(Xn,Yn,P) + €ay, function H(x;—x;) which satisfies the propertii(0)=0.

The synchronous state(t) =x;(t) (i,j=1,... N) is obvi-
wherexe RMs (Ns=1), ye RV (Nt=1), Ns+N:=N, f(x)  ously a solution to Eq(3). In such a case, the dynamical
is a nonlinear map that can exhibit chaesjs the noise equation is identical for each oscillator so that oscillators
amplitude (smal), o and o are random variables with started being synchronized remain so forever. Thus the sub-
smooth probability distributions, arlis the bifurcation pa-  space defined by;(t)=x;(t) (i,j=1, ... N) is an invariant
rameter. The vector functioB(x,y,p) satisfies the condition subspace in which the dynamics is cha¢fie-4].
G(x,0,p)=0 so thaty=0 is an invariant subspace of the A series of recent works has revealed that there are un-
system in the absence of noise. That is, in the noiseless situsual but interesting consequences in dynamical systems
ation, if a trajectory starts from an initial condition witly ~ with an invariant subspace. A striking phenomenon is the
=0, then the trajectory hag,=0 for all subsequent itera- occurrence ofiddling in these systemi8—9]. When there is
tions. In general, the invariant subspace can be regarded aschaotic attractor in the invariant subspace and another at-
resulting from a simple type of symmetry in the function tractor(say, nonchaotjcoff the invariant subspace, if; is
G(x,y,p), e.g.,G(x,—y,p)=—G(x,y,p). In this paper we negative so that the chaotic attractor is stable with respect to
restrict our study to the case where the dynamics in the intransverse perturbations, the basin of the chaotic attractor can
variant subspace, governed by the nfép, is chaotic. The be riddled with holes of arbitrarily small size belonging to
largest Lyapunov exponent for the dynamics in the invarianthe basin of the attractor off the invariant subspgek An
subspace is therefore positive. For trajectories lying in themportant implication of riddling is that the prediction of the
invariant subspace, their transverse stability is determined bfjnal asymptotic attractor for specific parameter and initial
the following largest transverse Lyapunov exponent: conditions becomes extremely difficult. It has been demon-
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strated that the onset of riddling, or the riddling bifurcation, We stress that riddling induced by noisdesnporalin the

is typically induced by the loss of the transverse stability ofsense that the fine structure of the basin of an attractor is time
some periodic orbits of low periods embedded in the chaotivarying due to noise. Given an initial condition, noise may
attractor[8]. The riddling bifurcation is also called the bub- make it eventually asymptote to one of the coexisting attrac-
bling bifurcation[3] from the viewpoint of invariant mea- tors. For the same initial condition, noise can kick it into the
sures. Note that in the parameter regime where there is rid¥@sin of another attractor at a different time. The riddled
dling, A remains negative. As the system paramgier Dasins induced by noise are thus not spatially fixed in the
changes further passing through a critical paigt A7 can phase space. Noise-induced riddling is therefore only tempo-

become positive. This is referred to as the blowout bifurca—ral.and its gross structure i's defineq only in. spatial scales
tion after which typical trajectories on the chaotic attractorWhICh are larger than the noise amplitude. This is fundamen-

become transversely unstalplg3]. After the blowout bifur- tally differer_1t fr_om the noti_on (.)f riddled basins in the ab-
cation, riddling of the chaotic attractor in the invariant sub-Sence of noise in which arbitrarily fine structures of the basin
space’disappears are fixed in time. In this case, riddling is spatial because no

As we have mentioned, the notion of invariant subspace igeffarrhence :0 ft'rﬂe IS negded. ized as foll In Sec. Il
nongeneric An arbitrarily small amount of asymmetry in the . € rest of the paper Is organized as follows. In Sec. Il we
system and/or random noise in the environment render imd' Ve a general argument to the phenomenon of noise-induced

possible confinement of trajectories in the subspace which igerr]nporal rldd!lndg. IndSec. i V‘Ile .gglr_mder 3 s;]mple mo.deld
invariant in the absence of asymmetry and/or noise. In reall/Nere noise-induced temporal riddling and the associate

istic noisy systems, one thus expects the chaotic attractor iﬁcallng_ Iavys can be obtained analytically. Based on Fhe
the invariant subspace to become a chaotic transient. An i inalysis with this solvable model, we argue that the scaling

teresting question is whether the dynamical phenomenon K\(sha_re un|v$rsa;1_l. In fsf]c' IV we IStUdg ? nume(rjlcal model
riddling associated with the notion of invariant subsppee Wwhich is a realization of the general model E4) and verify

sistsin practical situations where noise is inevitable. In thisiN€ universal scaling laws. Discussions are presented in
regard, for parameter values slightly above the riddling bi_Sec. V.
furcation (or bubbling bifurcatiol, it has been shown that
asymmetry and/or noise convert the chaotic attractor in the II. NOISE-INDUCED TEMPORAL RIDDLING
invariant subspace into a superpersistent chaotic transient, o
and there are universal scaling laws associated with the cha- We now present a qualitative argument for the phenom-
otic transients8,10]. Thus, if one observes the system in €non of noise-induced temporal riddling. Sinpg is the
practical time scales, the superlong transient chaos can #dowout bifurcation point, we havé\;<0 for p<p. and
regarded as “sustained” chaos. In this case, the concept gkt=0 for p=p. [11]. Let S be the invariant subspace. As-
riddling is still meaningful. sume there are two attractors, denoted Ayand B, one

In this paper we address the influence of noise on riddlingtbove and another belo®. When noise is absent, fqu
in parameter regimes about the blowout bifurcation. Wes<Pp. there are two Cantor-like closed sets of positive Le-
present analysis and numerical verification which indicatd>esgue measure in the phase space, one above and another
that small noise can actuallpduceriddling for the class of ~belowS. These sets are transversely stable. Points in the sets
system described by Eql) near the blowout bifurcation. are attracted toward3and hence they belong to the basin of
Thus, quite contrary to intuition, there are situations wherdhe chaotic attractor irS. Since the Cantor-like sets are
noise does not destroy riddling completely but instead creclosed and have positive measures, the basin of the chaotic
ates riddling down to the scale comparable to the noise anrfttractor inS is riddled. The complement sets of the two
plitude. Specifically, we argue thhbth below and abovine ~ Cantor-like closed sets are two open dense sets that belong to
blowout bifurcation, if there are coexisting attractors locatedthe basins of the attractors andB, respectively. This situ-
off the invariant subspace, riddling in the temporal basins ofition is shown schematically in Fig. 1. F@=p., the
these attractors can still occur when there is small-amplitud€antor-like sets are still transversely stable but they have
noise present. We call this type of riddling theise-induced Lebesgue measure zero and heBde now transversely un-
temporal riddling For parameter values below the blowout stable. In this case, the chaotic attractoiSibecomes a re-
bifurcation point, noise destroys riddling of the chaotic at-peller in the transverse direction, and trajectories alibee
tractor in the invariant subspace, but noise creates temporiw) S are repelled away fror8 and are eventually attracted
riddling for attractors off the invariant subspace. For paramio A(B). The entire phase-space regions above and b8low
eter values above the blowout bifurcation, noise can als@re the basins of attraction for typical trajectories to the at-
induce temporal riddling for the attractors off the invarianttractorsA andB, respectively. Therefore there is no riddling
subspace. This is particularly intriguing because in this casdpr p=p. when there is no noise.
if there is no noise, riddling of the chaotic attractor in the To see how small noise can induce temporal riddling, we
invariant subspace disappears since it is transversely umote that the Cantor-like sets become “fattened” in the
stable.The main implication is that the phenomenon of rid- phase space in the presence of small noise. For pbilow
dling may be more prevalent than expected before, as noise. andp abovep,, trajectories can come arbitrarily close to
is inevitable in practical situationsThus, although invariant S due to the transversely stable Cantor-like sets. So, there is
subspaces are atypical, physical consequences due to theémmonzero probability that trajectories abdvean be kicked
persist or can even be induced by internal and/or externaicrossS and be attracted towardsdue to noise, as shown in
disturbances in realistic environments. A short account ofig. 1. The initial conditions in the fattened Cantor-like set
this work has been reported j8]. aboveS can thus be in the basin & (the noise-induced
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FIG. 1. A schematic illustration of two invariant sets in the
phase space fop near the blowout-bifurcation poirng.. One is
open dense and transversely unstable, another is transversely stable
but closed. The two symmetric closed sets above and b8lowr-
respond to the noise-induced basins.
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temporal basin oB) and form a riddled structure. By sym- :
metry, the basin oA belowSis also temporally riddled. We 0
emphasize that the temporal riddling of the attractorsSff f
occurs on both sides qf;, but in the phase space, the rid-

random walk absorbing

dling is observable only at spatial scales larger than the noise starts here | boundaries
amplitude.

The above argument for noise-induced temporal riddling ;
is only qualitative. To quantify it, we consider a simple ana- Y : > X

lyzable model for which noise-induced temporal riddling can
be understood fairly completely and universal scaling laws

can be derived. to attractor A

FIG. 2. Schematic illustration fdia) the analyzable model Egs.
(4) and(5), and(b) the random-walk picture with initial and bound-
ary conditions in the diffusion approximation.

Ill. AN ANALYZABLE MODEL

A. Model description and scaling laws

We consider an analyzable modg8,9] with additive A

noise. For simplicity, we emphasize two-dimensional phase
space, so the invariant subspace is one dimensional. The
main part of the model is the following two-dimensional map
defined in the region €x<1 and—1<y<1:

y(yn_W for Yn= 1
—y+e M(y,+y) fory,<-—1,

yte~
Yn+1=

where\,>0 and\,>0. The model is schematically shown
in Fig. 2(@). The transverse Lyapunov exponent for trajecto-

(1a)x,+ea, for x,<a ries confined to the invariant line is

(1b)(x,—a)+eo, for x,>a,

Xn+1=
(4) Aj=alnc+bind.

cy,+eo, for x,<a and |y|<1 Thus, ifa is the bifurcation parameter, a blowout bifurcation
yn+1=[dyn+ eo, for x,>a and |y|<1, oceurs at
[In d]
where 0<a<1, b=1-a, c>1, 0<d<1, andec, is the afm, (6)

small noise term. Whea= 0, the invariant subspadkne) is

y=0 in which there is a chaotic attractor with Lyapunov hereA, =0 fora=a, andA, <0 fora<a,. Fore=0 and

exponentA,=a In(1/a) + b In(1/b)>0. They dynamics in-  a<4_ the basin of they=0 chaotic attractor is riddled in

volves both expansion and contraction inl<y<1. As-  the region(0<x<1, —1<y<1). Fore=0 anda=a,, this

suming that there are two fixed-point attractors located aghaotic attractor is transversely unstable and, so, except for a

(x,=y), wherey>1 and 0<x<1, and further assuming that set of Lebesgue measure zero, the upper half plgne0]

a trzyectory _Wlth|y|>1 _approaches gqunentlally to one of and the lower half planey<0) are the basins of thg=

the fixed points, we write the dynamics in thg>1 region +y andy= —y attractors, respectively. Fer:0 anda near

as a., as described in Sec. Il, there is a nonzero probability that
the trajectory from an initial condition in the uppéower)

Xns1=X+€ MX(X,—X), (5 unit square asymptotes to the fixed-point attractor at



3900 YING-CHENG LAl 56

—y (y). Thus there are now noise-induced temporal basinggiven thatx, is chosen randomly on the horizontal line seg-
in the upper and lower unit squares in parameter regimement aty=y,, 0=<xy<1), we obtain the following diffusion

about the blowout bifurcation. equation forP(Y,Yq,n) [13]:

We now quantitatively characterize the noise-induced
temporal riddling. First, we consider scaling of the fraction oP ~ dP D 7P 9
of noise-induced temporal basins. Say we fix a line segment an v aY o aY? ©

0=x=<1 aty=y,=0 and choose a large number of initial o

conditions from it. Ife#0, a fraction of these initial condi- where v=ac+bd=—-A, is the average drift, andD
tions is. in the_basin of the fixed-point attractor-ay. De- =1((8Y—(5Y))?)=1tab(c—d)? is the diffusion coefficient
note this fraction byF.. Apparently,F. depends both 08 (the averagd ) is with respect to initial random values of
and ony,. For fixedyy, as e increases, we expeét. to  x ) For concreteness, we treat the case wheera,. The
increase because it is more likely for a trajectory to be kicke¢ase wherea<a, can be treated similarly. Faa=a, we
throughy=0 by larger noise. For fixed noise amplitudeif  haye <0, indicating that on averagey gradually ap-
the line segment is further away froy=0, it is less likely  proaches Oor y—1). For y=1, the trajectory rapidly as-
for an initial condition to be in the-y basin. Thus we expect ympiotes to the fixed point atand hence there is an absorb-

F. to decrease ay, increases at fixed. We find that for  jnq parrier for the random walker #t=0. Thus we have the
small e andy,, F. obeys the algebraic scaling law boundary condition

F~ety?, (7) P(0,Yq,n)=0. (10

where>0 andy>0 are the scaling exponents that satisfy >ince all initial conditions start fromy, where G<yo<1 (or
L=7. Yo>0,) we have the initial condition

Second, we consider the probability for two nearby initial
conditions to asymptote to different attractors. Specifically,
we choose two initial conditions which agdistance apart

on a line segment€x=<1 aty,, wheredé<1. Let{P (46 N .
9 Yo {Pu(9)) falls within distancee of y=0, it can tunnel througly=0

be the probability for these two initial conditions to asymp- — hiv. th .
tote to different attractors. This probability is thus the uncer-21d asymptotes to the=—y attractor. Roughly, there is an

tain probability with respect to small perturbationwe find ~ @°sorbing boundary for the random walker &€In(1/e)
that(Py(8)) scales algebraically with, >0. As a crude approximation, we have the following

boundary condition:

P(Y,Yq,0)=6(Y—Y). (11

To model the effect of noise, we note that once a trajectory

(Py(6))~ 62, (8 P(e,Yo,n)=0. (12

where the scaling exponeatis positive but its value is very Figure 2b) shows schematically the boundary and initial
close to zero; it is called the uncertainty expongif]. As  conditions(10)—(12) for the random walker. The diffusion
we will see later,« being close to zero has significant con- equation(9), together with Eqs(10)—(12), can be solved by
sequence regarding the predictability of the final asymptoti@ising the standard Laplace-transformation metHd@). Let-
attractor of the system for specific initial conditions and pa-ting
rameters.

The scaling laws(7) and (8) are the main quantitative — o
results of this paper. We emphasize that the notion of basin P(Y.,Yo,5)= fo P(Y,Yo,n)e"*"dn
here is only in the probabilistic sense. Under the influence of
noise, apparently there are no fixed basins in the phase space, .
Temporglpriddlin)g/; occurs at scales which are Iarg;)er thanpth(%e the Laplage transform &i(Y, Yo ,_n), we_obtaln_from Eg.

. . . > o 9) the following second-order ordinary differential equation
noise amplitude. Thus, given an initial condition, the mean-"" —
ingful question to ask concerns tizobability of whether o7 P(Y.Y0.S):

this initial condition is in the+y basin or in the—y basin. — —
D dZP(Y,Yo,S) dP(Y,YO,S) —y

o o qv2 +A, av sP(Y,Yy,s)
B. Random walk and diffusion approximation

Concentrating on they>0 half plane and defining =—8(Y=Yo). (13
Y,=—Iny, for y<1, in the noise-free case we obtain a N )
random walk in terms ofY,, for the y dynamics:Y,,,=  With the boundary conditiongl0) and(12), and the condi-
Yot Yy, where Yn=C=—In c<0 with probability a and tion thatP(Y,Y,,s) is continuous at',, we obtain the so-
y,=d=—1Ind>0 with probabilityb=1—a. We are inter- lution
ested in the parameter regime near the blowout bifurcation NV V=t
because in this casen averagehe trajectory moves slowly P(Y.Yq.5)= AletT —gltmtemi2l] Y=Y, (14

in they direction and, hence, the random walk can in general AB(eMY—geh2Y), Y<Y,
be solved by using the diffusion approximation. Let

P(Y,Yq,n) be the probability distribution function fo¥  where the coefficienté andB are given by
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1 e—)\ZYO_e—)\lYO
A=
D(Npa—Ny) eMamroe—q 7
27 M (15)
eMYo_e(Krkz)?ﬂzYo
B= e Yo— gh2Yo )
and
A=37(A-1),
No=—37(A+1),
2 2 7( ) (16)

n=A,/D>0,
A=\1+4Ds/(A?).

C. Scaling of the fraction of noise-induced temporally
riddled basins

We can now calculatéd=., the fraction of the noise-

induced temporally riddled basins. Since approximately, tra

jectories in the upper unit square falling within distarecef

y=0 are considered as being able to penetrate thrgugh

=0 and to asymptote to the fixed-point attractorat, F. is

roughly the total probability flux through the absorbing
boundary aty = € for the random walker. From the diffusion

equation(9), the instantaneous flux through= € (the prob-
ability throughe per unit time is

_ dP(Y,Yq,n)
f(n)=6P(e,Yq,n)|,—c —D —ay -
dP(Y,Ygq,n)
=D—gy— (17
dy _——
The fractionF, is given by
F.=IlimF(n),
n—oo
whereF (n) is the flux throughY =€ in time n,
g Jnf (md jnD dP(Y,Ygq,n)
n)= n)dn=— —_—
€ 0 € 0 dY _—
(18)
The Laplace transform df (n) is
= _FF g P dP(Y,Yo,5)
{s)= . (n)e *"dn= s av -
eM?(e*MYo_e*MYo)
= . (19

S e()\l—)\z)é_l

Note thalF_E(s) has a pole as=0 and a branch singularity at

s* = —Af/(4D)<0 (the solutions=0 from\;=\, is not a

3901

e7o—1 y,"-1
€ ene_1 e 7-1°

(20

One may arrive at the same conclusion by computing the
total probability flux intoY=0 (y=1) (Appendix A). In the
limits e—~0 andyy—0, we obtain the scaling law Eq7)
with the scaling exponents given by

Ay
m=Y=1= 5 (22)
The equality ofu and y can also be seen via a dimension
argument. Since andy, have the same physical dimensions
(distancel while F, is just a number, one must haye
=1y from Eq. (7). Due to symmetry, the same scaling holds
for the fraction of they=+y basin in the lower unit square
(0=x<1, —1<y<0). Since the scaling exponenj de-
pends only onA, = —v» and D, which are the two funda-
mental parameters in the diffusion approximation, we expect
the scaling law Eq(7) to hold universallyfor noise-induced
temporal riddling in the parameter regime whére is small
so that the diffusion approximation is valid, regardless of the
details of the system.

The algebraic scaling law7) betweenF, and the noise
amplitudee at fixedy, or betweenF_ andy, at fixed € is
valid when € or y, are small. Sayinge or y, is small is
meaningful only in the relative sense: they are small com-
pared with one, the size of phase-space region over which
the diffusion process takes place. Thus, if the attractors are
located far away from the invariant ling=0, say at+ o,
and if the diffusion process occurs in a large region, say from
Y=—o to « (corresponding to fromy=0 to y=x), we
expect the algebraic scaling lawg) to be generally valid.
This can in fact be derivef®] by using a slightly modified
model of Eq.(4) in which we assume that the expanding and
contracting dynamics iry extends fromy=—o to y=
+o. The symmetric attractors in this case are locatey at
=+oo. See Appendix B for details.

D. The uncertainty exponent

The scaling law for the uncertain probabilitP(5)) can
be derived by using the results in Secs. llIB and 1lI C. A
similar derivation for parameter regimes below but near the
blowout bifurcation was done in Ref6], where noiseless
situations were studied in which the chaotic attractor in the
invariant subspace is transversely stable and riddling is with
respect to this chaotic attractor. In our case, the parameter
regime is immediately above the blowout bifurcation so that
the chaotic attractor in the invariant subspace is transversely
unstable, and riddling in our case is noise induced, is tempo-
ral, and is with respect to the attractors off the invariant
subspace.

We consider two pointgy and &g+ 6) atyy<<1, where
6<<1 and both points are contained in the horizontal unit
interval [0,1]. These two points thus constitute a small sub-

pole). Performing the inverse Laplace transform and notinginterval of sized. Since thex dynamics is expanding, the

that the contribution from the branch singularitysit gives
a term which is proportional te”s* "
the limit n—«, we see that the only contribution t6,
comes from the pole a=0. We obtain

subinterval will attain a size of order 1 after, sayo) itera-

and thus vanishes in tions. Assume that the expanded interval is still contained in

[0,1] and it is vertically aty where O<y<1. Letp, (€) and
p_(e€) be the probabilities that, under the influence of noise,
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a randomly chosen initial condition in the horizontal unit We note that\, is on the order of 1. Immediately above the
interval aty asymptotes to the-y and—vy attractors, respec- blowout bifurcation, we havé |, =0. Thus the terms involv-

tively. We havep. (e) +p_(e)=1. For small noise ampli-
tude, we have, from Eq20), p_(e)=~(y 7—1)e”. Since

we are dealing with the parameter regime above the blowout
bifurcation where the invariant line is transversely repelling,
we have, typicallyy>vy, if n(8)>1. Thus we expect most

initial conditions in the horizontal unit interval gtto be in

the temporal basin of thg=+y attractor. Hence we have

p.(e)~1 andp_(€)~0. The probabilityP () thatx, and
(xo+ 6) asymptote to different attractors is given by

Py(0)=2p.(€)p-(e)~2p_(e)=2(y "—1)e". (22

Sincey can be anywhere betweenand 1, we see that=
—Iny can be in between 0 andwith probability distribution
P(Y,Yo,n(d)), where the time is restricted to(J5). Thus
the average value d®( ), or the uncertain probability, is
given by

(Pu(5)>~f§2(e’”— 1)e"P(Y,Yg,n(5))dY

IZE”fE(e"Y—l)
0
1 et — sn( &)

X Py f_imen(Y,Yo,s)e ds|dy,

(23

ing A, in Eq. (26) are negligible, and we have

n(5)~AiIn(% +(Y=YpK, (27)

where K= (1/A,)(b/[c[)In(b/a) is a constant. Substituting
Eqg. (27) into Eqg. (23) and rearranging the integrations with
respect tos andY, we obtain

jo+ o % S (1)
exg— In| =
—jo+ o AX 5

where the functiorH(s) is given by

(28)

(Py(6))= H(s)ds,

e”e_SKYO €
H(s):Tf(eﬂY—l)esKYP(Y,YO,s)dY. (29
0

From Eq.(28), we see that the scaling 6P (5)) with Sis
determined by terms which behave like

s* | 1

eX A_x n 5
wheres*’s are the singularities of the functiod(s). Ex-
plicit evaluation ofH(s) in Eq. (29) [14] indicates thaH(s)
has no poles but it has a branch singularity sit=

—Af/(4D). Substitution of this branch singularity into Eq.

(28) yields the scaling law8) with the uncertainty exponent
given by

=5, (30)

where P_n(Y,YO,s) is the Laplace transform of

P(Y,Yq,n(8)), ando is chosen so that all singularities are to
the left of the integration path isand so that the integral in | the parameter regime near the blowout bifurcation where
s converges. From E¢23), we see that the dependence of \ ~0, we see that the uncertainty exponent behaves like

(Py(é)) on & only appears im(é). To expressn(d) in A2 \hich is then very close to zero. Thus decreasig a
terms of , we refer to the random-walk picture. ASSUMING range which has the noise amplitudeas its lower bound

that it takesn, steps of step sizd>0 andngy steps of step yields no substantial decrease (R,(5)). Regardings as

a=A?/(4DA,). (31

sizec<0 for the walker to travel fron¥, to Y, we have

Y=Yo+n,d+n.c,
0 u d (24)

n(é)=n,+ny.

Noting that an upward and a downward stepYincorre-
sponds tax’s falling in the interval @,1) and (0a), respec-

tively, we have the following condition for the small interval
of size §to expand horizontally to a length of approximately

one:

Ng

1

a (29

1\
B) ,\~,1_

Combining Egs.(24) and (25), and usingA,=a In(1/a)
+b In(1/b) andA | =a In c+bIn d=alc[—bd, we obtain

(1—A, /[cDIn(L/8)+ (Y—Y)(bI[c])In(b/a)
A— (A, /[cDIn(1/a)

n(d)~
(26)

the precision in the specification of the initial condition, we
see that for temporally riddled basins induced by noise, im-
provement inéd above the noise level leads to no apparent
improvement in our ability to predict, probabilistically, the
asymptotic attractor. This is typical of riddled basifis6].

We mention that the uncertainty exponent for riddling of the
chaotic attractor in the invariant subspace in noiseless situa-
tions has the same forp].

IV. NUMERICAL VERIFICATION

To verify our assertion that the scaling lawd and (8)
associated with noise-induced riddling are general near the
blowout bifurcation regardless of details of the system, we
consider the following two-dimensional version of Ed):

Xn+1:f(xn)+qyﬁ+50§' (32)

— 3
Yne1= pxnyn+yn+ 60’% '
where oy, o) e[ —1,1] are uniform random numberg<1

is the noise amplitudep>0 andq are parameters. In Eq.
(32), both the invariant subspacg=0) and the transverse
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subspace are one dimensional. Note that noise only affects
the dynamics in the vicinity of the invariant line=0, as the

noise term is negligible whety| is large. For illustrative o8} p=26<e
purpose, we choosi(x) to be the doubling transformation ' noise =0

0.9 (a) basin of the chaotic attractor in y = 0 (invariant subspace)

2x mod(1) that generates a chaotic attractor with a uniform o
invariant density p(x)=1 for xe[0,1] and a positive 06
Lyapunov exponeni\,=In 2. The transverse Lyapunov ex- 05
ponent is given by >

0.4

1
Aizf In|px|p(x)dx=f Injpx|/dx=In p—1. (33 03
0 0.2

The blowout-bifurcation point isp.=e=2.7183B... .
From they equation in Eq.(32), we see that fop>0, if

lynl>1, then|y,,1|>|ynl. Thusy= £ are the two attrac- ' Ty
tors symmetrically located with respect ye=0.
We first consider the noiseless case where0. For p 0.05
=p., we haveA =<0 so that the chaotic attractor of the
doubling transformation ay=0 is also an attractor of the 00451
full phase space, the basin of which is riddled with holes 0.04f
belonging to the basins of the= =+« attractors. This is 0.035}
shown in Figs. 8) and 3b) for p=2.6 (A, ~—0.0445) and :
g=0.1, where the black dots denote the basin of yke0 003f
chaotic attractor. In Fig. (&), a grid of 20482048 initial >0.025
conditions is chosen in the unit squarec(X,y)<1. If the .02k
trajectory resulting from an initial condition reaches
=1000, the initial condition is regarded as belonging to the ~ %°'°
basin of they= + attractor, and if the trajectory comes 0.01
within 1072 of y=0 for successive 1000 iterations, the ini- 0,005
tial condition is regarded as being in the basin of $+e0 j - »
attractor. Since all initial conditions hawe>0 and sincee . 0.45 0.5 0.55 0.6

=0, we observe that no trajectory goes to ylve— o attrac-
tor. Figure 3b) is an enlargement of the regioi®.4<x
<0.6, O<y=<0.09 in Fig. 3@ in which a grid of
1024x1024 .m't'al conditions is chos_er_l. The_ set of black bifurcation: (a) in the unit square; anth) enlargement ofa) in the
dots(the basin of they=0 attractoy exhibits typical features region (0.4<x=<0.6, 0<y<0.05. Parameter setting ip=2.6

of riddling [5,6]: for any black dot, there are white regions —, ' and q=0.1. The transverse Lyapunov exponentAis ~
arbitrarily nearby that correspond to the basin of ghe —0.0445.

+o attractor. Fop=p., we haveA | =0 so that they=0
chaotic attractor is no longer transversely stable. In this casey(a), where the initial conditions are chosen over a grid of
y= = are the only global attractors of the system. Since1024x 1024. Figures @) and 4b) exhibit riddling structures
€=0, there is no tunneling through~= 0 of trajectories and, similar to those seen in Figs(83 and 3b), but the riddling
consequently, the basins of tlye= +o and —oo attractors here is noise induced, is thus temporal, and is with respect to
arey>0 andy<O0, respectively, and the basin boundary isthe y= —c< attractor iny>0.
the one-dimensional ling= 0. With noise, the interesting caseps p. (above the blow-
Next we consider the case where noise is presentpFor out bifurcation). In this case, noise can also induce temporal
<p., trajectories can no longer stay in tlye=0 chaotic riddling between the basins of the= +« and —« attrac-
attractor forever due to noise. This attractor is therefore not gors, while no riddling occurs even for the=0 chaotic at-
global attractor in the full phase space. Since the influence dfactor in the absence of noise. Figut@Shows the basin of
noise is negligible for largdy|, the y=*c attractors are they= — attractor iny>0 (black dot3, where the param-
still the global attractors of the system. In this case, the basieter setting is p=2.8>p. (A, ~0.0296), q=0.1, €
of they= —o (+) attractor iny>0 (y<O0) is temporally —=10"'2 and initial conditions are chosen over a grid of
riddled, as showriblack dot$ for e=10'?in Fig. 4@ in  4096x 4096 in the unit square. Figurét) shows an enlarge-
which a grid of 204& 2048 initial conditions is chosen in ment of part of Fig. &) for a grid of 2048<2048 initial
the unit square, and an initial condition is regarded as beeonditions in 0.4 x=<0.6 and G<y=0.05. Similar structures
longing to the basin ofy=—< if the trajectory resulting are observed. Note that the features exhibited in Fi¢g®. 5
from it falls belowy= —1000. Blank regions correspond to and 5b) are similar to those in Figs.(& and 3b), but Figs.
the temporal basin of thg= +< attractor which is deter- 5(a) and §b) are associated with the noise-induced temporal
mined by the numerical criterion>1000. Figure &) is an  riddling of they= —< attractorabovethe blowout bifurca-
enlargement of the regiof®.4<x<0.6, 0<y=<0.09 in Fig.  tion, whereas Figs. (8 and 3b) correspond to riddling of

FIG. 3. When noise is absent, riddled baéiack dot$ of the
chaotic attractor in the invariant subspaceO below the blowout
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(a) basin of the y = ~ infinity attractor (a) basin of the y = —infinity attractor

0.9 0.9

0.8p% p=26<e 1 .8} p=28>e 1
1 noise = 1072 : noise = 10”2

0.5

0.4

0.3

0.2

0.1

0.05

0.045} EF
004} :
0.035}
0.03f

>0.025)

0.02§

0.015

0.01

T e

0.4 0.45 0.5 0.55 0.6

FIG. 4. Forp=2.6<p. and q=0.1, noise-induced temporally FIG. 5. Forp=2.8>p. (A, ~0.0296, above the blowout bifur-
riddled basin of they=—« attractor: (a) in the unit square 0 cation and q=0.1, noise-induced temporally riddled basin of the
<(x,y)<1; and(b) in the region(0.4<x<0.6, 0<y<0.05. The = y=— attractor:(a) in the unit square € (x,y)<1; and(b) in the
noise is uniform in — €, €] with amplitudee=10"'2 Note that in  region(0.4<x=<0.6, 0<y=0.05. The noise is the same as in Fig.
this case, noise renders transversely unstable/th@ chaotic at- 4. Note that in this case, there would be no riddling if noise is
tractor, but the basin of thg=— (+) attractor is temporally absent: the entirg>0 half plane is the basin of the= + « attrac-
riddled iny>0 (y<0) down to the scale of the noise level. tor except a set of Lebesque measure zero without noise.

the chaotic attractor in the invariant subspace in the absence

of noisebelowthe blowout bifurcation. (a)
To verify the scaling law(7), we first compute the frac-

tion of pointsF, on a fixed liney,=0 that belong to the -1 slope = 0.05 ?

temporal basin of thg= — o0 attractor as changes. Figure 6 '

shows logg F. versus logye for p=2.8, g=0.1 and w.1.14

10 < e<10°, where 16 initial conditions are chosen on o

the liney=0.01. We see that the plot can be roughly fitted

by a straight line, indicating an algebraic scaling relation

betweenF, and e: F_~€*, where the scaling exponent is

u=~0.050. Next, we computé, at a fixed noise amplitude -1.34

as yo (yo=0) increases. Figure 7 shows lgd-. versus

logyo Yo for 10 2<y,<10 6, wheree=10"*?, and 16 ini- 12 11 -10 -9 -8 -7 -6

tial conditions are used. We also obtain an algebraic scaling log, ¢

relation: F.~y,”, where the scaling exponent ig 1o

~0.065. We see that and y have similar values. FIG. 6. Aty,=0.01, on a logarithmic scale, the probabilfy
To check the universality of the scaling W), we note  that a randomx, asymptotes to thg= —o attractor versus the

that in our numerical model, the transverse Lyapunov exponoise amplitudes. The plot indicates that roughly, .~ €% Other

nent isA, =In p—1 and the diffusion coefficient is given by parameters arp=2.8 andq=0.1.
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slope = -0.065

-12 -11 -10 -9 -8 -7 -6
lOgloyo

FIG. 7. Ate=10"%? for p=2.8 andq=0.1, F versusy, on a
logarithmic scale. Roughly, we hawe.~y, >,

1 WYn+1 Ynt1 2
D=—f — Xn)dX
2 ( W |, o < yn yn—0>) p(Xn)dXy

1 1
:E f [In(px)_Al]zp(X)dX: E

(34)

Thus we have for the algebraic scaling expongrt2(In p
—1) for p=p.. Forp=2.8, we havep=0.059. This agrees
fairly well with the numerical values o0ft~0.050 andy
~0.065.

3905

ted by a straight line, indicating the algebraic scaling (8w

The slope of the straight line, or the uncertainty exponent, is
0.006+0.001. The theoretical prediction, however, gives
=(In p—1)%(4D In 2)~6x 10 *, which is one order of
magnitude smaller than the numerical value. This rather
large discrepancy is, however, somewhat expected because
the theoretical exponent is proportional to the square of the
transverse Lyapunov exponent, , which is itself a very
small number near the blowout bifurcation. We see from Fig.
8 that the numerical fluctuations {Py(5)) are quite large.

It is thus impractical to expect to be able to extract a slope
from Fig. 7 that is on the order of 1@ with good precision.
Increasingp further away fromp,, yields larger values for
A, . Therefore one might expect to obtain an improved
agreement ine when p>p. but not close tgp.. However,

the theoretical predictio8) is only valid for p=p.. Thus

we are forced to rely on qualitative agreement for the scaling
law between(P(5)) and &, which appears to be algebraic
from Fig. 8. Numerical computation does indicate, neverthe-
less, that the uncertainty exponent for noise-induced tempo-
ral riddling is extremely small, as we have verified for a
number of parameter values in the vicinitymf. Such small
values of the uncertainty exponent imply an extreme insen-
sitivity of the uncertain probabilitf Py(5)) to changes in
the precision of the initial condition. Figure 8 indicates that
(Py(6)) decreases only slightly when one raises the preci-
sion (corresponding to decreaggover eight orders of mag-
nitude. Therefore, in practical terms, any attempt in a hope to
better predict the system’s asymptotic attractor by improving

We now compute the scaling of the uncertain probabilitythe measurement of initial conditions and parameters of the

(Py(9)). To do this we fixp=2.8 andg=0.1 (the same

system will fail for situations of noise-induced temporal rid-

parameter setting as in Figs. 5 any &nd choose a large dling.

number of pairs ) of initial conditions of distanceé apart
aty,=10"° under noise of amplitude=10"15. This rather
small noise level is used becauéB(6)) is meaningful

only when 6> €. For each pair, we determine if the initial

V. DISCUSSIONS

The presence of invariant properties is common in theo-

conditions go to different attractors. If yes, this pair is uncer-retical models of natural systems. Symmetry is perhaps one

tain with respect to perturbatiofi For fixed 8, we increase

No until the number of uncertain pairs of initial conditions

reaches 1000. We then hayB(5))~1000N,, whereNg
=1000. Figure 8 shows lgg Py (5)) versus log, & for €

<10 < <10 2. We see that the plot can be roughly fit-

a =0.006 (slope)

-6
log

FIG. 8. The uncertainty probabiliP(5)) versuss on a loga-

of the most often encountered properties in physical, chemi-
cal, and biological systems. Such invariant properties usually
lead to interesting dynamical consequences and hence they
have been tremendously helpful to our understanding of the
system’s dynamics. One should, however, be cautious about
these invariant properties because they are usually not ge-
neric. That is to say, any defect in the system or small exter-
nal noise could completely wipe out properties such as sym-
metry. A key question is therefore whether the physical
consequences caused by the system'’s invariant properties
still persist in noisy environment, and how.

When the system is chaotic and its equations have a
simple kind of symmetry, situations often arise where there
is an invariant subspace and there is a chaotic attractor in the
invariant subspace. If the system is perfect and there is no
noise, the presence of a chaotic attractor in the invariant
subspace can lead to unusual but interesting dynamical phe-
nomena such as riddling and on-off intermitterid6,17),
which have recently become an active forefront research area
in chaotic dynamics. Since the occurrence of riddling de-
pends on the system’s possessing a perfect invariant sub-

rithmic scale. The plot can be roughly fitted by a straight line, SPace, an important question is whether riddling is still ob-
verifying the scaling law(8). The dashed line is the theoretical servable in practical situations where noise is inevitable. In
prediction. Note that the uncertainty exponent is very close to zerathis regard, recent work has shown that in a parameter re-
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gime near the birth of riddlingriddling bifurcation), which dP(Y,Yq.n)

is triggered by the loss of transverse stability of some low- fo(n)=—6P(0,Yg,n)|y—o+D —ay
period periodic orbits embedded in the chaotic attractor in Y=0
the invariant subspace, riddling manifests itd@f10] in a dP(Y,Yq,Nn)

form of superpersistent chaotic transi€t®]. The lifetime of =Py . o.

such a chaotic transient is so extremely long when symmetry
preaklng and/or the noise amphtude are small, that rlddllng]_he flux throughY=0 from above in timen is Fy(n)
is practically observable near the riddling bifurcation. Blow- _ ne dn. f hich the Lal ¢ ¢ .
out bifurcation, on the other hand, occurs when a system Jofo(m)dn, for which the Laplace transform is
parameter increases further away from the riddling bifurca- —
tion point and when typical trajectories in the chaotic attrac- F_O(s)=E M
tor in the invariant subspace become transversely unstable. S dy
After the blowout bifurcation, there are infinitely more peri-
odic orbits embedded in the chaotic attractor that are trans- __ -
versely unstable than those that are transversely sfaBle s eh2M)Yo M r2e 17"
A question that has remained uninvestigated is whether rid-
dling is still observable when the system is in a noisy envi-Performing the inverse Laplace transform and taking the
ronment and is in the parameter regime about the blowouimit n—o (so only the pole a¢=0 has a contribution to the
bifurcation. flux), we obtain the following fraction of initial conditions
This paper gives an affirmative answer to the above queghat asymptote to the fixed-point attractoryat
tion. In particular, we argue that when there are attractors
(not necessarily chaolitocated off the invariant subspace, a
situation easily encountered in chaotic systems, small noise
canin fact induce temporal riddling between the basins of
these attractors even beyond the blowout bifurcation. We&'hus we haveF .+ Fy=1, which is expected because even-
note that near but below the blowout bifurcation, noise detually all initial conditions chosen from the upper unit square
stroys riddling of the chaotic attractor in the invariant sub-asymptote either to the attractoryaor to the one at-y. In
space and replaces it by a chaotic transient whicimds fact, it is straightforward to check from direct integration that
superpersisteni6]. Beyond the blowout bifurcation, riddling the total fraction of trajectories ik<y=<1 is zero in the
disappears because the chaotic attractor in the invariant sultmit of n—o. Denote this fraction byF,. We haveF .,
space is unstable. Thus we see that riddling of the chaotieslim,_...F.(n), where
attractor in the invariant subspace is practicathpbservable
in parameter regimes about the blowout-bifurcation point.
What is physically observable in this case is the temporal
riddling between attractors off the invariant subspace, which
occurs bothbelowand abovethe blowout-bifurcation point, The Laplace transform df . (n) is
as demonstrated qualitatively and quantitatively in this pa-
per. Thus, in different forms, riddling can occur in wide pa- __ Te— 1
rameter regimes about the blowout-bifurcation point. The F+(S)=f0P(Y,Yo,S)dY:—g
universal scaling laws associated with the noise-induced
temporal riddling have been obtained in this paper. Since 1 eMYo(eM?_ 1)+e)\1?+)\2Y0(e*)\2?_ 1)
noise is inevitable in reality, we expect riddling to occur +g et Yo g he 1]
commonly in dynamical systems with symmetry.

Y=0

1 eMYo— ghi—r2)e+raYg

eﬂ?_ e’]YO

Fo= e’¢—1

1
F+(n)=f P(y,Yo,n)dy.

Picking the contribution from the pole &t=0, we obtain

F.=0 in then—oo limit.
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APPENDIX A: FLUX THROUGH Y=0
IN THE DIFFUSION APPROXIMATION
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C,eMY+Cer2’ for Y>Y,

3907

F.(s)=1/s—(Ls)exd —Ax(Yo—€)]. (B4)

Performing the inverse-Laplace transform by noting that

there are a pole a&=0 and a branch singularity &t=s*

=—A?%/4D<0, we obtain

PY.Y0.9)= | coeM¥ for Y<,, (B1)
where the coefficients are
Co=———exp—\,Yy),
Ci=—Cyexg (A= \p)e], (B2)

C3=Cy{exfd (A= N1)Yol—exd (Aa—\p)e]}.

Fo(n)=1—exd —\y(s=0)(Yo—€)]

- si* exd —Na(s=s*)(Yo— €)]exp(s*n).

In the limit n—o, F, (n) is the probability that the random

Let F. (n) be the probability that the walker has not reachedV@lker has never reachéd> e (y<e) and hence (=) is

within € of y=0 at timen. The Laplace transform d¥, (n)
is given by

the fraction of they= +« basin in the upper half plane.
Therefore the noise-induced fraction of pointsygt>0 that

belong to they= — basin is given by

F.(s)= f;P_(Y,YO,s)dY. (B3)

Substituting Eqs(B1) and (B2) into Eq. (B3), we obtain

Fe=1—limF_ (n)=exg 7(Yo—€)]~ ey, ",

n—oe

which is the scaling law7).

[1] M. Field and M. GolubitskySymmetry in Chaos: A Search for
Pattern in Mathematics, Art and Natur@xford University
Press, Oxford, 1992

[2] A. Pikovsky and P. Grassberger, J. Phys24 4587 (1991);

A. Pikovsky, M. G. Rosenblum, and J. Kurths, Europhys. Lett.
34, 165(1996; M. Ding and W. Yang, Phys. Rev. ¥4, 2489
(1996.

[3] P. Ashwin, J. Buescu, and I. N. Stewart, Phys. Letl.98 126
(1994); Nonlinearity 9, 703 (1996; P. Ashwin, P. J. Aston,
and M. Nicol, University of Surrey, Technical Report in Math-
ematics and Statistics, 1996npublishe@t P. Ashwin and E.
Stone, Centre for Interdisciplinary Nonlinear Mathematics
Technical Report, 1997unpublishegt S. C. Venkataramani,

invariant subspace is also influenced by the blowout-
bifurcation parametgp, our consideration in this paper applies

if there is a chaotic attractor in the invariant subspacepAs
changed, the attractor itself can undergo bifurcations. Thus the
transverse Lyapunov exponert, (p) is not necessarily a
smooth or even a continuous function pfin the vicinity of

the blowout bifurcation, as is true for the plots of the
Lyapunov exponents of typical chaotic systems versus some
parameter. However, in general, we expact(p) to have a
smooth envelope. Our results in this paper should hold with
respect to the smooth envelope of the function(p). On the
other hand, situations of normal parameters arise naturally in
synchronization of identical coupled chaotic oscillators.

B. Hunt, E. Ott, D. J. Gauthier, and J. C. Bienfang, Phys. Revflz] C. Grebogi, S. W. McDonald, E. Ott, and J. A. Yorke, Phys.

Lett. 77, 5361(1996.

[4] J. F. Heagy, T. L. Carroll, and L. M. Pecora, Phys. Rev. Lett.
73, 3528(1994.

[5] J. C. Alexander, J. A. Yorke, Z. You, and |. Kan, Int. J. Bifur-
cation Chaos Appl. Sci. En@, 795(1992; I. Kan, Bull. Am.
Math. Soc.31, 68 (1994; Y.-C. Lai and C. Grebogi, Phys.
Rev. E52, R3313(1995; H. Nakajima and Y. Ueda, Physica
D 99, 35(1996.

[6] E. Oftt, J. C. Sommerer, J. C. Alexander, |. Kan, and J. A.
Yorke, Phys. Rev. Lett71, 4134 (1993; E. Ott, J. C. Alex-
ander, I. Kan, J. C. Sommerer, and J. A. Yorke, Physic&6D
384 (1994.

[7] E. Ott and J. C. Sommerer, Phys. Lett.188 39 (1994).

[8] Y.-C. Lai, C. Grebogi, J. A. Yorke, and S. C. Venkataramani,
Phys. Rev. Lett77, 55 (1996.

[9] Y.-C. Lai and C. Grebogi, Phys. Rev. Le®7, 5047(1996.

[10] S. C. Venkataramani, B. Hunt, and E. Ott, Phys. Re\64E
1346(1996.

[11] The model system Eq1) has the property that the equation of
motion in the invariant subspage=0 is independent of the
bifurcation parameter. Ashwin and co-workers call such pa-
rametersnormal parameter$3]. In reality there can be situa-
tions where this is not true. For systems whose dynamics in the

Lett. 99A, 415(1983; S. W. McDonald, C. Grebogi, E. Ott,
and J. A. Yorke, Physica 7, 125(1985.

[13] W. Feller, An Introduction to Probability Theory and its Ap-

plications (Wiley, New York, 1966.

[14] Explicit integration in Eq(29) yields

H(s)=(Aelime™ Ko~ [B(&o— 1)+ (€1~ €Yo)r, +[B(&2Y0
-1+ (erz?_ 2Y0))Ir,+[B(€/3Y0— 1)+ e(M‘M)?(efa?

—&2Y0)J/ry—[B(€4Yo— 1)+ MM (gac—daYy) Jir,),
where A and B are given by Eq(15), ri=N;+sK, r,=r,
+mn, rg3=k,+sK, and r,=r;+%. Note that r;=0 (i
=1,...,4) inH(s) are not poles. Therefore the only singu-
larity in H(s) is the square-root branch singularity contained in
N and\,.

[15] Superpersistent chaotic transients also occur in a variety of

systems. See, for example, C. Grebogi, E. Ott, and J. A. Yorke,
Phys. Rev. Lett50, 935(1983; Erg. Th. Dyna. Sys5, 341
(1989; J. P. Crutchfield and K. Kaneko, Phys. Rev. Léf),
2715(1988; A. Hastings and K. Higgins, Scien@63, 1133
(1999; Y.-C. Lai and R. L. Winslow, Phys. Rev. Let?4,
5208(1999; R. Braun and F. Feudel, Phys. Rev5B, 6562
(1996.



3908 YING-CHENG LAl 56

[16] E. A. Spiegel, Ann(N.Y.) Acad. Sci.617, 305(198D); A. S. [17] The effect of noise on on-off intermittency has been investi-

Pikovsky, Z. Phys. B55, 149(1984); H. Fujisaka and T. Ya- gated. See, for example, J. F. Heagy, N. Platt, and S. M. Ham-
mada, Prog. Theor. Phys4, 919(1985; 75, 1087(1986); A. mel, Phys. Rev. B9, 1140(1994; S. C. Venkataramani, T.

S. Pikovsky, Phys. Lett. AL65 33 (1992; N. Platt, E. A. M. Antonsen, Jr., E. Ott, and J. C. Sommerer, Physi&656
Spiegel, and C. Tresser, Phys. Rev. Lé@.279(1993; Y.-C. (1996.

Lai, Phys. Rev. E53, R4267(1996); 54, 321(1996. [18] Y. Nagai and Y.-C. Lai, Phys. Rev. &5, R1251(1997.



