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Synchronism in symmetric hyperchaotic systems
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We demonstrate that for symmetric dynamical systems with an invariant subspace in which there is a chaotic
attractor, synchronism between the transverse subsystem and its replica can be achieved in wide parameter
regimes. The synchronism occurs in situations where the interaction between the invariant subsystem and the
transverse subsystem can be either unidirectional or bidirectional, and the full system can possess more than
one positive Lyapunov exponent. The idea is illustrated by a numerical example.@S1063-651X~97!51405-X#
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Since the pioneering work of Pecora and Carroll@1#, syn-
chronization in chaotic systems has become a field of inte
interest@1–4#. The ability for chaotic systems to synchroniz
with each other provides a possible approach to transmi
formation via a chaotic carrier and, therefore, it is potentia
relevant to applications in communication@2,5#. Naively,
synchronous chaos seems quite counterintuitive because
otic trajectories diverge from each other exponentially.
was shown by Pecora and Carroll@1# that when an appropri
ately chosen state variable of a chaotic system is use
drive a subsystem~the ‘‘slave’’!, the subsystem synchronize
with its replica if its Lyapunov exponents are all negativ
Given a chaotic system, whether the Pecora-Carroll type
synchronism occurs depends on a proper decompositio
the system into the driving and enslaving subsystems. In
regard, one usually tests various combinations of a subs
state variables to look for a subsystem that possesses
negative Lyapunov exponents.

An important research topic of current interest is how
synchronize chaotic systems with more than one posi
Lyapunov exponent~hyperchaotic systems! @4#. This is po-
tentially relevant to applications in secure communicat
because it is substantially more difficult to extract inform
tion from an intercepted hyperchaotic signal. In this pap
we demonstrate that hyperchaotic systems with a simple
of symmetry naturally possess synchronizable subsyste
Simple symmetry often leads to the existence of a~several!
low-dimensional invariant subspace~s! ~denoted byS!. Here
by ‘‘invariant’’ we mean that a trajectory starting inS re-
mains inS forever. The full phase space can thus be deco
posed into the invariant subspaceS and the subspaceT that
is transverseto S. Equivalently, the system can be physica
decomposed into an invariant subsystem that lives inSand a
transverse subsystem that lives inT. The invariant and trans
verse subsystems are coupled to each other. We shall a
that when the invariant subsystem is unstable with respe
perturbations in the transverse direction, the transverse
systemT can besynchronized with its replicaT8 under fairly
general conditions, although generally, trajectories inT
would not synchronize to trajectories inS. A practically ap-
pealing feature of this class of synchronism is that it can
achieved with as few as one driving signal.
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More specifically, the setup of the problem is as follow
Assume there is a chaotic or hyperchaotic attractor inS. For
randomly chosen initial conditions inS, the trajectories live
on the chaotic attractor forever becauseS is invariant. For
initial conditions offS, the resulting trajectories may or ma
not asymptote to the chaotic attractor inS, depending on
whether typical trajectories restricted to lie in the chao
attractor inS are transversely stable or transversely unsta
respectively. Now regard the dynamical variables in t
transverse subspaceT as the subsystem to be synchronize
If S is transversely stable, synchronism inT is trivial because
almost all trajectories asymptote toS. However, whenS is
transversely unstable, synchronism can generally b
achieved between the transverse subsystem and its re
when there is a coupling between dynamical variables iS
and those inT. The number of coupled signals fromS to T
~the driving signals! can be made as few as one.

There are several features associated with the above
scribed synchronism:~1! the full system, which consists o
the invariant subsystem and the transverse subsystem,
possess more than one positive Lyapunov exponent;~2! the
interaction betweenS andT can be both unidirectional from
S to T and bidirectional;~3! the synchronism occurs in wid
regions of positive Lebesgue measure in the parameter sp
and ~4! the synchronism is robust against small rando
noise. Due to these features, we expect this type of cha
synchronism to be observable and constructable in phys
systems with symmetry and, consequently, to be usefu
practical applications. We stress that our synchronism isfun-
damentally differentfrom synchronization of coupled chaoti
oscillators @6#. In that case, there is an invariant subspa
corresponding to this synchronous manifold on which all
cillators evolve identically. As such, synchronism among
coupled oscillators occurs when this manifold istransversely
stable. In our case, synchronism occurs in the transverse s
space and it occurs when the invariant subspace istrans-
versely unstable.

We consider a chaotic systemdz/dt5F(z) with a sym-
metric invariant subspaceS, wherezPRN is the state vari-
able andN is the phase-space dimension. Now decomposz
into two components:z[(x,y), wherexPS(RNx) represents
the invariant subsystem,yPT(RNy) is the transverse sub
system to be synchronized, andNx1Ny5N. The Pecora-
Carroll type of synchronism occurs when the large
Lyapunov exponent of the subsystemy is negative@7#. In
R4861 © 1997 The American Physical Society



ng

e
-
o

e

m

s
t

ro
tio

or
-
f
ct

m-
e

one
to

rate
we

e

en

in a
the

ve

ol-

e
r

onal
d

RAPID COMMUNICATIONS

R4862 55YING-CHENG LAI
this case, the subsystemy synchronizes with its replicay8 in
the sense thatuy2y8u→0 ast→` if both y andy8 are driven
by the samex. For concreteness we consider the followi
equations forx andy:

dx

dt
5f~x!1g~x,y!,

~1!

dy

dt
5G~ x̄,y!,

whereG( x̄,0)50 so thaty50 is the invariant subspaceS,
x̄,x is a subset of the dynamical variables inS. The func-
tion g(x,y) satisfiesg(x,0)50 so that the dynamics in th
invariant is described bydx/dt5f(x) which generates a cha
otic attractor with more than one positive Lyapunov exp
nent. Since in general,g(x,y)Þ0 off S, the coupling between
x andy is bidirectional@the case whereg(x,y)50 is called
‘‘unidirectional’’ coupling#. The replica of the transvers
subsystem to be synchronized is

dy8
dt

5G~ x̄,y8!. ~2!

The largest Lyapunov exponent of they subsystem is given
by

Lsub5 lim
t→`

1

t
ln

udy~ t !u
udy~0!u

,

where

ddy~ t !

dt
5

]G~ x̄,y!

]y
•dy~ t !. ~3!

In Eq. ~3!, the partial derivative@]G( x̄,y)/]y# is the Jaco-
bian matrix evaluated along a trajectory$x(t),y(t)%. Write
dy(t)5y(t)2y8(t). In the noiseless situation, synchronis
in the y subsystem occurs whenLsub,0 so thatdy(t)→0
asymptotically. Since the driving dynamics is invariant iny
50, there are two cases for synchronization in they sub-
system, depending on the system parameters. One is the
ation where thex dynamics is transversely stable so thay
50 is an attractor of the full system Eq.~1!. In this case,
asymptotically we havey→0 for different initial conditions.
This, obviously, gives a trivial and uninteresting synch
nism in y @8#. The second case corresponds to the situa
where thex dynamics istransversely unstable.In this case,
the chaotic attractor in the invariant subspacey50 is a re-
peller in they subspace and, hence, they dynamics is locally
chaotic neary50. The y variables of a typical trajectory
would therefore exhibit complicated and nontrivial behavi
But if Lsub,0, trajectories starting from different initial con
ditions will be eventually synchronized. The dynamics oy
near the invariant subspace can be quantitatively chara
ized by the largest transverse Lyapunov exponent@9# defined
as follows:

LT5 lim
t→`

1

t
ln

udy~ t !u
udy~0!u

,

-
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-
n

.
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where

ddy~ t !

dt
5

]G~ x̄,y!

]y U
y50

•dy~ t !, ~4!

where the partial derivative@]G( x̄,y)/]y#uy50 is now evalu-
ated aty50. The chaotic dynamicsx in the invariant sub-
space is transversely unstable~stable! if LT.0 ~,0! @10#.
Nontrivial synchronism iny occurs ifLT.0 but Lsub,0.
The main point of the paper is that there are an infinite nu
ber of functionsf, g, andG that can be chosen with relativ
ease to achieveLT.0 andLsub,0, even if the full system
Eq. ~1! is high dimensional and possesses more than
positive Lyapunov exponent. This would provide a way
constructa priori synchronous chaotic systems.

A particular class of symmetric systems that can gene
synchronous chaos can be constructed as follows. Say
chooseG( x̄,y)5h( x̄,p)H(y), whereh( x̄,p) is a scalar func-
tion of the driving variablex̄, p is a parameter that can b
varied, andH~y! satisfiesH„0…50. An infinitesimal vector
evolves according toddy/dt5h( x̄,p)DH(y)•dy, where
DH~y! is the Jacobian matrix]H/]y. We can choose the
functionH~y! such thatDH(y)uy505I , whereI is the iden-
tity matrix. The largest transverse Lyapunov exponent is th
given byLT5limt→`(1/t)*0

`h@ x̄(t),p#dt5*h( x̄,p)r( x̄)dx,
wherer( x̄) is the invariant density ofx̄. One can thus iden-
tify parameter regimes withLT.0 by varyingp systemati-
cally. This can be done with relative ease, as we will see
subsequent numerical example. On the other hand, if
Jacobian matrixDH~y! ~without settingy50! has negative
eigenvalues along the trajectory, it is possible to ha
Lsub,0.

We now give a numerical example. We consider the f
lowing six-dimensional flow with small additive noise:

dx1
dt

52x22x31ay1esx1~ t !,

dx2
dt

5x110.25x21x41bz21esx2~ t !,

dx3
dt

53.01x1x31esx3~ t !,
~5!

dx4
dt

520.5x310.05x41esx4~ t !,

dy

dt
5z1esy~ t !,

dz

dt
52az2gy31~b1 f 1sinx11 f 2sinx2!sin~2py!

1esz~ t !,

where in the absence of noise@corresponding to the nois
amplitudee50 in Eq. ~5!#, the invariant subspace is fou
dimensional (x1 ,x2 ,x3 ,x4) defined byy50 and z50, the
transverse subsystem to be synchronized is two dimensi
(y,z), a, b, a, g, b, f 1 , and f 2 are parameters, an
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s(t)’s are random variables with uniform probability dens
in @21,1#. Note that the case wherea5b50 corresponds to
unidirectional coupling from the invariant subspace to
transverse subspace, and the coupling terms such asay and
bz2 are chosen rather arbitrarily. In Eq.~5!, the variables
(x1 ,x2 ,x3 ,x4) constitute the hyperchaotic Ro¨ssler chaotic
system with two positive Lyapunov exponents@11#. The rep-
lica of the transverse subsystem to be synchronized is

dy8

dt
5z81esy8~ t !,

dz8

dt
52az82g~y8!31~b1 f 1sinx11 f 2sinx2!sin~2py8!

1esz8~ t !. ~6!

For concreteness we fixa51.0, b52.0, g52.0, f 153.5,
f 255.0, and changea andb to identify synchronizable pa
rameter regimes withLT.0 andLsub,0 in the noiseless
case. Figure 1 shows forb51.6,LT andLsub versusa. We
see that in thea interval shown, the local dynamics near th
invariant subspace is always chaotic becauseLT.0, but the
global dynamics in the transverse subspace is noncha
rendering synchronizable the transverse subsystem with
replica. Figure 2~a! shows fora510 andb51.6, the plots of
z(t) versust and z8(t) versust, where the trajectories in
(y,z) and in (y8,z8) start from two different random initia
conditions. We see thatz(t) andz8(t) approach each othe
rapidly. Figure 2~b! shows, on a semilogarithmic scal
D(t)[A@y(t)2y8(t)#21@z(t)2z8(t)#2 versus t for the
same parameter setting as in Fig. 2~a!, where the noise am
plitude is e510212. Clearly, trajectories of the transvers
subsystem and of its replica approach to each other expo

FIG. 1. For the six-dimensional hyperchaotic flow Eq.~5!, the
transverse Lyapunov exponentLT and the largest Lyapunov expo
nentLsub of the transverse subsystem vsa. Other parameters are
b51.6,a51.0, b52.0, g52.0, f 153.5, andf 255.0. The positiv-
ity of LT and the negativity ofLsub result in nontrivial synchroni-
zation of the subsystem with its replica.
e

ic,
its

n-

tially to within distances on the order of the noise amplitud
The synchronism is therefore robust in the presence of sm
noise.

We stress four basic aspects associated with the cha
synchronism in our example Eq.~5!: ~i! We find numeri-
cally that the synchronism can be achieved in wide regi
in the two-dimensional parameter space~a,b! and, thus, it is
expected to be practically realizable;~ii ! We calculate that
the full six-dimensional dynamical system at the parame
setting in Figs. 2~a! and 2~b! has the following Lyapunov
spectrum ~approximately!: ~0.109, 0.021, 0, 21.891,
27.749,224.450! and, hence, the synchronism illustrate
by Figs. 2~a! and 2~b! occurs for a situation where there a
two positive Lyapunov exponents~hyperchaos!; ~iii ! The pa-
rametersa andb are not zero so that the interaction betwe
the invariant subsystem and the transverse subsystem i
directional. In fact, synchronism is observed for many ra
dom choices ofa and b, including the unidirectional cou-
pling case wherea50 andb50 and;~iv! The synchronism
appears to be immune to small external noise.

In summary, we demonstrate numerically and argue th
retically that chaotic synchronism with hyperchaotic drivin
signals can be realized in high-dimensional dynamical s
tems when symmetry and invariant subspace are built

FIG. 2. An illustration of the synchronization fora510 ~other
parameters are the same as in Fig. 1!. Uniform noise of amplitude
10212 is added to Eq.~5!. ~a! The time seriesz(t) andz8(t), and~b!
log10D(t) vs t.
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the system. In principle, the systems so constructed can
an arbitrary number of positive Lyapunov exponents. T
synchronism so designed is robust and occurs in a w
range of parameter values which are easy to identify by c
sidering the transverse stability of the chaotic process in
invariant subspace. These features may be advantageou
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practical situations.
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