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Synchronism in symmetric hyperchaotic systems
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We demonstrate that for symmetric dynamical systems with an invariant subspace in which there is a chaotic
attractor, synchronism between the transverse subsystem and its replica can be achieved in wide parameter
regimes. The synchronism occurs in situations where the interaction between the invariant subsystem and the
transverse subsystem can be either unidirectional or bidirectional, and the full system can possess more than
one positive Lyapunov exponent. The idea is illustrated by a numerical exa8il@63-651X%97)51405-X

PACS numbes): 05.45+b

Since the pioneering work of Pecora and Carf]l syn- More specifically, the setup of the problem is as follows.
chronization in chaotic systems has become a field of intensAssume there is a chaotic or hyperchaotic attractd.iRor
interesf 1—4]. The ability for chaotic systems to synchronize randomly chosen initial conditions i8, the trajectories live
with each other provides a possible approach to transmit inen the chaotic attractor forever becau$és invariant. For
formation via a chaotic carrier and, therefore, it is potentiallyinitial conditions offS, the resulting trajectories may or may
relevant to applications in communicatid@,5]. Naively, = not asymptote to the chaotic attractor $ depending on
synchronous chaos seems quite counterintuitive because chahether typical trajectories restricted to lie in the chaotic
otic trajectories diverge from each other exponentially. Itattractor inS are transversely stable or transversely unstable,
was shown by Pecora and Carrdl] that when an appropri- respectively. Now regard the dynamical variables in the
ately chosen state variable of a chaotic system is used twansverse subspadeas the subsystem to be synchronized.
drive a subsystertthe “slave”), the subsystem synchronizes If Sis transversely stable, synchronisnilins trivial because
with its replica if its Lyapunov exponents are all negative.almost all trajectories asymptote  However, whersS is
Given a chaotic system, whether the Pecora-Carroll type ofransversely unstabje synchronism can generally be
synchronism occurs depends on a proper decomposition e@ichieved between the transverse subsystem and its replica
the system into the driving and enslaving subsystems. In thighen there is a coupling between dynamical variable$ in
regard, one usually tests various combinations of a subset @nd those inT. The number of coupled signals frogito T
state variables to look for a subsystem that possesses onfthe driving signalscan be made as few as one.
negative Lyapunov exponents. There are several features associated with the above de-

An important research topic of current interest is how toscribed synchronism:(1) the full system, which consists of
synchronize chaotic systems with more than one positivéhe invariant subsystem and the transverse subsystem, can
Lyapunov exponenthyperchaotic system$4]. This is po- possess more than one positive Lyapunov expor@hthe
tentially relevant to applications in secure communicationinteraction betwee andT can be both unidirectional from
because it is substantially more difficult to extract informa-Sto T and bidirectional{3) the synchronism occurs in wide
tion from an intercepted hyperchaotic signal. In this paperregions of positive Lebesgue measure in the parameter space;
we demonstrate that hyperchaotic systems with a simple typand (4) the synchronism is robust against small random
of symmetry naturally possess synchronizable subsystemspise. Due to these features, we expect this type of chaotic
Simple symmetry often leads to the existence géeveral synchronism to be observable and constructable in physical
low-dimensional invariant subspdsg(denoted byS). Here  systems with symmetry and, consequently, to be useful in
by “invariant” we mean that a trajectory starting @ re-  practical applications. We stress that our synchronisfaris
mains inS forever. The full phase space can thus be decomdamentally differenfrom synchronization of coupled chaotic
posed into the invariant subspa8and the subspack that  oscillators[6]. In that case, there is an invariant subspace
is transverseo S. Equivalently, the system can be physically corresponding to this synchronous manifold on which all os-
decomposed into an invariant subsystem that livesamd a  cillators evolve identically. As such, synchronism among the
transverse subsystem that livesTinThe invariant and trans- coupled oscillators occurs when this manifoldransversely
verse subsystems are coupled to each other. We shall argatable In our case, synchronism occurs in the transverse sub-
that when the invariant subsystem is unstable with respect tepace and it occurs when the invariant subspaceaiss-
perturbations in the transverse direction, the transverse sulersely unstable
systemT can besynchronized with its replicd’ under fairly We consider a chaotic systedz/dt=F(z) with a sym-
general conditions, although generally, trajectoriesTin metric invariant subspacs, whereze RN is the state vari-
would not synchronize to trajectories $ A practically ap- able andN is the phase-space dimension. Now decompose
pealing feature of this class of synchronism is that it can bénto two componentsz=(x,y), wherexe S(R") represents
achieved with as few as one driving signal. the invariant subsystenye T(RM) is the transverse sub-

system to be synchronized, amf+N,=N. The Pecora-
Carroll type of synchronism occurs when the largest
*Electronic address: lai@poincare.math.ukans.edu Lyapunov exponent of the subsystgmis negative[7]. In
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this case, the subsysteyrsynchronizes with its replicg’ in~ where

the sense thdy—y’|—0 ast— if bothy andy’ are driven _

by the samex. For concreteness we consider the following doy(t) 9G(x,y)|
equations forx andy: dt oy ‘y:O

- 6y(1), 4

where the partial derivativbaG(x_,y)/ay]|y=o is now evalu-
ated aty=0. The chaotic dynamicg in the invariant sub-
@ space is transversely unstaljiable if A+>0 (<0) [10].
dy — Nontrivial synchronism iny occurs if At>0 but A4,<0.
T The main point of the paper is that there are an infinite num-
ber of functionsf, g, andG that can be chosen with relative
where G(x,0)=0 so thaty=0 is the invariant subspacg,  €ase to achievd >0 andA;;<0, even if the full system
XCX is a subset of the dynamical variablesSnThe func- EQ. (1) is high dimensional and possesses more than one
tion g(x,y) satisfiesg(x,0)=0 so that the dynamics in the positive Lyapunov exponent. This would provide a way to
invariant is described bgtx/dt=f(x) which generates a cha- constructa priori synchronous chaotic systems.
otic attractor with more than one positive Lyapunov expo- A particular class of symmetric systems that can generate
nent. Since in generaj(x,y) # 0 off S, the coupling between synchronous chaos can be constructed as follows. Say we
x andy is bidirectional[the case wherg(x,y)=0 is called ~ chooseG(x,y)=h(x,p)H(y), whereh(x,p) is a scalar func-
“unidirectional” coupling]. The replica of the transverse tion of the driving variablex, p is a parameter that can be

dx_
Gp =0+ xy),

subsystem to be synchronized is varied, andH(y) satisfiesH(0)=0. An infinitesimal vector
evolves according todsy/dt=h(x,p)DH(y)- 8y, where
dy’ DH(y) is the Jacobian matri¥H/dy. We can choose the

ar =Gy, (@) function H(y) such thatDH(y)|,—o=1, wherel is the iden-

tity matrix. The largest transverse Lyapunov exponent is then
The largest Lyapunov exponent of thesubsystem is given given by Ar=lim_..(1%) [gh[x(t),p]dt=[h(x,p) p(X)dX,

by wherep(X) is the invariant density ok. One can thus iden-
tify parameter regimes withh >0 by varyingp systemati-

|éy(t)| cally. This can be done with relative ease, as we will see in a

ASUb_ I|m |fW(0)| subsequent numerical example. On the other hand, if the

Jacobian matribXDH(y) (without settingy=0) has negative

where eigenvalues along the trajectory, it is possible to have

Agu<O.
doy(t) aG(xy) We now give a numerical example. We consider the fol-
TR oy Sy(t). 3 lowing six-dimensional flow with small additive noise:
In Eq. (3), the partial derivativd 9G(x,y)/dy] is the Jaco- %: —Xp— Xzt ay+ eoy(t),
bian matrix evaluated along a trajectofy(t),y(t)}. Write dt
Sy(t)=y(t)—y'(t). In the noiseless situation, synchronism
in they s_ubsyste_m occurs yvhe(msub<0 so tha@y(t)_—>0_ %:xﬁo 250+ X4+ b2+ €a,5(1)
asymptotically. Since the driving dynamics is invariantyin dt
=0, there are two cases for synchronization in theub-
system, depending on the system parameters. One is the situ- dx ]
ation where thex dynamics is transversely stable so tlyat dt = 3.0+ X1X3F €oy3(1),
=0 is an attractor of the full system E@1). In this case, )
asymptotically we havg— 0 for different initial conditions. dx,
This, obviously, gives a trivial and uninteresting synchro- G- 0 Xt 0.05+ eay(l),

nism iny [8]. The second case corresponds to the situation
where thex dynamics istransversely unstabldn this case,

the chaotic attractor in the invariant subspgee0 is a re-

peller in they subspace and, hence, theynamics is locally

chaotic neary=0. The y variables of a typical trajectory

wou'ld therefore e.xhibit. compliqated and 'nontriviallt.)ehavior. d_Z: — az— yy3+ (B+ f1Six, + f,Sinx,) sin(27y)
But if A¢,<0, trajectories starting from different initial con- dt
ditions will be eventually synchronized. The dynamicsyof

near the invariant subspace can be quantitatively character-
ized by the largest transverse Lyapunov expoh@htlefined
as follows:

y
E—Z'f' EO'y(t),

+ eo,(1),

where in the absence of noigeorresponding to the noise

amplitudee=0 in Eq. (5)], the invariant subspace is four

|by(t)| dimensional X;,X,,X3,X4) defined byy=0 andz=0, the
transverse subsystem to be synchronized is two dimensional

A —I|m
T |5y 0|’ (y,2), a, b, @, y, B, f;, and f, are parameters, and
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FIG. 1. For the six-dimensional hyperchaotic flow E§), the

transverse Lyapunov exponeft and the largest Lyapunov expo-
nent A g, of the transverse subsystem &sOther parameters are,

p=1.6,a=1.0,b=2.0, y=2.0,f,;=3.5, andf,=5.0. The positiv-
ity of At and the negativity of\ g, result in nontrivial synchroni-
zation of the subsystem with its replica.

o(t)’s are random variables with uniform probability density

in [—1,1]. Note that the case whees=b=0 corresponds to

unidirectional coupling from the invariant subspace to the

transverse subspace, and the coupling terms suely and
bz? are chosen rather arbitrarily. In E¢p), the variables
(X1,X2,X3,X4) constitute the hyperchaotic ‘Bsler chaotic
system with two positive Lyapunov exponehtd]. The rep-
lica of the transverse subsystem to be synchronized is

dy’ -
H_Z EO'yr(t),

dz'
T az' —y(y") 3+ (B+ fysinx, + fsinx,)sin(27ry’)

+eay(1).

(6)

For concreteness we fia=1.0, b=2.0, y=2.0, f;=3.5,
f,=5.0, and change and 3 to identify synchronizable pa-
rameter regimes wittA+>0 and A, ;<0 in the noiseless
case. Figure 1 shows f@=1.6, At and Ay, versusa. We
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FIG. 2. An illustration of the synchronization far=10 (other
parameters are the same as in Fig.Uniform noise of amplitude
10 *?2is added to Eq(5). (a) The time serieg(t) andz’(t), and(b)
log;A(t) vst.

tially to within distances on the order of the noise amplitude.
The synchronism is therefore robust in the presence of small
noise.

We stress four basic aspects associated with the chaotic
synchronism in our example E¢5): (i) We find numeri-
cally that the synchronism can be achieved in wide regions
in the two-dimensional parameter spdegB) and, thus, it is
expected to be practically realizablg;) We calculate that
the full six-dimensional dynamical system at the parameter
setting in Figs. a) and 2b) has the following Lyapunov
spectrum (approximately. (0.109, 0.021, 0, —1.891,

see that in they interval shown, the local dynamics near the —7.749, —24.45Q and, hence, the synchronism illustrated

invariant subspace is always chaotic becatge- 0, but the

by Figs. Za) and Zb) occurs for a situation where there are

global dynamics in the transverse subspace is nonchaotitwo positive Lyapunov exponentiyperchaok (iii ) The pa-
rendering synchronizable the transverse subsystem with itmetersa andb are not zero so that the interaction between

replica. Figure 2a) shows fora=10 andB=1.6, the plots of
z(t) versust and z'(t) versust, where the trajectories in
(y,z) and in (y’,z’) start from two different random initial

the invariant subsystem and the transverse subsystem is bi-
directional. In fact, synchronism is observed for many ran-
dom choices ofa and b, including the unidirectional cou-

conditions. We see thaf(t) andz’(t) approach each other pling case wherea=0 andb=0 and;(iv) The synchronism
rapidly. Figure 2Zb) shows, on a semilogarithmic scale, appears to be immune to small external noise.

A)=\[y(t)—y () ]°+[z(t)—2z'(t)]* versust for the
same parameter setting as in Figa)2 where the noise am-

In summary, we demonstrate numerically and argue theo-
retically that chaotic synchronism with hyperchaotic driving

plitude is e=10"12 Clearly, trajectories of the transverse signals can be realized in high-dimensional dynamical sys-
subsystem and of its replica approach to each other exponetems when symmetry and invariant subspace are built into
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the system. In principle, the systems so constructed can hayeactical situations.

an arbitrary number of positive Lyapunov exponents. The _ _ )
synchronism so designed is robust and occurs in a wide This work was supported by AFOSR, Air Force Material
range of parameter values which are easy to identify by conCommand, USAF, under Grant No. F49620-96-1-0066, by
sidering the transverse stability of the chaotic process in th&lSF under Grant No. DMS-962659, and by the University of
invariant subspace. These features may be advantageous #kansas.
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