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On-off intermittent chaotic behavior occurs in physical systems with symmetry. The phenomenon refers to
the situation where one or more physical variables exhibit two distinct states in their time evolution. One is the
‘‘off’’ state where the physical variables remain constant, and the other is the ‘‘on’’ state where the variables
temporarily burst out of the ‘‘off’’ state. We demonstrate that by using arbitrarily small feedback control to an
accessible parameter or state of the system, the ‘‘on’’ state can be eliminated completely. This could be
practically advantageous where the desirable operational state of the system is the ‘‘off’’ state. Relevant issues
such as the influence of noise and the time required to achieve the control are addressed. It is found that the
average transient time preceding the control obeys a scaling law that isqualitatively differentfrom the alge-
braic scaling law which occurs when one controls chaos by stabilizing unstable periodic orbits embedded in a
chaotic attractor. A theoretical argument is provided for the observed scaling law.@S1063-651X~96!05208-7#

PACS number~s!: 05.45.1b

I. INTRODUCTION

Recently, the phenomenon of on-off intermittency has
been discovered in nonlinear dynamical systems@1,2#. In
such a case, one or more dynamical variables of the system
exhibit two distinct states as the system evolves in time. One
state is the ‘‘off’’ state where the dynamical variables remain
approximately constant in various time intervals. The length
of these time intervals can be either short or long. There can
also be occasional bursts of the dynamical variables away
from their constant values in the ‘‘off’’ state. These bursts
are referred to as the ‘‘on’’ state which occurs intermittently
as time progresses. Mechanisms for generating the behavior
of on-off intermittency have been investigated@1–5#. A con-
dition for on-off intermittency to occur is that the system
should be driven either randomly or chaotically@1–3#.

To give a concrete example of on-off intermittency, we
consider the following two-dimensional map in (x,y):

xn115 f ~xn!,
~1!

yn115axn~yn2b!~11b2yn!1b,

where f (x) is a random process or a deterministic chaotic
process, anda and b are parameters. The map Eq.~1! re-
duces to the one studied by Heagy, Platt, and Hammel@3#
whenb50. If xn is uniformly distributed in the unit interval
@0,1#, the y dynamics exhibits on-off intermittent behavior
when a.ac5e52.718 28 . . . @3#, where ac denotes the
critical parameter value for the onset of on-off intermittency.
Random variables with uniform probability distribution in
the unit interval can be generated directly by a random num-
ber generator, or they can be generated by the tent map or the
2x mod~1! map. Figure 1 shows a time seriesyn originated

from an arbitrary initial condition y0P(b,11b) for
a52.8.ac andb50.5, wheref (x) is the 2x mod~1! map.
Clearly, for most of the timeyn stays neary5b ~the ‘‘off’’
state! @6#. But there are occasional bursts ofyn from y5b
~the ‘‘on’’ state!. Heagy, Platt, and Hammel showed that
time intervals where the trajectory stays near the ‘‘off’’ state
T, or the length of the laminar phase, defined as the time
between two successive bursts, obeys certain probability dis-
tribution P(T): For a.ac , P(T);T2g, where g.0 is a
scaling exponent. One interesting result is that for parameter
values slightly above the transition point, i.e.,a*ac , the
scaling exponent assumes a universal value ofg53

2 @3#.
On-off intermittency can also occur in more realistic

physical models. Ott and Sommerer considered a mechanical
system with symmetry where particles move in a potential
field and are subject to forcing and friction@4#. There is an
invariant subspace in the system due to symmetry. In the
invariant subspace there is a chaotic attractor. Depending on
whether the chaotic attractor attracts initial conditions in the
vicinity of the invariant subspace, distinct dynamical behav-
iors can occur. In particular, if almost all initial conditions
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FIG. 1. An on-off intermittent time series generated by Eq.~1!
from an arbitrarily initial condition. The parameters area52.8 and
b50.5.
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are repelled away from the invariant subspace~in which case
we say the invariant subspace is transversely unstable!, and if
there are no other attractors in the phase space, dynamical
variables not restricted to the invariant subspace can exhibit
on-off intermittency. Depending on the number of invariant
subspaces, similar mechanical systems can exhibit multiple-
state on-off intermittency where there are more than one
‘‘off’’ states @5#. It was also demonstrated@4,5# that in sys-
tems with symmetry, on-off intermittency is in fact closely
related to the phenomena of riddled basins and intermingled
basins@7# which occur when the chaotic attractor in the in-
variant subspace attracts nearby initial conditions on aver-
age. Notice that, in terms of symmetry, Eq.~1! has a one-
dimensional invariant subspacey5b, since a trajectory with
y05b will have yn5b for all subsequent iterations. Since
dynamical systems with symmetry are fairly common, we
expect on-off intermittency to occur commonly, too.

In this paper we investigate controlling chaotic dynamical
systems that exhibit on-off intermittency. Specifically, we
assume that the desirable operational state of the system is
the ‘‘off’’ state and the ‘‘on’’ state is undesirable. Thus we
wish to avoid temporal bursts of dynamical variables from
the ‘‘off’’ state and wish to keep these variables in the vi-
cinity of the ‘‘off’’ state. We are interested in using only
arbitrarily small perturbations to the system, as we do not
wish to change the system appreciably. We thus address the
following question: Given a dynamical system that exhibits
on-off intermittency, can one apply small feedback control to
the system so as to force the system to operate in only the
desirable ‘‘off’’ state?

Control of chaos by using only small perturbations to the
system was proposed by Ott, Grebogi, and Yorke~OGY! in
1990@8#. The idea is to stabilize unstable periodic orbits that
occur naturally due to chaotic dynamics of the system. In this
regard, one chooses an unstable periodic orbit embedded in
the chaotic attractor, the one which yields the best system
performance according to some criterion. One then defines a
small region around the desirable periodic orbit. For a cha-
otic attractor, a trajectory originated from a random initial
condition will come arbitrarily close to the target unstable
periodic orbit at some later time. When this occurs, small
judiciously chosen temporal parameter perturbations are ap-
plied to force the trajectory to stay in the vicinity of the
unstable periodic orbit, because, without control, the trajec-
tory will subsequently leave the periodic orbit. This method
is extremely flexible because it allows for the stabilization of
different periodic orbits, depending on one’s needs, for the
same set of nominal values of the parameter. This idea has
since stimulated further theoretical investigation@9# and has
been successfully applied to various physical@10#, chemical
@11#, and biological@12# systems.

Our method to confine a trajectory in the ‘‘off’’ state is
based on OGY’s idea of controlling chaos. The strategy is to
wait for a trajectory to come sufficiently close to the ‘‘off’’
state and then to apply external perturbation to an accessible
parameter or state of the system. The magnitude of the per-
turbation is proportional to the distance of the trajectory to
the ‘‘off’’ state and can thus be made arbitrarily small. We
will discuss algorithms for both discrete maps and flows. A
relevant issue is the average transient time that a typical tra-
jectory wanders before falling into a small neighborhood of

the ‘‘off’’ state ~the controlling neighborhood! and being
controlled. We call this time the ‘‘waiting time.’’ The
smaller the size of the controlling neighborhood, the longer
the waiting time will be. We find that the waiting time obeys
a scaling law that isqualitatively differentfrom that which
occurs in situations where one applies the OGY method to
stabilize unstable periodic orbits embedded in a chaotic at-
tractor. Due to the dynamical properties of on-off intermit-
tency, the required waiting time is actually much less than
that required in the case of stabilizing unstable periodic or-
bits.

This paper is organized as follows. In Sec. II we review
the mechanism for generating on-off intermittency in chaotic
dynamical systems and describe the control method for both
maps and flows. In Sec. III we test the control algorithm for
cases without and with external noise. In Sec. IV we give an
argument for the scaling of the waiting time. We also pro-
vide numerical data from both maps and flows that support
the scaling. In Sec. V we present discussions.

II. MECHANISM
FOR ON-OFF INTERMITTENCY
AND METHOD OF CONTROL

We first consider chaotic systems described by discrete
maps,

zn115F~zn ;p!, ~2!

whereznPRN and p is an accessible parameter of the sys-
tem. One general condition for on-off intermittency to occur
is that the phase space contains an invariant subspace in
which the dynamics is either chaotic or is generated by some
stochastic process. In either case, the dynamical variables in
the invariant subspace are random in their time evolution.
These random variables serve as the ‘‘driving signals’’ to the
dynamics in the subspace that is perpendicular to the invari-
ant subspace. To be specific, letxnPRNi be the dynamical
variables in theNi-dimensional invariant subspace defined
by yn5b, whereynPRN' denotes the dynamical variables of
the N'-dimensional subspace perpendicular toRNi, and
Ni1N'5N. The subspaceRNi is invariant in the sense that
if an initial condition in the full phase spaceRN hasy05b,
the trajectory resulting from this initial condition hasyn5b
for subsequent iterationsn.0. Depending on the parameter
of the system, on-off intermittency can occur for the dynami-
cal variablesyn in the perpendicular subspaceRN':yn5b is
the ‘‘off’’ state andynÞb is the ‘‘on’’ state. Taking Eq.~1!
as an example, the invariant subspace is the one-dimensional
x space defined byy5b, and the variablex is random. On-
off intermittency occurs iny, which is the variable in the
one-dimensional subspace perpendicular tox.

Previous studies have established the dynamical mecha-
nism for on-off intermittency@1–4#. Specifically, if the dy-
namics in the invariant subspace is weakly unstable with
respect to perpendicular perturbations, trajectories can be re-
pelled away from the invariant subspace even though they
can stay near the invariant subspace for some period of time.
To quantify this situation, we write the dynamics in the per-
pendicular subspace as
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yn115G~xn ,yn ;p!, ~3!

and we define the perpendicular~or transverse! Lyapunov
spectrum as

h'
i 5 lim

N→`

1

N (
n51

N

lnuDG~xn ,yn ,p!uyn5b•ui u, ~4!

whereDG(xn ,yn ;p)uyn5b is the Jacobian matrix of the map
G evaluated atyn5b, andui is one of the eigenvectors in the
eigenspace ofPn51

` DG(xn ,yn ;p)uyn5b . For a randomly
chosen unit vectoru, Eq. ~4! yields the largest perpendicular
Lyapunov exponent, which we denote byh' . If h' is
slightly positive, on average trajectories will be repelled
away from the invariant subspaceyn5b so thatynÞb can
occur. This corresponds to the ‘‘on’’ behavior. But sinceh'

is only slightly positive, in any finite time trajectories can be
attracted towards and then stay in the vicinity of the invariant
subspace, which leads to the ‘‘off’’ behavior. These behav-
iors can be more precisely quantified by the finite time fluc-
tuations in the perpendicular Lyapunov exponenth' @4,5#.

Based on the dynamical mechanism for on-off intermit-
tency, the design of the control algorithm for confining tra-
jectories in the vicinity of the invariant subspace is quite
straightforward. Assume that at some nominal parameter
value p5p0 , the system exhibits on-off intermittency. Our
goal is to apply arbitrarily small perturbations to the param-
eterp so that a trajectory stays in the ‘‘off’’ state for as long
as control is present. The strategy is similar to the OGY idea
of controlling chaos via stabilization of unstable periodic or-
bits @8#. Due to the chaotic nature of they dynamics in the
vicinity of the invariant subspace, a trajectory resulting from
a random initial condition will come arbitrarily close to the
‘‘off’’ state at some later time. When this occurs, judiciously
chosen and time-dependent parameter perturbationsdpn
aroundp0 are applied to keep the trajectory in the ‘‘off’’
state. The magnitude of the perturbation is proportional to
the y distance of the trajectory to the ‘‘off’’ state and can
therefore be made arbitrarily small. Assuming
dyn[uyn2bu→0, we expand Eq.~3! aroundy5b. This yields

dyn11'
]G

]yn
•dyn1

]G

]p
dpn , ~5!

where the matrix]G/]yn and the vector]G/]p are evaluated
at yn5b and p5p0 . In order to compute the necessary pa-
rameter perturbationdpn to keepdyn11'0 for subsequent
iterations, we choose a unit vectoru in the y subspace to
form the dot productu•dyn11. Letting u•dyn1150 yields

dpn52
u•~]G/]yn!•dyn
u•~]G/]p!

. ~6!

In principle, we can choose the unit vectoru arbitrarily pro-
vided that the denominator in Eq.~6!, u•~]G/]p!, is not close
to zero. In practice, we define a maximum allowed magni-
tude for the parameter perturbationdpmax. If the computed
udpnu exceedsdpmax, we set dpn50. Doing this would
cause loss of control occasionally. But we find in our nu-
merical experiments~to be described later! that robust con-

trol can still be achieved since settingdpn50 is done only
rarely. Note thatdpmax can be made arbitrarily small.

We now briefly describe the control algorithm for flows,

dz

dt
5F~z;p!, ~7!

where z(t)PRN. In terms of the dynamical variables
x(t)PRi and y(t)PR' in the invariant and perpendicular
subspaces, respectively, the dynamical equation in the per-
pendicular subspace can be written as

dy

dt
5G~x,y;p!, ~8!

wherex is the random driving signal generated by the dy-
namics in the invariant subspace. In principle, one can regard
the flow as a map constructed on some appropriate Poincare´
surface section and design the feedback control from the
map. But the control so designed is usually vulnerable to
external noise as the time between successive parameter per-
turbations is the typical time that a trajectory takes to return
to the surface of section after passing through it. This time,
however, can be long. Therefore we seek to apply control at
small time stepsDt. Letting Dt!T, whereT is the average
time between two successive passes of the trajectory through
the surface of section, Eq.~8! can be approximated by

y~ t1Dt !5y~ t !1G~xn ,y;p!Dt, ~9!

which can be regarded as a discrete map defined by iterations
of time stepDt. Expanding Eq.~9! in the vicinity of the
‘‘off’’ state y(t)5b, we obtain, for the parameter perturba-
tion to be applied at timet,

dp~ t !52
u•dy~ t !1u•~]G/]y!uy5b,p5p0

•dy~ t !Dt

u•~]G/]p!uy5b,p5p0
Dt

,

~10!

where dy(t)5y(t)2b. Again, we set dp(t)50 if
udp(t)u>dpmax, where~dpmax!/p0!1.

III. NUMERICAL RESULTS

A. A two-dimensional map

Our first numerical example is the discrete map Eq.~1!.
For this system, both the invariant and perpendicular sub-
spaces are one dimensional. We test our control algorithm
using the case shown in Fig. 1 where the parameter setting is
a52.8 andb50.5. Assumingb is the accessible parameter
to be perturbed, we set the nominal value ofb atb050.5 and
allow b to vary aroundb0 . The required parameter perturba-
tion is given by

dbn5
axn~yn2b0!

axn21
, ~11!

where we setdbn50 if dbn>dbmax51023. The size of the
small neighborhood for triggering the control is also
e51023. Parameter control is applied when (yn2b0)<e.
Figure 2 shows a controlled time seriesyn , where the trajec-
tory starts from an arbitrary initial condition. At time step
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n586, the trajectory comes within 1023 of the desirable
‘‘off’’ state, and control is activated. The trajectory then
stays near the ‘‘off’’ state for as long as the control is
present. After a few iterations with control,yn comes within
about 10216 ~computer roundoff error! of the ‘‘off’’ state,
and the required parameter perturbation also reduces to the
same order of magnitude. Notice that thex dynamics re-
mains chaotic, regardless of whethery is controlled or not.

When noise is present, control can still be achieved. But
the controlled trajectory stays in a neighborhood of the
‘‘off’’ state of size that is proportional to the noise ampli-
tude. Figure 3~a! shows log10(yn2b0) versus timen when a
term 1025sn , wheresn is a random number uniformly dis-
tributed in @0,1#, is added to Eq.~1!. After control is turned
on, the trajectory stays within about 1024.5 of the ‘‘off’’
state. Figure 3~b! shows the required parameter perturbation
after control is on. On average, the magnitude of the param-
eter perturbation is about 1024.7, which is comparable to the
noise amplitude.

B. A five-dimensional flow

Our second numerical example is a flow that exhibits on-
off intermittency. We consider a mechanical system where
particles move under the influence of the following potential
in the plane:

V~x!5~12x2!21~y22a2!2~x2d!1b~y22a2!4,
~12!

where x[(x,y), a, d, and b(.0) are parameters. We as-
sume particles are also subjected to friction and periodic
forcing of the form f 0sin(vt) in the x direction. There are
now two symmetric lines defined byy56a on whichV~x!
is independent of the coordinatey and reduces to Duffing’s
two-well potential inx @13#. The equation of motion is

d2x

dt2
52a

dx

dt
2“V~x!1 f 0sin~vt !x0 , ~13!

wherea is the friction coefficient andx0 is the unit vector in
x. The system can be written as five first-order autonomous

differential equations in terms of dynamical variablesx,
vx[dx/dt, z5vt, y, andvy[dy/dt,

dx

dt
5vx ,

dvx
dt

52avx14x~12x2!2~y22a2!21 f 0sin z,

dz

dt
5v, ~14!

dy

dt
5vy ,

dvy
dt

52avy24y~y22a2!~x2d!28by~y22a2!3.

Note that on the two symmetric linesy56a, if vy50, the
equations of motion reduce to

FIG. 2. A controlled trajectory. The control is applied at time
n586 when the trajectory comes within 1023 of the desirable
‘‘off’’ state. The maximum allowed parameter perturbation is 1023.

FIG. 3. ~a! A controlled trajectory when random noise of am-
plitude 1025 is added to Eq.~1!. Shown is log10uyn2b0u versus
time n. ~b! The required magnitude of the parameter perturbation.
Shown in log10uDbnu versus timen.
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dx

dt
5vx ,

dvx
dt

52avx14x~12x2!1 f 0sinz, ~15!

dz

dt
5v,

which is the set of equations describing a forced-damped
Duffing oscillator @13# in which chaos occurs commonly.
Since Eq.~15! is independent ofy andvy , a trajectory with
initial condition in the subspacesy56a andvy50 will re-
main in the subspaces forever. The conditionsy56a and
vy50 thus define two three-dimensional invariant subspaces,
where the two Duffing chaotic attractors are located, in the
five-dimensional phase space. The system exhibits on-off in-
termittency in a wide range of parameter values@5#. Figure
4~a! shows an on-off intermittent time series ofy(t) where
the parameter setting isa50.8,b50.008,d521.8, f 052.3,
a50.05, andv53.5. Due to the presence of two invariant
subspaces aty56a andvy50, there are two ‘‘off’’ states.
This can be understood as follows: The perpendicular
Lyapunov exponents with respect to both invariant subspaces
are slightly positive (h''0.0006). Thus a typical trajectory
spends a long time near one invariant subspace, is repelled
away from this subspace, then is possibly attracted to the
other invariant subspace or the same subspace, temporarily
spending a long stretch of time there, is repelled away again,
etc. Such a behavior is called two-state on-off intermittency
@5#. The two ‘‘off’’ states correspond to two wells in the
potentialV(x,y) in they direction, as shown by the potential
profile atx51 in Fig. 4~b!. Our goal is thus to apply small
control so that a trajectory from a random initial condition
stays in the vicinity of one of the potential wells iny, assum-
ing that this potential well corresponds to the desirable op-
erational state of the system.

We use Eq.~10! to compute the required parameter per-
turbation. Note that for the system Eq.~14!, the invariant
subspace is three dimensional and the perpendicular sub-
space is two dimensional. We choosea to be the parameter
to be perturbed. We thus seta050.8 anddamax51023. The
rest of the parameters are the same as in Fig. 4~a!. Letting
yoff (56a0) and vy

off50 denote the desirable ‘‘off’’ state,
we have, for the functionG„x(t),y(t),a… and the vector]G/
]a in Eq. ~10!, the following:

G†
„x~ t !,y~ t !;a…

5$vy~ t !,2avy~ t !24y~ t !@y2~ t !2a2#@x~ t !2d#

28by~ t !@y~ t !22a2#3%,

and ~]G/]a)†5$0,8y(t)a[x(t)2d] %. By choosing
u5(1.1)/&, we obtain the following expression for the
parameter perturbation:

da~ t !52
$128~yoff!2@x~ t !2d#Dt%dy~ t !1@11~12a!Dt#dvy~ t !

8yoffa0@x~ t !2d#Dt
, ~16!

where dy(t)5y(t)2yoff, dvy(t)5vy(t)2vy
off , and

Dt!2p/v is the small time interval forda(t) to be applied.
If da(t)>damax, we setda(t)50.

Figure 5~a! shows a case of stabilizing the ‘‘off’’ state
yoff52a0520.8 andvoff50. The trajectory starts from an
arbitrary initial condition. The parameter control is turned on

when uy(t)2yoffu<1023 and uvy(t)2vy
offu<1023. The time

interval to apply the control is set to beDt5T/256, where
T52p/v is the period of the external forcing. After the
control is on,y(t) is stabilized in the vicinity of2a0 for as
long as the small control is present@Fig. 5~a!#, and simulta-
neously,vy(t) is stabilized aroundvoff50 ~not shown!.

FIG. 4. ~a! A two-state on-off intermittent time series generated
by the five-dimensional flow Eq.~14! from a random initial condi-
tion. In this case there are two ‘‘off’’ states. The parameter setting
is a50.8, b50.008,d521.8, f 052.3, a50.05, andv53.5. ~b!
The potential profile atx51 indicating two wells aty560.8, re-
spectively.
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Similar to the spirit of OGY control, in the presence of
multiple ‘‘off’’ states, our control algorithm is quite flexible
to stabilize different ‘‘off’’ state that might correspond to a
desirable operational state of the system at different time.
Figure 5~b! shows a situation where we stabilize the ‘‘off’’
stateyoff5a0 , vy

off50 first and then switch to stabilize the
‘‘off’’ state yoff52a0 , vy

off50. To switch the control from
the first ‘‘off’’ state to the second ‘‘off’’ state after the tra-
jectory is stabilized around the first ‘‘off’’ state, we simply
turn off the control to let the system evolve at the nominal
parameter values. At some later time the trajectory will come
arbitrarily close to the second ‘‘off’’ state. A new set of
parameter perturbations computed with respect to the second
‘‘off’’ state is then activated to stabilize the trajectory around
this new ‘‘off’’ state.

When noise is present, our control method still works, but
the closeness of the controlled trajectory to the desirable
‘‘off’’ state and the magnitude of the required parameter per-
turbations are now proportional to the noise amplitude. Fig-
ure 6 shows a time seriesy(t) for a case of stabilizing the
‘‘off’’ state yoff5a0 and voff50 where a noisy term
1022s(t) @s(t) is a random variable uniformly distributed in
@0,1# # is added to Eq.~14!. It can be seen that while a tra-

jectory can still be stabilized around the desirable ‘‘off’’
state after control is on, occasionally the trajectory deviates
from the ‘‘off’’ state to within a range about 1022 around the
‘‘off’’ state.

IV. SCALING OF THE AVERAGE
TRANSIENT TIME PRECEDING CONTROL

One important issue for achieving stabilization of the de-
sirable ‘‘off’’ state is the average transient time, or the wait-
ing time, preceding turning on of the control. In general, this
waiting time depends on the size of the controlling neighbor-
hood. The smaller the size of the neighborhood is, the longer
the waiting time will be. When one applies the OGY idea to
stabilize unstable periodic orbits embedded in a chaotic at-
tractor @8#, or to stabilize a chaotic orbit to synchronize two
identical chaotic systems@14#, one usually finds that the av-
erage waiting timet~e! scales with the size of the controlling
neighborhood algebraically,

t~e!;e2b, ~17!

whereb.0 is a scaling exponent that can be related to the
Lyapunov exponent of the unstable periodic orbit or the cha-
otic orbit @8,14#. We find that in our cases of controlling
on-off intermittency, the average waiting time does not obey
the algebraic scaling law. This is shown in Fig. 7 for the case
of stabilizing the ‘‘off’’ state y5b0 in map Eq.~1!, where
t~e! versuse is plotted on a logarithmic scale. If the algebraic
scaling law holds, such a plot could be fitted by a straight
line. As e gets smaller, the average waiting time increases
slowly. We find that the average waiting time obeys the fol-
lowing scaling law:

t~e!;u ln~e!ub, ~18!

whereb is a scaling exponent. This is shown in Fig. 8~a! for
the same parameter setting as in Fig. 7, where ln@t~e!# versus
lnuln~e!u is plotted. For each value ofe, 105 random initial
conditions were chosen to compute the average time for tra-
jectories to first fall into thee neighborhood of the ‘‘off’’
state. The plot can be fitted by a straight line with a slope
1.6360.02.

FIG. 5. For the five-dimensional flow Eq.~14!, ~a! a controlled
trajectory stabilized around the desirable ‘‘off’’ statey(t)520.8.
~b! A situation where the trajectory is stabilized aroundy(t)50.8
first and is then stabilized around the second ‘‘off’’ statey(t)5
20.8. This demonstrates the flexibility of the control algorithm to
select different desirable ‘‘off’’ state at different time.

FIG. 6. For the five-dimensional flow Eq.~14!, a controlled
trajectory stabilized aroundy(t)50.8 where external noise of am-
plitude 1022 is present.
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We now give a heuristic argument for the scaling relation
Eq. ~18!. Take a trajectory that starts from a random initial
condition. In order for the trajectory to fall withine of the
invariant subspacey5b0 ~the asymptotic ‘‘off’’ state!, on
average the trajectory must experience attraction towards
y5b0 in time t~e!. It is thus insightful to study the statistics
of the time intervals during which trajectories experience
contraction on average. For simplicity we consider the dy-
namics in the vicinity ofy5b0 . For uyn2b0u small we have
Dyn11'axnDyn from Eq.~1!, whereDyn5yn2b0 . We ob-
tain Dym'(amP i50

m21xi)Dy0 . Thus we are led to consider
the sequence inx: $x0 ,x1 ,...,xm21% which satisfies

am)
i50

m21

xi[~ax̄m!m;e. ~19!

wherex̄ m
m[x0x1 ,...,xm21, andax̄m,1. The integerm is in

fact the time interval during which a trajectory is attracted
towards the invariant subspace on average. We ask, what is
the probability distributionP(m) for the lengthm of the
sequence? To answer this question, we observe that points in
the sequence$x0 ,x1 ,...,xm21% can be divided into two
groups: one withaxi>1 ~or xi>xc[1/a! and one with
axi,1 ~or xi,xc!. For the cases studied in this paper, the
chaotic or random variablex has a smooth invariant density.
As a consequence, the probability that a trajectory in the
invariant subspace stays in the contracting region (ax,1)
for a large number of iterations is not negligible. For in-
stance, if thex dynamics is produced by the tent map, the
invariant densityr(x) is uniform in xP[0,1]. The contract-
ing region is given byax,1 or x,xc51/a. The probability
for x to stay inx,xc consecutivelyfor n iterations isa2n.
Consequently, the probabilityP(m) can attain appreciable
values even whenm is large. To obtain the scaling forP(m),
we note that in the well established laminar phase statistics
P(T);T23/2 @3#, T is the time that a typical trajectory stays
in the ‘‘off’’ state, butm in Eq. ~19! is the time during which
a trajectory experiences attraction towards the invariant sub-
space. In order for a trajectory to stay in the vicinity of the
invariant subspace~the ‘‘off’’ state!, on averagethe trajec-

tory must be attracted towards the invariant subspace. There-
fore, we havem;T and we expectP(m) to follow a similar
algebraic scaling law. We writeP(m);m2b. From Eq.~19!,
we havem;lne/ln(ax̄m). For e small ~or m large! we ap-
proximatem;ulneu, assuming thatx̄m is roughly independent
of m. SinceP(m) is the probability that a trajectory enters
the e neighborhood ofy5b0 , we have

t~e!;1/P~m!;mb;u ln~e!ub,

which is Eq.~18!. One implication is that sincem;T, the
scaling exponentb in Eq. ~18! should be close to the scaling
exponent32 in P(T) whena*ac . It should be stressed that
the argument leading to Eq.~18! is only heuristic. There are
several crude approximations used in the derivation. Never-
theless, the scaling relation Eq.~18! is supported by numeri-
cal experiments for both maps and flows, as we will see
below.

To compare the waiting time scaling exponent to that of
P(T), we compute a histogram for the length of the laminar

FIG. 7. For the map Eq.~1!, the average waiting timet~e! pre-
ceding the control versuse on a logarithmic scale. Apparently the
scaling betweent~e! ande is not algebraic. In the computation, 105

trajectories were chosen to computet~e! for each value ofe.

FIG. 8. For the map Eq.~1!, ~a! the average waiting timet~e!
versusuln~e!u on a logarithmic scale. The good fit of the plot to a
straight line indicates that the scaling betweent~e! and uln~e!u is
algebraic with an exponent of approximately 1.6360.02; ~b! a his-
togram of the length of the laminar phase. The threshold for regard-
ing the trajectory as being in the ‘‘off’’ state is 0.01. In total, 107

laminar phases are accumulated to produce the histogram. The dot-
ted line with a slope of 1.63 approximates the asymptotic scaling of
the probability distribution.
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phase for Eq.~1!, as shown in Fig. 8~b!, whereP(T) versus
T is plotted on a logarithmic scale. To obtain this picture, we
accumulate 107 lengths of laminar phase, where if a trajec-
tory comes within 1022 of the ‘‘off’’ state, we consider it to
be in a laminar phase. Also shown in Fig. 8~b! is a straight
dotted line with a slope of 1.63. The asymptotic scaling of
P(T) obeys the algebraic scaling lawT23/2 approximately,
and the scaling exponent for the waiting time in Eq.~18! is
close to3

2.
The above argument for the average waiting time scaling

makes use of the scaling for the probability distribution of
the length of the laminar phase: The latter is conjectured to
be universal for a large class of systems that exhibit on-off
intermittency. Thus we expect the waiting time scaling Eq.
~18! to be quite general. The generality is supported by a
similar scaling observed for the system of five-dimensional
flow Eq. ~14!, as shown in Fig. 9, wheret~e! versusuln~e!u is
plotted on a logarithmic scale. Here, due to the intensive
computation involved, only 5000 random initial conditions
were chosen for each value ofe to compute the average
waiting time. The scaling exponent isg51.7260.06. The
good fit of the data to a straight line indicates that the scaling
Eq. ~18! is robust for this five-dimensional flow.

V. DISCUSSIONS

In this paper we investigate controlling chaotic dynamical
systems that exhibit on-off intermittency. We devise an al-
gorithm for stabilizing a trajectory in the vicinity of a desir-
able state, the ‘‘off’’ state, by using arbitrarily small param-
eter perturbations. It should be noted that the ‘‘off’’ states
are in general chaotic, because they are usually characterized
by chaotic sets embedded in some invariant subspace of the
full system. Thus controlling chaos with on-off intermittency
can be regarded as a case in the more general study where
one seeks to select desirable chaotic states using small feed-
back control@15#. Numerical examples with both a map and
a flow demonstrate that the algorithm works even when there
is small-amplitude noise. Our method follows the spirit of
the OGY idea of controlling chaos, and it is therefore flexible

to stabilize different ‘‘off’’ states at different time depending
on one’s needs, provided that there are multiple ‘‘off’’ states
in the system. We also study the scaling of the average tran-
sient time preceding the control and find that the scaling
obeys a qualitatively different law from that in conventional
controlling chaos applications where one stabilizes unstable
periodic orbits or chaotic orbits embedded in a chaotic attrac-
tor. The mechanism for the observed scaling law is eluci-
dated, and numerical confirmation for both map and flow
indicates that the scaling law is quite general.

Our control algorithm is based on the knowledge of sys-
tem equations. It is important to discuss the feasibility of
controlling on-off intermittent chaotic systems when detailed
system equations are not available, which would occur in
practical applications. In our numerical examples, feedback
perturbations are applied to a parameter thatdirectly charac-
terizes the ‘‘off’’ state. It is conceivable that in most situa-
tions one can gain a fairly good knowledge about the target
‘‘off’’ state by running the system and observing it. This is

FIG. 9. For the five-dimensional flow Eq.~14!, the average wait-
ing timet~e! versusuln~e!u on a logarithmic scale. The fit of the data
to a straight line is good, the slope of which is 1.7260.06. This
implies that the algebraic scaling betweent~e! and uln~e!u is quite
general.

FIG. 10. A controlled trajectory when a simple proportional
feedback control scheme Eq.~20! with a51.5 is used for the sys-
tem Eq. ~1! at a52.8. ~a! uyn2b0u versus n ~1000 iterations
shown!; and ~b! log10uyn2b0u versusn ~2000 iterations shown!.
Although only a limited number of iterations are shown in~a! and
~b! for the purpose of illustration, robust control can be achieved for
as long as the parameter perturbations Eq.~20! are present~verified
using 108 iterations!. The result indicates that on-off intermittent
dynamics can be controlled in more realistic situations where the
only available information is time series of the on-off dynamical
variables.
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similar to finding the target unstable periodic orbit to be
stabilized in the OGY control strategy. Therefore we expect
that it would be possible to find the target ‘‘off’’ state and
the proper control parameter in more realistic applications.
After the ‘‘off’’ state is identified, one can then measure the
distance of a trajectory from the ‘‘off’’ stated y. In cases
where the on-off intermittent behavior is generated by a ran-
dom or a chaotic driving signal such as in Eq.~1!, the feed-
back control only depends ond y and the driving signal@axn
in Eq. ~1!, see Eq.~11!#. If in experiments one knows the
driving signal well ~which is possible!, the appropriate pa-
rameter perturbation can be computed and applied to the
system. Thus, for such a case, we expect our control algo-
rithm to work in more realistic situations, but at present there
is no assurance of this.

The control algorithm presented in this paper requires the
knowledge of both the on-off dynamical variables and the
underlying chaotic or random variables. Rarely does one
know these underlying variables in practical situations. In
general, one only observes the on-off variables. Moreover, it
is very difficult to reconstruct the underlying variables from
the on-off variables via the delay-coordinate embedding
technique@16#. Therefore it is important to test the control
algorithm without having a detailed knowledge of the driv-
ing variables. We thus propose a straightforward propor-
tional feedback scheme@17# which in principle allows one to
control on-off intermittent dynamics in experiments. Taking
Eq. ~1! as an example and assuming that the only available
information is uyn2b0u, the distance of the on-off variable
from the ‘‘off’’ state, we use the following parameter pertur-
bation in place of Eq.~11!:

dbn5a~yn2b0!, ~20!

wherea is a proportional constant. We then determine, using
a trial-error procedure, the range ofa values where control
can be achieved. It is found that robust control can still be
realized when 1.0<a<2.1. Figure 10 shows such a case for

a51.5, whereyn versusn and log10 yn versusn are plotted
in ~a! and ~b!, respectively. Clearly, control is successful
using the simple direct proportional feedback scheme Eq.
~20!. For the example of the five-dimensional flow Eq.~14!,
we use a similar scheme:da(t)5ady(t)1bdvy(t), assum-
ing that only the on-off variablesy(t) andvy(t) can be mea-
sured. Again, control is achieved for a wide range of choices
of the proportional constantsa andb ~data not shown!. From
these examples, we see that on-off intermittent dynamics can
be controlled in experimental situations where the only avail-
able information is time series of the on-off dynamical vari-
ables.

Finally, we discuss implications of the scaling law for the
average waiting time. In conventional applications of the
OGY control method, the waiting time typically scales with
the size of the controlling neighborhoode ~or equivalently,
the maximum allowed parameter perturbation! algebraically
@8#. Thus ase decreases, the required waiting time increases
greatly and can become prohibitively long. There is a
‘‘trade-off’’ between the waiting time and the maximum al-
lowed perturbation@8#. In our cases of controlling on-off
intermittency, the average waiting time scales withe as some
power ofuln~e!u. This indicates that the required waiting time
increases only incremently even ife is decreased by many
orders of magnitude@Figs. ~8a! and~9!#. Therefore it is pos-
sible to apply extremely small parameter perturbations to
achieve the desirable system performancein relatively short
timewhen one controls on-off intermittent dynamics.
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