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On-off intermittent chaotic behavior occurs in physical systems with symmetry. The phenomenon refers to
the situation where one or more physical variables exhibit two distinct states in their time evolution. One is the
“off” state where the physical variables remain constant, and the other is the “on” state where the variables
temporarily burst out of the “off” state. We demonstrate that by using arbitrarily small feedback control to an
accessible parameter or state of the system, the “on” state can be eliminated completely. This could be
practically advantageous where the desirable operational state of the system is the “off” state. Relevant issues
such as the influence of noise and the time required to achieve the control are addressed. It is found that the
average transient time preceding the control obeys a scaling law thatigatively differentfrom the alge-
braic scaling law which occurs when one controls chaos by stabilizing unstable periodic orbits embedded in a
chaotic attractor. A theoretical argument is provided for the observed scalin3a@63-651X96)05208-7

PACS numbdss): 05.45+b

[. INTRODUCTION from an arbitrary initial condition yoe (b,1+b) for
a=2.8>a, andb=0.5, wheref(x) is the 2 mod1) map.
Recently, the phenomenon of on-off intermittency hasClearly, for most of the timg, stays neay=b (the “off”

been discovered in nonlinear dynamical systdrhg®]. In  state [6]. But there are occasional bursts yf from y=b
such a case, one or more dynamical variables of the systefthe “on” state). Heagy, Platt, and Hammel showed that
exhibit two distinct states as the system evolves in time. Ongme intervals where the trajectory stays near the “off” state
state is the “off” state where the dynamical variables remainT, or the length of the laminar phase, defined as the time
approximately constant in various time intervals. The lengthbetween two successive bursts, obeys certain probability dis-
of these time intervals can be either short or long. There catribution P(T): For a>a., P(T)~T 7, where y>0 is a
also be occasional bursts of the dynamical variables awagcaling exponent. One interesting result is that for parameter
from their constant values in the “off’ state. These burstsvalues slightly above the transition point, i.eza., the
are referred to as the “on” state which occurs intermittently scaling exponent assumes a universal value-of [3].
as time progresses. Mechanisms for generating the behavior On-off intermittency can also occur in more realistic
of on-off intermittency have been investigafdd-5]. A con-  physical models. Ott and Sommerer considered a mechanical
dition for on-off intermittency to occur is that the system system with symmetry where particles move in a potential

should be driven either randomly or chaoticdliy-3]. field and are subject to forcing and frictipd]. There is an
To give a concrete example of on-off intermittency, we invariant subspace in the system due to symmetry. In the
consider the following two-dimensional map ir,{): invariant subspace there is a chaotic attractor. Depending on
whether the chaotic attractor attracts initial conditions in the
Xnt1=TF(Xp), vicinity of the invariant subspace, distinct dynamical behav-

(1)  iors can occur. In particular, if almost all initial conditions
Ynr1=aXp(Yn—b)(1+b—y,) +Db,

1.2
where f(x) is a random process or a deterministic chaotic 1.1
process, an& andb are parameters. The map E4d) re-
duces to the one studied by Heagy, Platt, and Hari@igl 1
whenb=0. If x,, is uniformly distributed in the unit interval 0.9+
[0,1], the y dynamics exhibits on-off intermittent behavior 5 0.8
when a>a.=e=2.718 B... [3], where a, denotes the
critical parameter value for the onset of on-off intermittency. 0.71
Random variables with uniform probability distribution in 0.6 l
the unit interval can be generated directly by a random num- 0.5 ! [ LW
ber generator, or they can be generated by the tent map or the )
2x mod(1) map. Figure 1 shows a time serigs originated 0.4
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are repelled away from the invariant subspénevhich case the “off” state (the controlling neighborhogdand being
we say the invariant subspace is transversely unstabid if ~ controlled. We call this time the “waiting time.” The
there are no other attractors in the phase space, dynamicginaller the size of the controlling neighborhood, the longer
variables not restricted to the invariant subspace can exhibifie waiting time will be. We find that the waiting time obeys
on-off intermittency. Depending on the number of invariant& scaling law that isjualitatively differentfrom that which
subspaces, similar mechanical systems can exhibit multiple2ccurs in situations where one applies the OGY method to
state on-off intermittency where there are more than onstabilize unstable periodic orbits embedded in a chaotic at-
“off” states [5]. It was also demonstratdd,5] that in sys- tractor. Due to _the dyn_amice}l prqperties of on-off intermit-
tems with symmetry, on-off intermittency is in fact closely €Ny, the required waiting time is actually much less than
related to the phenomena of riddled basins and intermingleg‘_'at required in the case of stabilizing unstable periodic or-
basins[7] which occur when the chaotic attractor in the in- 1s.

variant subspace attracts nearby initial conditions on avers This pr)]ap(_er |sforgan|zedf as foIIO\;fv; tln S_(tatc. Il we f‘f]V'etV.V
age. Notice that, in terms of symmetry, Ed) has a one- e mechanism for generating on-off intermittency in chaotic

dimensional invariant subspage= b, since a trajectory with dynamical systems and describe the control methoq for both

yo=b will have y,=b for all subsequent iterations. Since maps and flows. In Sec. Il we test_the control algorlth_m for

dynamical systems with symmetry are fairly common, wetases without and Wlth external noise. In_Sec. IV we give an

expect on-off intermittency to occur commonly, t0o. a_rgument fqr the scaling of the waiting time. We also pro-
In this paper we investigate controlling chaotic dynamicalvIde numencal data from both maps and .ﬂOWS that support

systems that exhibit on-off intermittency. Specifically, we the scaling. In Sec. V we present discussions.

assume that the desirable operational state of the system is

the "off” state and the “on” state is undesirable. Thus we Il. MECHANISM
wish to avoid temporal bursts of dynamical variables from FOR ON-OFF INTERMITTENCY
the “off” state and wish to keep these variables in the vi- AND METHOD OF CONTROL

cinity of the “off” state. We are interested in using only
arbitrarily small perturbations to the system, as we do not We first consider chaotic systems described by discrete
wish to change the system appreciably. We thus address tH@aps,
following question: Given a dynamical system that exhibits
on-off intermittency, can one apply small feedback control to _ .
. Zn+1=F(z,;p), v
the system so as to force the system to operate in only the
desirable “off” state?

Control of chaos by using only small perturbations to thewherez, RN and p is an accessible parameter of the sys-
system was proposed by Ott, Grebogi, and YOi®E&Y) in  tem. One general condition for on-off intermittency to occur
1990[8]. The idea is to stabilize unstable periodic orbits thatis that the phase space contains an invariant subspace in
occur naturally due to chaotic dynamics of the system. In thigvhich the dynamics is either chaotic or is generated by some
regard, one chooses an unstable periodic orbit embedded #tochastic process. In either case, the dynamical variables in
the chaotic attractor, the one which yields the best systerthe invariant subspace are random in their time evolution.
performance according to some criterion. One then defines Bhese random variables serve as the “driving signals” to the
small region around the desirable periodic orbit. For a chadynamics in the subspace that is perpendicular to the invari-
otic attractor, a trajectory originated from a random initial ant subspace. To be specific, lgte RNI be the dynamical
condition will come arbitrarily close to the target unstablevariables in theN,-dimensional invariant subspace defined
periodic orbit at some later time. When this occurs, smalby y,=b, wherey, e RN+ denotes the dynamical variables of
judiciously chosen temporal parameter perturbations are aghe N, -dimensional subspace perpendicular k9", and
plied to force the trajectory to stay in the vicinity of the N,+N, =N. The subspac&" is invariant in the sense that
unstable periodic orbit, because, without control, the trajecif an initial condition in the full phase spad& hasy,=b,
tory will subsequently leave the periodic orbit. This methodthe trajectory resulting from this initial condition has=b
is extremely flexible because it allows for the stabilization offor subsequent iterations>0. Depending on the parameter
different periodic orbits, depending on one’s needs, for theof the system, on-off intermittency can occur for the dynami-
same set of nominal values of the parameter. This idea hasal variablesy, in the perpendicular subspaBé':y,=b is
since stimulated further theoretical investigat{® and has the “off” state andy,#b is the “on” state. Taking Eq(1)
been successfully applied to various physiddl], chemical as an example, the invariant subspace is the one-dimensional
[11], and biological12] systems. x space defined by=Db, and the variable is random. On-

Our method to confine a trajectory in the “off” state is off intermittency occurs iry, which is the variable in the
based on OGY’s idea of controlling chaos. The strategy is tmne-dimensional subspace perpendiculax.to
wait for a trajectory to come sufficiently close to the “off” Previous studies have established the dynamical mecha-
state and then to apply external perturbation to an accessibiesm for on-off intermittency1-4]. Specifically, if the dy-
parameter or state of the system. The magnitude of the penamics in the invariant subspace is weakly unstable with
turbation is proportional to the distance of the trajectory torespect to perpendicular perturbations, trajectories can be re-
the “off” state and can thus be made arbitrarily small. We pelled away from the invariant subspace even though they
will discuss algorithms for both discrete maps and flows. Acan stay near the invariant subspace for some period of time.
relevant issue is the average transient time that a typical traFo quantify this situation, we write the dynamics in the per-
jectory wanders before falling into a small neighborhood ofpendicular subspace as
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Yn+1=G(Xn,Yn:P), (3)  trol can still be achieved since settidp,=0 is done only
rarely. Note thatsp,,.x can be made arbitrarily small.
and we define the perpendiculérr transverse Lyapunov We now briefly describe the control algorithm for flows,
spectrum as
dz oz .
. . 1 N dt - (Z!p)! ( )
hy=1lim = 3 In[DG(X,.Yn.Plly,-p-uil, (4 . _ _
N—o N N=1 where z(t) eR™. In terms of the dynamical variables

x(t) eR" and y(t) eR* in the invariant and perpendicular
whereDG(X,,Yn:P)ly, =p is the Jacobian matrix of the map subspaces, respectively, the dynamical equation in the per-
G evaluated ay,,=b, andu; is one of the eigenvectors in the pendicular subspace can be written as
eigenspace offl,_;DG(x,,Yn ;p)|yn:b. For a randomly

d
chosen unit vectou, Eq. (4) yields the largest perpendicular —y:G(x,y; p), (8)
Lyapunov exponent, which we denote thy . If h, is dt
slightly positive, on average trajectories will be repelled

away from the invariant subspage=b so thaty, #b can wherex is the random driving signal generated by the dy-

oceur. This corresponds to the “on” behavior. But sirfce namics in the invariant subspace. In principle, one can regard
the flow as a map constructed on some appropriate Poincare

Atraciod towards and ihon stay i the vicinty of he invariangITace section and design the feedback corirol from the
y Y map. But the control so designed is usually vulnerable to

§ubspace, which Iead; to the Of.f. behavior. _Thesg behaV’external noise as the time between successive parameter per-
iors can be more precisely quantified by the finite time fluc-

tuations in the perpendicular Lyapunoyv exponknt(4,5] turbations is the typical time that a trajectory takes to return
Perp X yapun PONBNL=OL 1o the surface of section after passing through it. This time,

Based on the dynamical mechanism for on-off intermit-
. . - however, can be long. Therefore we seek to apply control at

tency, the design of the control algorithm for confining tra-

jectories in the vicinity of the invariant subspace is quiteSmaII time stepsit. Letting At<T, whereT is the average

straightforward. Assume that at some nominal parametetrlme between two successive passes of the trajectory through

value p=pg, the system exhibits on-off intermittency. Our the surface of section, E¢) can be approximated by

goal is to apply arbitrarily small perturbations to the param- y(t+At)=y(t)+ G(X,,y;p)At, (9)

eterp so that a trajectory stays in the “off” state for as long

as control is present. The strategy is similar to the OGY ideavhich can be regarded as a discrete map defined by iterations
of controlling chaos via stabilization of unstable periodic or-of time stepAt. Expanding Eq.(9) in the vicinity of the

bits [8]. Due to the chaotic nature of thedynamics in the “off” state y(t)=b, we obtain, for the parameter perturba-
vicinity of the invariant subspace, a trajectory resulting fromtion to be applied at time,

a random initial condition will come arbitrarily close to the

“off” state at some later time. When this occurs, judiciously u- 8y(t) +u- (9G/dy)|y=p,p=p, SY(t)At
chosen and time-dependent parameter perturbatiéms op(t)=— U-(9GI3P)|y—p oz o AL )
aroundp, are applied to keep the trajectory in the “off” y=b.p=po

state. The magnitude of the perturbation is proportional to (10
the y distance of the trajectory to the “off” state and can \yhere oy(t)=y(t)—b. Again, we set sp(t)=0 if
therefore be made arbitrarily ~small.  ASSuming | sp(t)|= 5p,,., Where(Spa)/Po<l.
&Y=y, —b|—0, we expand Eq3) aroundy=b. This yields @ @
9G 9G [ll. NUMERICAL RESULTS
Yn+1~ (7_)’n ~OYnt % Opn, 5 A. A two-dimensional map

) Our first numerical example is the discrete map Hg.
where the matrix/G/dy, and the vectopG/dp are evaluated For this system, both the invariant and perpendicular sub-
aty,=b andp=p,. In order to compute the necessary pa-spaces are one dimensional. We test our control algorithm
rameter perturbatiodp, to keepdy,.,;~0 for subsequent ysing the case shown in Fig. 1 where the parameter setting is
iterations, we choose a unit vectarin the'y subspace to 3=2.8 andb=0.5. Assuming is the accessible parameter
form the dot producti- &y, ;. Letting u-dy,,, ;=0 yields to be perturbed, we set the nominal valuéattb,=0.5 and

allow b to vary aroundd,. The required parameter perturba-

u-(9Glay,)- 8y, ion is qi
Spy=— u~((9G/r:9p) n 6) tion is given by
sb _@%(Yn—bo) (12)
In principle, we can choose the unit vectoarbitrarily pro- noax,—1

vided that the denominator in E(), u-(dG/dp), is not close

to zero. In practice, we define a maximum allowed magni-where we se®b,=0 if 6b,= b,,=10"3 The size of the
tude for the parameter perturbati@p,,,,. If the computed small neighborhood for triggering the control is also
| 6p,| exceedsdp,., We setdp,=0. Doing this would e=10"3. Parameter control is applied wher,(by)<e.
cause loss of control occasionally. But we find in our nu-Figure 2 shows a controlled time serigs, where the trajec-
merical experiment$to be described latgthat robust con- tory starts from an arbitrary initial condition. At time step
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FIG. 2. A controlled trajectory. The control is applied at time 2 )
n=86 when the trajectory comes within 19 of the desirable "
“off" state. The maximum allowed parameter perturbation is 10 noise § = 10
n=86, the trajectory comes within 18 of the desirable —
“off” state, and control is activated. The trajectory then -<D1
stays near the “off” state for as long as the control is —
present. After a few iterations with contrgl, comes within o
about 101® (computer roundoff errorof the “off” state, =
and the required parameter perturbation also reduces to the -6
same order of magnitude. Notice that tkedynamics re-
mains chaotic, regardless of whetheis controlled or not. 7

the controlled trajectory stays in a neighborhood of the
“off” state of size that is proportional to the noise ampli-
tude. Figure 8a) shows log(y,—b) versus timen when a

When noise is present, control can still be achieved. But OT 5(')0 10'00 15‘00 2000

control on n

term 10-5(,“, whereo, is a random number uniformly dis- FIG. 3. ga? A controlled trajectory Wh(_en random noise of am-
tributed in[0,1], is added to Eq(1). After control is turned ~ Plitude 10 is added to Eq(1). Shown is loggly,—bo| versus
on, the trajectory stays within about 1P of the “off” time n. (b) The required magnitude of the parameter perturbation.

state. Figure ®) shows the required parameter perturbationShown in logd Aby| versus timen.
after control is on. On average, the magnitude of the param-
eter perturbation is about 16, which is comparable to the differential equations in terms of dynamical variables

noise amplitude. v,=dx/dt, z= wt, y, andv,=dy/dt,
B. A five-dimensional flow dx
. . . . e :v L
Our second numerical example is a flow that exhibits on- dt %

off intermittency. We consider a mechanical system where
particles move under the influence of the following potential

! : d
in the plane: %: —avy,+4AX(1-x?) — (y?—a?)?+fysin z,
V(x)=(1-x%)%+(y’—a?)?*(x—d)+b(y*—a%)*,
12

dz_ 14
where x=(x,y), a, d, andb(>0) are parameters. We as- dt @ (14
sume particles are also subjected to friction and periodic
forcing of the formfysin(wt) in the x direction. There are
now two symmetric lines defined by=*+a on whichV(x) d_y:U
is independent of the coordinayeand reduces to Duffing's dt 7Y’

two-well potential inx [13]. The equation of motion is

dv
d?x dx . 20y b —av(v2—a?)(x—d) — 8bV(v2— a2)3
W=—a a—VV(X)—I—fOSIn(wt)XO, (13 dt vy y(y*—a)(x ) y(y*—a%)™

wherea is the friction coefficient and is the unit vector in  Note that on the two symmetric lings= *a, if v,=0, the
X. The system can be written as five first-order autonomougquations of motion reduce to
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dx
azvx, 1.6 (&)

duy
dt

0.8

.

=—av,+4x(1—x%) + fysinz, (15

=
dz Y
dat @

which is the set of equations describing a forced-damped
Duffing oscillator [13] in which chaos occurs commonly.
Since Eq.(15) is independent of andv,, a trajectory with -1.6
initial condition in the subspacgs=*=a andv,=0 will re- 0] 9000 18000 27000 36000
main in the subspaces forever. The conditigrs+a and t

v,= 0 thus define two three-dimensional invariant subspaces, b)

where the two Duffing chaotic attractors are located, in the 1.5
five-dimensional phase space. The system exhibits on-off in-
termittency in a wide range of parameter val(is Figure

4(a) shows an on-off intermittent time series ywft) where

the parameter setting &= 0.8,b=0.008,d= —1.8,f,=2.3,
a=0.05, andw=3.5. Due to the presence of two invariant
subspaces at=*a andv,=0, there are two “off” states.
This can be understood as follows: The perpendicular
Lyapunov exponents with respect to both invariant subspaces
are slightly positive 1, ~0.0006). Thus a typical trajectory
spends a long time near one invariant subspace, is repelled
away from this subspace, then is possibly attracted to the 0 l T ' \ l
other invariant subspace or the same subspace, temporarily -1.2 -08 -04 0 04 08 12
spending a long stretch of time there, is repelled away again, y

etc. Such a behavior is called two-state on-off intermittency
[5]. The two “off” states correspond to two wells in the

g?{;ﬁret ng(jly)ir:niztige):l(g;re(gtllj?r;oaasl issh(t)r\:\llj r; t:g i]:pﬁ);tsemngﬁl by the five-dimensional flow Eq14) from a random initial condi-
: ) L ... tion. In this case there are two “off” states. The parameter setting

control so that a trajectory from a random initial condition s ,_8 p=0.008 d=—1.8 fo=2.3, @=0.05, andw=3.5. (b)
stays in the vicinity of one of the potential wellsypassum- ¢ pote,ntial profilé ak=1 ir;dicating’two wells ay=-0.8, re-
ing that this potential well corresponds to the desirable OPzpectively.
erational state of the system.

We use Eq(10) to compute the required parameter per-
turbation. Note that for the system E€L4), the invariant G (X(1),y(t);a)

V(x=1,y)
o
i

FIG. 4. (a) A two-state on-off intermittent time series generated

subspace is three dimensional and the perpendicular sub- ={vy(t),—avy(t)—4y(t)[y2(t)—az][x(t)—d]
space is two dimensional. We choaseo be the parameter »  _oua
to be perturbed. We thus saj=0.8 andéa,,=10 3. The —8by(t)[y(H)*—a]*},

rest of the parameters are the same as in Hig. 4etting

y" (=*ag) andv'=0 denote the desirable “off’ state, and (0Gl9a)'={0,8y(t)a[x(t)—d]}. By choosing
we have, for the functio(x(t),y(t),a) and the vectosG/  u=(1.1)#2, we obtain the following expression for the
da in Eq. (10), the following: parameter perturbation:

{1-8(y°™M2[x(t) —d]At} Sy () +[1+(1— ) At] v, (1)
8y°Mag[ x(t) —d]At ’

da(t)=— (16)

where  sy(t)=y(t)—y*", dvy(t)=v,(t)—vJ", and  when|y(t)-y®"|<102 and|v,(t) —vJ"|<10 3. The time
At<27/w is the small time interval foba(t) to %e applied. interval to apply the control is set to het=T/256, where
If da(t)=da.y, we setda(t)=0. T=2m/w is the period of the external forcing. After the
Figure 5a) shows a case of stabilizing the “off” state control is on,y(t) is stabilized in the vicinity of-a, for as
y°"=—a,=—0.8 andv°"=0. The trajectory starts from an long as the small control is presditig. 5a)], and simulta-
arbitrary initial condition. The parameter control is turned onneously,v(t) is stabilized arouna °"=0 (not shown.
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(b) FIG. 6. For the five-dimensional flow Eq14), a controlled
1.2 trajectory stabilized aroungl(t) =0.8 where external noise of am-
P control on plitude 1072 is present.
0.8 V4 4
control off jectory can still be stabilized around the desirable “off”
0.4+ state after control is on, occasionally the trajectory deviates
= o4 from the “off” state to within a range about 16 around the
S “off” state.
-0.4 control on
IV. SCALING OF THE AVERAGE
-0.8 TRANSIENT TIME PRECEDING CONTROL
-1.24 : : One important issue for achieving stabilization of the de-
0 1.2x10*  2.4x10*  3.6x10* sirable “off” state is the average transient time, or the wait-
t ing time, preceding turning on of the control. In general, this

waiting time depends on the size of the controlling neighbor-

FIG. 5. For the five-dimensional flow E€L4), (a) a controlled  hood. The smaller the size of the neighborhood is, the longer
trajectory stabilized around the desirable “off” stag¢t)=—0.8.  the waiting time will be. When one applies the OGY idea to

(b) A situation where the trajectory is stabilized arow(d)=0.8  stabilize unstable periodic orbits embedded in a chaotic at-

first and is then stabilized around the second “off” statg)= tractor[8], or to stabilize a chaotic orbit to synchronize two

—0.8. This demonstrates the flexibility of the control algorithm to identical chaotic systen{d4], one usually finds that the av-

select different desirable “off” state at different time. erage waiting timer(e) scales with the size of the controlling
neighborhood algebraically,

Similar to the spirit of OGY control, in the presence of
multiple “off” states, our control algorithm is quite flexible
to stabilize different “off” state that might correspond to a
desirable operational state of the system at different tim
Figure 8b) shows a situation where we stabilize the “off”

7(e)~e ¥, 17)

where >0 is a scaling exponent that can be related to the
eI'_yapunov exponent of the unstable periodic orbit or the cha-
off off . ; . otic orbit [8,14]. We find that in our cases of controlling
statey " =ao, vy =0 f'rig and then switch to stabilize the ,n_of intermittency, the average waiting time does not obey
“off” state y™'=—a,, v, =0. To switch the control from e gigebraic scaling law. This is shown in Fig. 7 for the case
the first “off” state to the second “off” state after the tra- ¢ stabilizing the “off” statey=b, in map Eq.(1), where
jectory is stabilized around the first “off” state, we simply (¢) versuseis plotted on a logarithmic scale. If the algebraic
turn off the control to let the system evolve at the nominalsca"ng law holds, such a plot could be fitted by a straight
parameter values. At some later time the trajectory will comgjne. As gets smaller, the average waiting time increases

arbitrarily close to the second “off” state. A new set of gjowly. We find that the average waiting time obeys the fol-
parameter perturbations computed with respect to the secongying scaling law:

“off” state is then activated to stabilize the trajectory around

this new “off” state. 7(e)~|In(e)|?, (18
When noise is present, our control method still works, but

the closeness of the controlled trajectory to the desirabl&vhereg is a scaling exponent. This is shown in Figagfor

“off” state and the magnitude of the required parameter perthe same parameter setting as in Fig. 7, wherg & versus

turbations are now proportional to the noise amplitude. Figin|In(e)| is plotted. For each value af 10° random initial

ure 6 shows a time seriggqt) for a case of stabilizing the conditions were chosen to compute the average time for tra-

“off” state y°"=a, and v°"=0 where a noisy term jectories to first fall into thes neighborhood of the “off”

10" 2¢(t) [o(t) is a random variable uniformly distributed in state. The plot can be fitted by a straight line with a slope

[0,1]] is added to Eq(14). It can be seen that while a tra- 1.63+0.02.
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log1 017(8]

0.8 | T T T
-5 -4 -3 -2

log1 o€

-1

FIG. 7. For the map Eq1), the average waiting time(e) pre-
ceding the control versuson a logarithmic scale. Apparently the
scaling between{e) ande is not algebraic. In the computation,®.0
trajectories were chosen to compute) for each value ok.

We now give a heuristic argument for the scaling relation

Eq. (18). Take a trajectory that starts from a random initial
condition. In order for the trajectory to fall withia of the
invariant subspacg="b, (the asymptotic “off’ stat¢, on

HUA, AND YING-CHENG LAl

(a)

slope = 1.63 £ 0.02

Inz(g)

2 T T
1 1.5 2 2.5
In|In(e) |
0.5 (b)x
0-
slope = 1.63

average the trajectory must experience attraction towards
y=Dbg in time 7(e). It is thus insightful to study the statistics
of the time intervals during which trajectories experience
contraction on average. For simplicity we consider the dy-

namics in the vicinity ofy=b,. For|y,—bg| small we have
Ay, 1~ax,Ay, from Eq. (1), whereAy,=y,—b,. We ob-
tain Ay,,~(a™I ™ 'x,)Ay,. Thus we are led to consider
the sequence ir: {Xg,Xy,... Xm_1} Which satisfies

m—1

am[[o Xi=(axy,) "~ e. (19

wherexM=xyX1,... Xy 1, andax,<1. The integem is in
fact the time interval during which a trajectory is attracted
towards the invariant subspace on average. We ask, what
the probability distributionP(m) for the lengthm of the
sequence? To answer this question, we observe that points
the sequenceXxg,Xq,....Xn—1} can be divided into two
groups: one withax;=1 (or x;=x.=1/a) and one with

-0.54
E -1-
Q-‘O
bF'1'5_
=
-2
-2.5+
'3 T T I I i
0 0.5 1 1.5 2 2.5
1og10T

FIG. 8. For the map Eql), (a) the average waiting time(e)
versus|in(e)| on a logarithmic scale. The good fit of the plot to a
straight line indicates that the scaling betwegr) and [In(e)| is
algebraic with an exponent of approximately 1#8802; (b) a his-
togram of the length of the laminar phase. The threshold for regard-
ing the trajectory as being in the “off” state is 0.01. In total,’10
laminar phases are accumulated to produce the histogram. The dot-
ted line with a slope of 1.63 approximates the asymptotic scaling of
ilSe probability distribution.

tiory must be attracted towards the invariant subspace. There-
fore, we haven~T and we expecP(m) to follow a similar
algebraic scaling law. We write(m)~m™#. From Eq.(19),

ax;<1 (or x;<X.). For the cases studied in this paper, thewe havem~Ine/In(ax,,). For ¢ small (or m large) we ap-

chaotic or random variabbe has a smooth invariant density.

proximatem~|Ine, assuming thax,, is roughly independent

As a consequence, the probability that a trajectory in therf m. SinceP(m) is the probability that a trajectory enters

invariant subspace stays in the contracting regiar<(1)

for a large number of iterations is not negligible. For in-
stance, if thex dynamics is produced by the tent map, the
invariant densityp(x) is uniform inx e [0,1]. The contract-
ing region is given byax<<1 or x<x.=1/a. The probability
for x to stay inx<x. consecutivelyfor n iterations isa™".
Consequently, the probabiliti?(m) can attain appreciable

values even whem is large. To obtain the scaling fét(m),

the e neighborhood ofy=b,, we have

7(€)~1/P(m)~mP~|In(e)|?,

which is Eq.(18). One implication is that sincen~T, the

scaling exponeng in Eq. (18) should be close to the scaling
exponent in P(T) whena=a_. It should be stressed that

the argument leading to E@L8) is only heuristic. There are

we note that in the well established laminar phase statisticseveral crude approximations used in the derivation. Never-
P(T)~T%2[3], T is the time that a typical trajectory stays theless, the scaling relation EG.8) is supported by numeri-

in the “off” state, butm in Eq. (19) is the time during which

cal experiments for both maps and flows, as we will see

a trajectory experiences attraction towards the invariant sulbelow.

space. In order for a trajectory to stay in the vicinity of the
invariant subspacéhe “off” state), on averagethe trajec-

To compare the waiting time scaling exponent to that of
P(T), we compute a histogram for the length of the laminar
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FIG. 9. For the five-dimensional flow E¢L4), the average wait- 0~
ing time 7(€) versuslin(e)| on a logarithmic scale. The fit of the data
to a straight line is good, the slope of which is 1+f206. This -34
implies that the algebraic scaling betwesefa) and|In(e)| is quite =
general. o -6
\
a
phase for Eq(1), as shown in Fig. &), whereP(T) versus > -9
T is plotted on a logarithmic scale. To obtain this picture, we 9_127
accumulate 10lengths of laminar phase, where if a trajec- %”
tory comes within 10 of the “off” state, we consider it to ~ s
be in a laminar phase. Also shown in FigbBis a straight
dotted line with a slope of 1.63. The asymptotic scaling of -18 ‘ ‘ ‘
P(T) obeys the algebraic scaling laW *? approximately, 0 500 1000 1500 2000
alnd the fcaling exponent for the waiting time in Ebf) is control on n
close tos.

The above argument for the average waiting time scaling ) _ _
makes use of the scaling for the probability distribution of ';LG' klo' A Clomg"”ed traleCto_ri’] Wielr]; S|mpcljef proﬁort'ona'
the length of the laminar phase: The latter is conjectured td°-° SC iont;o icz Zme)Eﬁﬂo)_Vl\;'t| a_r : ': L(’fgoo 0{ tr etic?rﬁ-
be universal for a large class of systems that exhibit on-offe™ Ed- (1) at a=2.8. (a |y, —bo| versusn (1000 itera
. . s . . shown; and (b) log;gy,—bg| versusn (2000 iterations shown
intermittency. Thus we expect the waiting time scaling Eq. ot ) ) X

. oS Although only a limited number of iterations are shown(a& and
(18) to be quite general. The generality is supported by

imil i b d for th f five-di . b) for the purpose of illustration, robust control can be achieved for
similar scaling observed for the system of five-dimensiona s long as the parameter perturbations 26) are presentverified

flow Eq. (14), as Sh_own_ln Fig. 9, wherg(e) versus||n(_e)| IS . using 1@ iteration. The result indicates that on-off intermittent
plotted on a logarithmic scale. Here, due to the intensiveyynamics can be controlled in more realistic situations where the
computation involved, only 5000 random initial conditions only available information is time series of the on-off dynamical
were chosen for each value efto compute the average griaples.
waiting time. The scaling exponent ig=1.72+0.06. The
good fit of the data to a straight line indicates that the scaling0 stabilize different “off” states at different time depending
Eq. (18) is robust for this five-dimensional flow. on one’s needs, provided that there are multiple “off” states
in the system. We also study the scaling of the average tran-
sient time preceding the control and find that the scaling
obeys a qualitatively different law from that in conventional
In this paper we investigate controlling chaotic dynamicalcontrolling chaos applications where one stabilizes unstable
systems that exhibit on-off intermittency. We devise an al-periodic orbits or chaotic orbits embedded in a chaotic attrac-
gorithm for stabilizing a trajectory in the vicinity of a desir- tor. The mechanism for the observed scaling law is eluci-
able state, the “off” state, by using arbitrarily small param- dated, and numerical confirmation for both map and flow
eter perturbations. It should be noted that the “off” statesindicates that the scaling law is quite general.
are in general chaotic, because they are usually characterized Our control algorithm is based on the knowledge of sys-
by chaotic sets embedded in some invariant subspace of them equations. It is important to discuss the feasibility of
full system. Thus controlling chaos with on-off intermittency controlling on-off intermittent chaotic systems when detailed
can be regarded as a case in the more general study wheggstem equations are not available, which would occur in
one seeks to select desirable chaotic states using small fegokactical applications. In our numerical examples, feedback
back control[15]. Numerical examples with both a map and perturbations are applied to a parameter thiegctly charac-
a flow demonstrate that the algorithm works even when theréerizes the “off” state. It is conceivable that in most situa-
is small-amplitude noise. Our method follows the spirit of tions one can gain a fairly good knowledge about the target
the OGY idea of controlling chaos, and it is therefore flexible“off” state by running the system and observing it. This is

V. DISCUSSIONS
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similar to finding the target unstable periodic orbit to be a=1.5, wherey, versusn and log,y, versusn are plotted
stabilized in the OGY control strategy. Therefore we expecin (a) and (b), respectively. Clearly, control is successful
that it would be possible to find the target “off” state and using the simple direct proportional feedback scheme Eq.
the proper control parameter in more realistic applications(20). For the example of the five-dimensional flow Ef4),
After the “off” state is identified, one can then measure thewe use a similar scheméa(t) = ady(t) + Bév(t), assum-
distance of a trajectory from the “off” statéy. In cases ing that only the on-off variableg(t) andv(t) can be mea-
where the on-off intermittent behavior is generated by a ransured. Again, control is achieved for a wide range of choices
dom or a chaotic driving signal such as in Efj), the feed- of the proportional constantsand 8 (data not shown From
back control only depends afy and the driving signdlax,  these examples, we see that on-off intermittent dynamics can
in Eq. (1), see Eq.(11)]. If in experiments one knows the be controlled in experimental situations where the only avail-
driving signal well (which is possiblg the appropriate pa- able information is time series of the on-off dynamical vari-
rameter perturbation can be computed and applied to thables.
system. Thus, for such a case, we expect our control algo- Finally, we discuss implications of the scaling law for the
rithm to work in more realistic situations, but at present thereaverage waiting time. In conventional applications of the
is no assurance of this. OGY control method, the waiting time typically scales with
The control algorithm presented in this paper requires théhe size of the controlling neighborhoed(or equivalently,
knowledge of both the on-off dynamical variables and thethe maximum allowed parameter perturbajiatgebraically
underlying chaotic or random variables. Rarely does on¢8]. Thus ase decreases, the required waiting time increases
know these underlying variables in practical situations. Ingreatly and can become prohibitively long. There is a
general, one only observes the on-off variables. Moreover, ittrade-off” between the waiting time and the maximum al-
is very difficult to reconstruct the underlying variables from lowed perturbation8]. In our cases of controlling on-off
the on-off variables via the delay-coordinate embeddingntermittency, the average waiting time scales withs some
technique[16]. Therefore it is important to test the control power of|In(e)|. This indicates that the required waiting time
algorithm without having a detailed knowledge of the driv- increases only incremently even éfis decreased by many
ing variables. We thus propose a straightforward propororders of magnitudgFigs. (8a) and(9)]. Therefore it is pos-
tional feedback schemé 7] which in principle allows one to sible to apply extremely small parameter perturbations to
control on-off intermittent dynamics in experiments. Taking achieve the desirable system performainceelatively short
Eqg. (1) as an example and assuming that the only availabléime when one controls on-off intermittent dynamics.
information is|y,—by|, the distance of the on-off variable
from the “off” state, we use the following parameter pertur-
bation in place of Eq(11): ACKNOWLEDGMENTS

db,= a(y,—bo), (20) This work was partially supported by AFOSR under
Grant No. F49620-96-1-0066. The work was also supported
wherec is a proportional constant. We then determine, usingy the University of Kansas. The numerical computation in-
a trial-error procedure, the range afvalues where control volved in this work was supported by the Kansas Institute for
can be achieved. It is found that robust control can still beTheoretical and Computational Science through the
realized when 1.8a<2.1. Figure 10 shows such a case for K*STAR NSF EPSCoR Program.

[1] E. A. Spiegel, Ann. N.Y. Acad. Scb17, 305 (1981); A. S. 7n~ 1076, When this occurs, the computer assigpsb and
Pikovsky, Z. Phys. B55, 149(1984); H. Fujisaka and T. Ya- for subsequent iterationg, remains to be exactlg. To over-
mada, Prog. Theor. Phys4, 919(1985; 75, 1087(1986); H. come this artifact, we add a term “Rfan, where o, is a
Fujisaka, H. Ishii, M. Inoue, and T. Yamadiid. 76, 1198 random number uniformly distributed {0,1), to Eq.(1). This
(1986; L. Yu, E. Ott, and Q. Chen, Phys. Rev. L&, 2935 additive term has a magnitude which is comparable to the
(1990; A. S. Pikovsky and P. Grassberger, J. Phy24A4587 computer roundoff and therefore has no influence on the quali-
(1992); L. Yu, E. Oftt, and Q. Chen, Physica®B, 102(1992; tative behavior of the trajectory, but the numerical results so
A. S. Pikovsky, Phys. Lett. A65 33(1992. obtained are sensible. It should be noted that wihés much

[2] N. Platt, E. A. Spiegel, and C. Tresser, Phys. Rev. L&df. larger than the computer roundoff, this additive term is neces-
279(1993. sary, becaus&+ n»,=b on the computer. Wheih=0, this

[3]J. F. Heagy, N. Platt, and S. M. Hammel, Phys. Rev% additive random term is not necessary as the computer round-
1140(19949. off serves for the purpose of additive noise since ,= 7,

[4] E. Ott and J. C. Sommerer, Phys. Lett.188 39 (1994). on the computer.

[5] Y. C. Lai and C. Grebogi, Phys. Rev.®, R3312(1995. [7] J. C. Alexander, J. A. Yorke, Z. You, and I. Kan, Int. J. Bifur.

[6] If b#0, computer-generated trajectories eventually have Chaos?2, 795 (1992; I. Kan, Bull. Am. Math Soc.31, 68
y,=0 even if the perpendicular Lyapunov exponent is posi- (1994; J. C. Sommerer and E. Ott, Natu65 136(1993; E.
tive. This is a numerical artifact, as for on-off intermittency Ott, J. C. Sommerer, J. C. Alexander, |. Kan, and J. A. Yorke,
there can be time periods whéy),— b| becomes so extremely Phys. Rev. Lett71, 4134(1993; E. Ott, J. C. Alexander, I.
small that it is less than the computer roundoff error Kan, J. C. Sommerer, and J. A. Yorke, Physica7g 384



54 CONTROLLING ON-OFF INTERMITTENT DYNAMICS 1199

(1994; J. F. Heagy, T. L. Carroll, and L. M. Pecora, Phys. [11] B. Peng, V. Petrov, and K. Showalter, J. Chem. PB%¥s4957

Rev. Lett.73, 3528(1994; Y. C. Lai and R. L. Winslowjbid. (1991); V. Petrov, V. Gapa, J. Masere, and K. Showalter,
72, 1640 (1999; Physica D74, 353 (1994; P. Ashwin, J. Nature 361, 240 (1993; V. Petrov, M. J. Crowley, and K.
Buescu, and I. N. Stewart, Phys. Lett.183 126 (1994. Showalter, Phys. Rev. Letf2, 2955(1994).

[8] E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lé#t, 1196  [12] A. Garfinkel, W. L. Ditto, M. L. Spano, and J. Weiss, Science
(1990; and inChaos: Soviet-American Perspectives on Non- 257, 1230(1992; S. J. Schiff, K. Jerger, D. H. Duong, T.

linear Science edited by D. K. Campbel(AIP, New York, Chang, M. L. Spano, and W. L. Ditto, Natud&0, 615(1994).

1990. [13] P. J. Holmes, Philos. Trans. R. Soc. Lond292, 419 (1979;
[9] For example, F. J. Romeiras, C. Grebogi, E. Ott, and W. F. C. Moon, Phys. Rev. Letg3, 962(1984; F. C. Moon and

Dayawansa, Physica B8, 165 (1992; U. Dressler and G. G.-X. Li, ibid. 55, 1439(1985.

Nitsche, Phys. Rev. Let68, 1 (1992; D. Auerbach, C. Gre- [14] Y. C. Lai and C. Grebogi, Phys. Rev.4&, 2357 (1993.

bogi, E. Ott, and J. A. Yorkebhid. 69, 3479(1992. [15] Y. Nagai and Y. C. Lai, Phys. Rev. ¥l, 3842(1995.

[10] W. L. Ditto, S. N. Rauseo, and M. L. Spano, Phys. Rev. Lett.[16] N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw,
65, 3211(1990; J. Singer, Y.-Z. Wang, and H. H. Baikid. Phys. Rev. Lett45, 712(1980; F. Takens, irDynamical Sys-
66, 1123 (1991; A. Azevedo and S. M. Rezenddid. 66, tems and Turbulenceedited by D. Rand and L. S. Young,
1342(199)); E. R. Hunt,ibid. 67, 1953(1992; R. Roy, T. W. Lecture Notes in Mathematics Vol. 898pringer-Verlag, Ber-
Murphy, Jr., T. D. Maier, and Z. Gillshid. 68, 1259(1992); lin, 1981), p. 366.

C. Reyl, L. Flepp, R. Badii, and E. Burn, Phys. ReW¥E 267 [17] T. C. Newell, P. M. Alsing, A. Gavrielides, and V. Kovanis,
(1993. Phys. Rev. Lett72, 1647(1994); Phys. Rev. E9, 313(1994.



