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Symmetry-breaking bifurcation with on-off intermittency in chaotic dynamical systems
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When a dynamical system possesses certain symmetry, there can be an invariant subspace in the phase
space. In the invariant subspace there can be a chaotic attractor. As a parameter changes through a critical
value, the chaotic attractor can lose stability with respect to perturbations transverse to the invariant subspace.
We show that the loss of the transverse stability can lead to a symmetry-breaking bifurcation characterized by
lack of the system symmetry in the asymptotic attractor. An accompanying physical phenomenon is an extreme
type of temporally intermittent bursting behavior. The mechanism for this type of symmetry-breaking bifur-
cation is elucidated.S1063-651X96)51505-9

PACS numbe(s): 05.45+b

Symmetry is quite common in nonlinear dynamical sys-and, consequently, the chaotic attractor is transversely un-
tems[1]. An interesting question is whether the system sym-stable and it is hence not an attractor of the whole phase
metry could be seen in the asymptotic attractor of the systenspace. The bifurcation from the former behavior to the latter
When the attractor does not possess the system symmetiyehavior has been investigat¢8,6] and it is called the
we say that symmetry is broken for the asymptotic attractor:‘blowout” bifurcation [5]. It is also known that whei | is
In general, symmetry exists in the attractor for some paramslightly positive, some dynamical variables of the system can
eter regimes. Disappearance of the symmetry occurs whenexhibit an extreme type of temporarily intermittent bursting
system parameter passes through a critical value. This is réehavior: on-off intermittencj/7]. The purpose of this paper
ferred to as the symmetry-breaking bifurcation. As the pais to show that for the class of chaotic systems with low-
rameter changes further, the attractor can gain partial or fullimensional invariant subspace, symmetry-breaking bifurca-
symmetry of the system through the so-called symmetrytion can occur whem, becomes positive from being nega-
increasing bifurcationf2,3]. As a simple example, consider tive. As a physical consequence, immediately after the
the one-dimensional odd-logistic map:=ax—x> [2]. This  symmetry is broken, dynamical variables that violate the sys-
map is invariant under the symmetric operatioa=>—x.  tem symmetry exhibit on-off intermittency.

Whena<1, the fixed poinx=0 is stable, which satisfies the ~ We consider the following general classMfdimensional
symmetry trivially. Fora>1, the attractor has either>0 or  dynamical systems:

x<0. Thus, a symmetry-breaking bifurcation occurs at

a.=1. The attractor recovers the symmetry wharra, Xt 1=F(Xq),

=3./3/2, at which thex>0 attractor merges with the<0 (1)
attractor and, hencey is the symmetry-increasing bifurca- _ _

tion point[2]. The phenomenon of symmetry-increasing is Yn+1=F(Xn,p)G(Yn—b)+b,

also believed to be relevant to physical phenomena such as N
the time-averaged patterns seen in spatiotemporal dynamicgherexeR™ (N,=1), yeR':(N,=>1), andN,+N,=N.
systemd 4]. The vector functionG(y) possesses certain symmetry, e.g.,

In this paper, we describe a type of symmetry-breaking®(—Y)=—G(y). We assume that both theandy dynamics
bifurcation that occurs in chaotic systems with symmetricafe bounded. The symmetric invariant subspage-is (con-
low-dimensional invariant subspace. Denote the invariangt@n. The vector functiorf(x) is a map that has a chaotic
subspace byB. SinceS is invariant, initial conditions ins  attractor. The scalar functioR(x,p) can be regarded as a
result in trajectories which remain i@ forever. We restrict ~driving” from the x dynamics in the invariant subspace to
our investigation to the situation where there is a chaotidh® symmetricy-subsystem, ang is the bifurcation param-
attractor inS. In this case, whether the chaotic attractor at-€ter. The largest transverse Lyapunov exponent
tracts or repels initial conditions in the vicinity &fis deter- €an be computed by monitoring the growth rate of an
mined by the sign of the largest transverse Lyapunov expolnfinitesimal vector in the symmetric subspade™::
nent A, computed for trajectories irs with respect to M =limy_.(1/L)S5_4In[F(X,,p)DG(Yy)ly, —p-ul, whereu
perturbations in the subspade which is transverseto S.  is a randomly chosen vector RV:. The largest Lyapunov
When\, is negative,S attracts trajectories transversely in exponent\, of they subsystem follows from the same defi-
the phase space and, the chaotic attractoSiis also an nition except thaty, is not set to beb when the Jacobian
attractor of the whole phase space. When is positive, matricesDG(y,) are evaluated. Assume that as the param-
trajectories in the vicinity ofS are repelled away from it, eterp passes through a critical valyg,, N\, crosses zero

from the negative side. Our main goal is to understand how
symmetry breaking occurs whan crosses zero. To be con-
*Electronic address: lai@poincare.math.ukans.edu crete, we consider the following version of H4):
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FIG. 1. (a) The chaotic attractor without symmetry of the system Letting Y,= — In|y,|=0, we obtainY,, ;= —

for Eq. (2) at r=3.8 andp=1.74, after 16 preiterations.(b) The
time seriesy, exhibiting on-off intermittency but without thg
symmetry in Eq.(2).

Xn+1=Xp(1—Xy),

@
1
Yni1= 5= PXeSI 27(yy = )]+,

wherep andb are parameters, both the invariant subspace
and the symmetric subspageare one dimensionak is re-
stricted to the unit intervdl0,1], andr is the parameter in the
logistic map. They equation is invariant under the mirror
symmetric operation: y(—b)——(y—b). Since x is
boundedy is also bounded. We chooseuch that the logis-
tic map generates a chaotic attractor in ¥theubspace. The
transverse Lyapunov exponentNs = [ 3In|pxp(x)dx, where
p(x) is the invariant density ok for the logistic map. Thus,
we havep.=exd —filn|x/p(x)dx], whereX, =0 for p=p,
and\, <0 for p<p..
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arbitrary initial conditiony,<[0,0.5. They value of the tra-
jectory is confined if0,0.5]. Thus, the mirror symmetry no
longer exists in the attractor. Similarly, if we choos®.5
<y(<0, the resulting trajectory will be confined [ir-0.5,0].
The key observation is that for the asymptotic attractor in the
phase space, the mirror symmetry in thequation is broken
immediately after the transverse Lyapunov exponenbe-
comes positive.

A feature associated with the symmetry-breaking is the
occurrence of on-off intermittendy’] in y whenp is slightly
abovep. (A, =0). This is shown in Fig. (b), wherey,
versus the tima is plotted forp=1.74. We see that there are
time intervals whery,, stays neay=0 (the “off” state), but
there are also intermittent burstsygf (the “on” state) away
from the “off” state. This is due to the fact that, is only
slightly positive immediately after the symmetry-breaking
bifurcation. Imagine we choose an ensemble of initial condi-
tions in x, compute\, for each initial condition at a finite
time, and then construct a histogram of these exponents.
Since the asymptotia ;| is only slightly positive, there is a
spread of the histogram into the negative side, indicating that
a trajectory can spend long stretches of time ngaf in
finite times. But since | is positive, occasionally the trajec-
tory can be repelled away froy=0. Thus on-off intermit-
tency occurg8].

The mechanism for the symmetry-breaking bifurcation
can be understood as follows. Consider the situation where
N\, =0. Take an initial condition withy,>0. At some later
time n, the trajectory will come close to the axis, i.e.,

n=0. Thus we havey, 1= (1/27)pX,Sin(2my,)~PXYn -
a,+Y,, where
a,=In|px,. This is a random walk inY,,, sincex, is a
chaotic variable with some invariant densitx). Taking the
time average ofY, we obtainY, ;= —a,+Y,. By the er-
godic theorem we havex,= [In|px,|p(x)dx=\,>0 and,
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To illustrate our findings, we use the following parameter

setting for numerical experiments=3.8 andb=0. We find
p.~1.725. Foip<p., the asymptotic attractor is=0 which
is trivially invariant undery——y. For p=p., numerical

FIG. 2. For Eq.(2), the transverse Lyapunov exponent and
the average|{/maJ —0.5) (computed using 1000 trajectorjesrsus
the parametep (r=3.8). Symmetry-breaking bifurcation occurs

computation reveals that the resultant attractor no longefhen », becomes positive but|y,./—0.5) remains negative.

possesses the mirror symmetry abg&0: for an initial con-
dition with y,>0 (<0), the resulting trajectory hag,>0
(<0) for subsequent iterations. Figuréalshows such a tra-
jectory in the phase space fpe=1.74>p, resulting from an

Symmetry-increasing bifurcation occurs whefy {4 —0.5) be-

comes positive. Also shown is thelyapunov exponenk, versus

p (the dotted ling. Except in the vicinity ofps, A, remains negative
in the parameter range where there is a symmetry breaking.
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FIG. 4. The symmetry-broken chaotic attractor with a gap from
y=0 atp=1.85(\, ~0.07 and\,~—0.182. The number of preit-
erations is 10,

totically and, thereforefIn|cos(2my,)|p,(y)dy=0. Figure 2
shows A, and the average value of the quantity
(]ymad —0.5) (averaged over 1000 trajectoriegersusp for
1=p=4. Symmetry breaking occurs f@.<p<ps, Where
ps~3.306 is a symmetry-increasing bifurcation point at
which |y, exceeds 0.5. Also shown in Fig. 2)s versus
06 l' o ‘ | | | p (the dotted ling. We see thah, remains negative fop,
0 500 1000 1500 2000 <p<ps except whenp is very close tops (A, becomes
n positive atp~3.245. Figures 8a) and 3b) show the attrac-
tor with the system symmetry recovered and the time series
Yn, respectively, fop=3.33>p,. We see thay, occurs on
FIG. 3. (8) The chaotic attractor gi=3.3, after the symmetry- poth sides of the symmetric axis=0. Wheneverly,| ex-

increasing bifurcation. The attractor is symmetric with respect toceeds 0.5, it jumps from one side p£0 to the othefFig.
the x axis. (b) The time seriey, that exhibits intermittent switch- 3(b)].

ings on the positive and negatiyesides. In both(a) and (b), the
number of preiterations is £0

An interesting phenomenon is the occurrence of an appar-
ent “gap” between the attractor and the axis in the
— - symmetry-broken attractor. Such a gap is observed, and it is
hence,Y. <Yy, indicating thaty,.;>y,. Since,(1) the  paricularly obvious wher\, is positive but not close to
change iny,, is finite in one iteratior{x, is bounded and(2) zero, as shown in Fig. 4, wheg=1.85>p. at which the
on averagey, increases for smaly,, we conclude thay, 4yes ofn, and Ay are:\,;~0.07, \,~—0.182. When
Ca”T‘Ot reach zero asymptohca]ly. Thus, the_tra]ectory cannQt,ch a gap exists, it is extremely difficult for trajectories to
attain the system symmetry trivially by having=0 (note get close toy=0. We find that whether such a gap occurs is

Lh?}ir:f );\“;OO tgenyng 1t_ 0 f(r)rnstubseq#}?étlrtersrtéo;ksiﬁut I:Ordetermined by the characteristics of the chaotic driving in the
aving A, 0€s not guarantee sy y 9- PO invariant subspace. This can be heuristically understood as
Eq. (2), if y, exceeds 0.5y,, 1 immediately becomes nega- follows. For small we have ~bx A
tive, indicating that trajectories on the positiyeehaotic nen—1 Y Yn+1=PXnYn, SO Yn
component can be reinjected into the basin of the coexisting” (P'Ili=0%)Yo if Ya<1. Thus we are led to Conﬂ‘ﬂ?f the
negativey chaotic component. Since the positiyeand SEQUENCE ik Xo,X1Xz,.... Xy Which satisfiesp"IIi1,";
negativey chaotic components are completely symmetric<1 and pM 1M x;=1. We ask, what is the probability
with respect to each other, in this case the system symmetmjistribution P(M) for the length of the sequendd? If the
is not broken for the attractor. In general, symmetry breakingrobability for largeM is not negligible, we expect that,
occurs if trajectories on one symmetric chaotic componentan be arbitrarily close tg=0 and consequently no apparent
cannot be reinjected into other coexisting symmetric compogap would occur. If, on the other hand, the probability for
nents. For Eq.2), we find that reinjection of trajectories having largeM is practically zero, we would expect a gap.
between the symmetric components does not occur ifythe We find [9] that for the logistic driving, P(M)~exp
Lyapunov exponenk, remains negative even i, is posi-  (—KM) for largeM, whereK is a positive constant. Thus, the
tive. If A, =0, Ay can remain negative in the vicinity qf probability for having largeM is prohibitively small, thereby
since A\y=N\ + fIn|cos(2ry,)|p,(y)dy with the integral iny  causing the apparent gap in Fig. 4.
being negative, wherg,(y) is the probability distribution of The symmetry-breaking bifurcation observed for the map
y after the symmetry-breaking bifurcation. We note that be-Eq. (2) can also occur in flows. For instance, we have exam-
fore the bifurcation, we have,=\, becausg/,=0 asymp- ined the following four-dimensional flow:
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with an invariant subspace. We argue that symmetry-
breaking bifurcation occurg§l) if the transverse Lyapunov
exponent with respect to the symmetric invariant subspace
crosses zero from the negative side; &Bdif the repulsion
from the invariant subspace is not too strong so that trajec-
tories in one symmetric component cannot be injected into
basins of other coexisting symmetric components. When
) such a symmetry-breaking bifurcation occurs, the dynamical
wherey, fo, », andp are parameters. The symmetric sub-yariables that break the symmetry exhibit on-off intermit-
space isy, whose evolving equation is invariant under thetency. As a parameter varies further, symmetry-increasing
symmetric operatioly——y. The variables X;,X;,X3) con-  pjfurcation occurs when trajectories start switching intermit-
stitute the forced Duffing’s systeff10] and, therefore, cha- tently among the coexisting symmetric chaotic components.
otic attractor occurs commonly. The transverse Lyapunow|though we illustrate our main result by using the model
exponent can be computed analytically by solvidgy/dt  Eq. (2), the argument for symmetry-breaking bifurcation to
=(ax;+b—1)dy. We obtain N\, =b—1+afx;p(Xx1)dX;  occur does not depend on a specific feature of the model.
=b—1, where the integral is zero because the invariant densimilar bifurcations have been observed for a large variety of
sity p(x1) of xy(t) is an even function ofx;. Thus, a chaotic dynamics in the invariant subspace, and also for
symmetry-breaking bifurcation occurskat=1. We have ob- flows.
served such a bifurcation with on-off intermittency for a
wide range of parameter values in the Duffing’s system that This work was supported by AFOSR through Grant No.
yields a chaotic attractor. F49620-96-1-0066. The work was also supported by a New
In conclusion, we have presented a scenario fofFaculty Research Fund at the University of Kansas and by
symmetry-breaking bifurcation in chaotic dynamical systemghe NSF/K'STAR EPSCoR Program in Kansas.

Xm/dtZXz, (3)
dx, /dt=— yxp+4x,(1—x3) + fosinxs,
dxs/dt=w,

dy/dt=(27) Y(ax,+b)sin(27y)—y,
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