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When a dynamical system possesses certain symmetry, there can be an invariant subspace in the phase
space. In the invariant subspace there can be a chaotic attractor. As a parameter changes through a critical
value, the chaotic attractor can lose stability with respect to perturbations transverse to the invariant subspace.
We show that the loss of the transverse stability can lead to a symmetry-breaking bifurcation characterized by
lack of the system symmetry in the asymptotic attractor. An accompanying physical phenomenon is an extreme
type of temporally intermittent bursting behavior. The mechanism for this type of symmetry-breaking bifur-
cation is elucidated.@S1063-651X~96!51505-9#

PACS number~s!: 05.45.1b

Symmetry is quite common in nonlinear dynamical sys-
tems@1#. An interesting question is whether the system sym-
metry could be seen in the asymptotic attractor of the system.
When the attractor does not possess the system symmetry,
we say that symmetry is broken for the asymptotic attractor.
In general, symmetry exists in the attractor for some param-
eter regimes. Disappearance of the symmetry occurs when a
system parameter passes through a critical value. This is re-
ferred to as the symmetry-breaking bifurcation. As the pa-
rameter changes further, the attractor can gain partial or full
symmetry of the system through the so-called symmetry-
increasing bifurcations@2,3#. As a simple example, consider
the one-dimensional odd-logistic map:x→ax2x3 @2#. This
map is invariant under the symmetric operation:x→2x.
Whena,1, the fixed pointx50 is stable, which satisfies the
symmetry trivially. Fora.1, the attractor has eitherx.0 or
x,0. Thus, a symmetry-breaking bifurcation occurs at
ac51. The attractor recovers the symmetry whena.as
53A3/2, at which thex.0 attractor merges with thex,0
attractor and, hence,as is the symmetry-increasing bifurca-
tion point @2#. The phenomenon of symmetry-increasing is
also believed to be relevant to physical phenomena such as
the time-averaged patterns seen in spatiotemporal dynamical
systems@4#.

In this paper, we describe a type of symmetry-breaking
bifurcation that occurs in chaotic systems with symmetric
low-dimensional invariant subspace. Denote the invariant
subspace byS. SinceS is invariant, initial conditions inS
result in trajectories which remain inS forever. We restrict
our investigation to the situation where there is a chaotic
attractor inS. In this case, whether the chaotic attractor at-
tracts or repels initial conditions in the vicinity ofS is deter-
mined by the sign of the largest transverse Lyapunov expo-
nent l' computed for trajectories inS with respect to
perturbations in the subspaceT which is transverseto S.
When l' is negative,S attracts trajectories transversely in
the phase space and, the chaotic attractor inS is also an
attractor of the whole phase space. Whenl' is positive,
trajectories in the vicinity ofS are repelled away from it,

and, consequently, the chaotic attractor is transversely un-
stable and it is hence not an attractor of the whole phase
space. The bifurcation from the former behavior to the latter
behavior has been investigated@5,6# and it is called the
‘‘blowout’’ bifurcation @5#. It is also known that whenl' is
slightly positive, some dynamical variables of the system can
exhibit an extreme type of temporarily intermittent bursting
behavior: on-off intermittency@7#. The purpose of this paper
is to show that for the class of chaotic systems with low-
dimensional invariant subspace, symmetry-breaking bifurca-
tion can occur whenl' becomes positive from being nega-
tive. As a physical consequence, immediately after the
symmetry is broken, dynamical variables that violate the sys-
tem symmetry exhibit on-off intermittency.

We consider the following general class ofN-dimensional
dynamical systems:

xn115f~xn!,
~1!

yn115F~xn ,p!G~yn2b!1b,

wherexPRNi (Ni>1), yPRN'(N'>1), andNi1N'5N.
The vector functionG~y! possesses certain symmetry, e.g.,
G~2y!52G~y!. We assume that both thex andy dynamics
are bounded. The symmetric invariant subspace isy5b ~con-
stant!. The vector functionf~x! is a map that has a chaotic
attractor. The scalar functionF~x,p! can be regarded as a
‘‘driving’’ from the x dynamics in the invariant subspace to
the symmetricy-subsystem, andp is the bifurcation param-
eter. The largest transverse Lyapunov exponentl'

can be computed by monitoring the growth rate of an
infinitesimal vector in the symmetric subspaceRN':
l'5 limL→`(1/L)(n51

L lnuF(xn ,p)DG(yn)uyn5b–uu, whereu
is a randomly chosen vector inRN'. The largest Lyapunov
exponently of they subsystem follows from the same defi-
nition except thatyn is not set to beb when the Jacobian
matricesDG(yn) are evaluated. Assume that as the param-
eter p passes through a critical valuepc , l' crosses zero
from the negative side. Our main goal is to understand how
symmetry breaking occurs whenl' crosses zero. To be con-
crete, we consider the following version of Eq.~1!:*Electronic address: lai@poincare.math.ukans.edu
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xn115rxn~12xn!,
~2!

yn115
1

2p
pxnsin@2p~yn2b!#1b,

wherep andb are parameters, both the invariant subspacex
and the symmetric subspacey are one dimensional,x is re-
stricted to the unit interval@0,1#, andr is the parameter in the
logistic map. They equation is invariant under the mirror
symmetric operation: (y2b)→2(y2b). Since x is
bounded,y is also bounded. We chooser such that the logis-
tic map generates a chaotic attractor in thex subspace. The
transverse Lyapunov exponent isl'5*0

1lnupxur(x)dx, where
r~x! is the invariant density ofx for the logistic map. Thus,
we havepc5exp@2*0

1lnuxur(x)dx#, wherel'>0 for p>pc
andl',0 for p,pc .

To illustrate our findings, we use the following parameter
setting for numerical experiments:r53.8 andb50. We find
pc'1.725. Forp,pc , the asymptotic attractor isy50 which
is trivially invariant undery→2y. For p*pc , numerical
computation reveals that the resultant attractor no longer
possesses the mirror symmetry abouty50: for an initial con-
dition with y0.0 ~,0!, the resulting trajectory hasyn.0
~,0! for subsequent iterations. Figure 1~a! shows such a tra-
jectory in the phase space forp51.74.pc resulting from an

arbitrary initial conditiony0P@0,0.5#. They value of the tra-
jectory is confined in@0,0.5#. Thus, the mirror symmetry no
longer exists in the attractor. Similarly, if we choose20.5
,y0,0, the resulting trajectory will be confined in@20.5,0#.
The key observation is that for the asymptotic attractor in the
phase space, the mirror symmetry in they equation is broken
immediately after the transverse Lyapunov exponentl' be-
comes positive.

A feature associated with the symmetry-breaking is the
occurrence of on-off intermittency@7# in y whenp is slightly
abovepc (l'*0). This is shown in Fig. 1~b!, where yn
versus the timen is plotted forp51.74. We see that there are
time intervals whenyn stays neary50 ~the ‘‘off’’ state!, but
there are also intermittent bursts ofyn ~the ‘‘on’’ state! away
from the ‘‘off’’ state. This is due to the fact thatl' is only
slightly positive immediately after the symmetry-breaking
bifurcation. Imagine we choose an ensemble of initial condi-
tions in x, computel' for each initial condition at a finite
time, and then construct a histogram of these exponents.
Since the asymptoticl' is only slightly positive, there is a
spread of the histogram into the negative side, indicating that
a trajectory can spend long stretches of time neary50 in
finite times. But sincel' is positive, occasionally the trajec-
tory can be repelled away fromy50. Thus on-off intermit-
tency occurs@8#.

The mechanism for the symmetry-breaking bifurcation
can be understood as follows. Consider the situation where
l'*0. Take an initial condition withy0.0. At some later
time n, the trajectory will come close to thex axis, i.e.,
yn*0. Thus we haveyn115(1/2p)pxnsin(2pyn)'pxnyn .
LettingYn[2 lnuynu>0, we obtainYn1152an1Yn , where
an[ lnupxnu. This is a random walk inYn , since xn is a
chaotic variable with some invariant densityr~x!. Taking the
time average ofY, we obtainYn1152an1Yn. By the er-
godic theorem we havean5* lnupxnur(x)dx5l'.0 and,

FIG. 2. For Eq.~2!, the transverse Lyapunov exponentl' and
the average (uymaxu20.5) ~computed using 1000 trajectories! versus
the parameterp ~r53.8!. Symmetry-breaking bifurcation occurs
when l' becomes positive but (uymaxu20.5) remains negative.
Symmetry-increasing bifurcation occurs when (uymaxu20.5) be-
comes positive. Also shown is they Lyapunov exponently versus
p ~the dotted line!. Except in the vicinity ofps , ly remains negative
in the parameter range where there is a symmetry breaking.

FIG. 1. ~a! The chaotic attractor without symmetry of the system
for Eq. ~2! at r53.8 andp51.74, after 106 preiterations.~b! The
time seriesyn exhibiting on-off intermittency but without they
symmetry in Eq.~2!.
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hence,Yn11,Yn, indicating thatyn11.yn. Since,~1! the
change inyn is finite in one iteration~xn is bounded!; and~2!
on averageyn increases for smallyn , we conclude thatyn
cannot reach zero asymptotically. Thus, the trajectory cannot
attain the system symmetry trivially by havingyn50 ~note
that if yn50, thenyn1150 for subsequent iterations!. But
having l'.0 does not guarantee symmetry breaking. For
Eq. ~2!, if yn exceeds 0.5,yn11 immediately becomes nega-
tive, indicating that trajectories on the positive-y chaotic
component can be reinjected into the basin of the coexisting
negative-y chaotic component. Since the positive-y and
negative-y chaotic components are completely symmetric
with respect to each other, in this case the system symmetry
is not broken for the attractor. In general, symmetry breaking
occurs if trajectories on one symmetric chaotic component
cannot be reinjected into other coexisting symmetric compo-
nents. For Eq.~2!, we find that reinjection of trajectories
between the symmetric components does not occur if they
Lyapunov exponently remains negative even ifl' is posi-
tive. If l'*0, ly can remain negative in the vicinity ofpc
sincely5l'1* lnucos(2pyn)ury(y)dy with the integral iny
being negative, wherery(y) is the probability distribution of
y after the symmetry-breaking bifurcation. We note that be-
fore the bifurcation, we havely5l' becauseyn50 asymp-

totically and, therefore,* lnucos(2pyn)ury(y)dy50. Figure 2
shows l' and the average value of the quantity
(uymaxu20.5) ~averaged over 1000 trajectories! versusp for
1>p>4. Symmetry breaking occurs forpc,p,ps , where
ps'3.306 is a symmetry-increasing bifurcation point at
which uymaxu exceeds 0.5. Also shown in Fig. 2 isly versus
p ~the dotted line!. We see thatly remains negative forpc
,p,ps except whenp is very close tops ~ly becomes
positive atp'3.245!. Figures 3~a! and 3~b! show the attrac-
tor with the system symmetry recovered and the time series
yn , respectively, forp53.33.ps . We see thatyn occurs on
both sides of the symmetric axisy50. Wheneveruynu ex-
ceeds 0.5, it jumps from one side ofy50 to the other@Fig.
3~b!#.

An interesting phenomenon is the occurrence of an appar-
ent ‘‘gap’’ between the attractor and thex axis in the
symmetry-broken attractor. Such a gap is observed, and it is
particularly obvious whenl' is positive but not close to
zero, as shown in Fig. 4, wherep51.85.pc at which the
values ofl' and ly are: l''0.07, ly'20.182. When
such a gap exists, it is extremely difficult for trajectories to
get close toy50. We find that whether such a gap occurs is
determined by the characteristics of the chaotic driving in the
x invariant subspace. This can be heuristically understood as
follows. For yn small we have yn11'pxnyn , so yn
'(pn) i50

n21xi)y0 if yn,1. Thus we are led to consider the
sequence inx: x0 ,x1,x2 ,...,xM which satisfiespM) i50

M21xi
,1 and pM11) i50

M xi>1. We ask, what is the probability
distributionP~M! for the length of the sequenceM? If the
probability for largeM is not negligible, we expect thatyn
can be arbitrarily close toy50 and consequently no apparent
gap would occur. If, on the other hand, the probability for
having largeM is practically zero, we would expect a gap.
We find @9# that for the logistic driving,P(M );exp
(2KM) for largeM, whereK is a positive constant. Thus, the
probability for having largeM is prohibitively small, thereby
causing the apparent gap in Fig. 4.

The symmetry-breaking bifurcation observed for the map
Eq. ~2! can also occur in flows. For instance, we have exam-
ined the following four-dimensional flow:

FIG. 3. ~a! The chaotic attractor atp53.3, after the symmetry-
increasing bifurcation. The attractor is symmetric with respect to
the x axis. ~b! The time seriesyn that exhibits intermittent switch-
ings on the positive and negativey sides. In both~a! and ~b!, the
number of preiterations is 106.

FIG. 4. The symmetry-broken chaotic attractor with a gap from
y50 at p51.85 ~l''0.07 andly'20.182!. The number of preit-
erations is 106.
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dx1 /dt5x2 , ~3!

dx2 /dt52gx214x1~12x1
2!1 f 0sinx3 ,

dx3 /dt5v,

dy/dt5~2p!21~ax11b!sin~2py!2y,

whereg, f 0 , v, andp are parameters. The symmetric sub-
space isy, whose evolving equation is invariant under the
symmetric operationy→2y. The variables (x1 ,x2 ,x3) con-
stitute the forced Duffing’s system@10# and, therefore, cha-
otic attractor occurs commonly. The transverse Lyapunov
exponent can be computed analytically by solving:ddy/dt
5(ax11b21)dy. We obtain l'5b211a*x1r(x1)dx1
5b21, where the integral is zero because the invariant den-
sity r(x1) of x1(t) is an even function ofx1 . Thus, a
symmetry-breaking bifurcation occurs atbc51. We have ob-
served such a bifurcation with on-off intermittency for a
wide range of parameter values in the Duffing’s system that
yields a chaotic attractor.

In conclusion, we have presented a scenario for
symmetry-breaking bifurcation in chaotic dynamical systems

with an invariant subspace. We argue that symmetry-
breaking bifurcation occurs~1! if the transverse Lyapunov
exponent with respect to the symmetric invariant subspace
crosses zero from the negative side; and~2! if the repulsion
from the invariant subspace is not too strong so that trajec-
tories in one symmetric component cannot be injected into
basins of other coexisting symmetric components. When
such a symmetry-breaking bifurcation occurs, the dynamical
variables that break the symmetry exhibit on-off intermit-
tency. As a parameter varies further, symmetry-increasing
bifurcation occurs when trajectories start switching intermit-
tently among the coexisting symmetric chaotic components.
Although we illustrate our main result by using the model
Eq. ~2!, the argument for symmetry-breaking bifurcation to
occur does not depend on a specific feature of the model.
Similar bifurcations have been observed for a large variety of
chaotic dynamics in the invariant subspace, and also for
flows.
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