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On-off intermittency in chaotic dynamical systems refers to the situation where some dynamical variables
exhibit two distinct states in their course of time evolution. One is the ‘‘off’’ state, where the variables remain
approximately a constant, and the other is the ‘‘on’’ state, where the variables temporarily burst out of the off
state. Previous work demonstrates that there appears to be a universal scaling behavior for on-off intermittency.
In particular, the length of off time intervals, or the length of the laminar phase, obeys the algebraic scaling
law. We present evidence that there are in fact distinct classes of on-off intermittency. Although the statistics
of their laminar phase obeys the algebraic scaling, quantities such as the average transient time for trajectories
to fall in a small neighborhood of the asymptotic off state exhibit qualitatively different scaling behaviors. The
dynamical origin for producing these distinct classes of on-off intermittency is elucidated.
@S1063-651X~96!08907-6#

PACS number~s!: 05.45.1b

I. INTRODUCTION

Recently, there has been a growing interest in the phe-
nomenon of on-off intermittency in nonlinear dynamical sys-
tems @1–6#. On-off intermittency refers to the situation
where some dynamical variables of the system exhibit two
distinct states as the system evolves in time. One is the
‘‘off’’ state, where the dynamical variables remain approxi-
mately constant values in various time intervals. There can
also be occasional bursts of the dynamical variables away
from their constant values in the off state. These bursts are
referred to as the ‘‘on’’ state, which occurs intermittently as
time progresses. Mechanisms for generating on-off intermit-
tency and characterizations of on-off time series have been
investigated@1–3#. It has also been shown that on-off inter-
mittency is in fact closely related to the phenomenon of
riddled basins@7,4,5#.

A general class of dynamical systems that can generate
on-off intermittency is systems that are driven either ran-
domly or chaotically@1–3#. A simple but representative class
of systems is the discrete map investigated by Heagy, Platt,
and Hammel@3#

yn115G~xn ,p!g~yn!, ~1!

whereyn is anN-dimensional state vector,g~yn! is a nonlin-
ear function,G~xn ,p! is a scalar function that models the
external driving to they dynamics, andp is a parameter of
the driving function. Without loss of generality, we assume
that the asymptotic value of the off state is defined byy50
and therefore the nonlinear functiong~y! has the property
that g~0!50. The dynamics ofx can be either a stochastic
process or a deterministic chaotic process; the latter can be
written as

xn115f~xn!, ~2!

wheref~x! is a chaotic map. Systems so described can pro-
duce on-off intermittency iny for a wide class of driving
functionsG~xn! @3#. Heagy, Platt and Hammel specifically
considered the case where bothy andx are one dimensional,
g(y)5y(12y) and G(x)5ax, with a being a parameter
characterizing the driving strength. Different driving dynam-
ics f (x) in Eq. ~2!, including uniform random variables, the
tent map, the 2x mod~1! map, and the logistic map, were
tested, all producing on-off intermittency iny when the driv-
ing strengtha is larger than some critical valueac @the value
of ac generally depends onf (x)# @3#.

Statistical properties of on-off intermittent time series
have also been investigated@3,6#. A remarkable result is that
certain characterizations of on-off intermittency appear to
follow universal scaling laws in the sense that they hold
regardless of the type of driving dynamicsf~x!. Among these
characterizations, a natural one is the probability distribution
of laminar phases, i.e., the distributionP(T), whereT is the
time interval for which the trajectory stays in the off state. It
was shown by Heagy, Platt, and Hammel@3# that whenx is
a random variable with smooth density,P(T) obeys an alge-
braic scalingP(T);T2g, where the scaling exponentg at-
tains a universal value of32 when a*ac ~ac is the critical
value for the birth of on-off intermittency!. Numerical com-
putation indicates that the same result appears to hold even if
x is a deterministically chaotic variable@3,8#. It was also
shown that asymptotically,P(T) decays exponentially@3#.
Subsequent work by Venkataramaniet al. @6# shows that on-
off intermittent time series are in fact fractal time series in
that the set of intersecting points of the time seriesy(t) with
y5const*0 is a fractal set in certain time scales. Fora*ac ,
such a fractal set possesses a box-counting dimension of1

2,
an equivalent of the fact thatg is equal to32 in the scaling of
P(T).

In this paper, we present evidence that there can in fact be
distinct classes of on-off intermittency in chaotic dynamical
systems. In particular, different dynamics governing the driv-
ing may lead toqualitatively differenttypes of on-off inter-
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mittent time series. While the conventional laminar-phase
statistics for these different types of on-off intermittency still
obey the universal algebraic scaling law@provided that one
carefully sets the threshold for countingy(t) as being in the
off state, as we will discuss later#, there are other statistical
properties of the on-off intermittent time series that exhibit
qualitatively different scaling behaviors. When the invariant
densityr~x! of the driving variablex appears to contain an
infinite number of singularities~numerically! so that the
probability distributionP(m) of the time intervalsm during
which a typical trajectory experiences attraction towards the
invariant subspace decays exponentially, it would take a pro-
hibitively long time for the system to get arbitrarily close to
the off state. Thus, if one plots the time series of finite
length, one observes a ‘‘gap’’ in the distance of the trajectory
from the off state. We call thisclass-Ion-off intermittency.
If, on the other hand,r~x! is smooth so thatP(m) decays
algebraically, one expects to be able to observe the system
being as close to the off state as one practically wishes. We
call this class-II on-off intermittency. To quantitatively dis-
tinguish these two different classes of on-off intermittency,
we examine the scaling behavior of the average transient
time t~e!, defined to be the time for a typical trajectory to
enter thee neighborhood of the off state. Our main results
can be summarized as follows. For class-I on-off intermit-
tency,t~e! scales withe algebraically,

t~e!;e2a, ~3!

wherea.0 is the scaling exponent. For class-II on-off inter-
mittency,t~e! scales algebraically withuln eu,

t~e!;u ln eub, ~4!

whereb.0 is the scaling exponent and the scaling relation is
valid for smalle values ranging over many orders of magni-
tude. We provide heuristic arguments and numerical evi-
dence for Eqs.~3! and ~4!.

This paper is organized as follows. In Sec. II we present
numerical evidence that qualitatively different types of on-
off intermittency can be generated by different types of driv-
ing. In Secs. III and IV we give theoretical arguments and
numerical results for the scaling oft~e! for class-I and
class-II on-off intermittency, respectively. In Sec. V we
present a discussion.

II. EFFECT OF DRIVING ON CHARACTERISTICS
OF ON-OFF INTERMITTENT TIME SERIES

A powerful tool to study the dynamical mechanism for
on-off intermittency to occur in the general class of system
Eqs.~1! and~2! is to make use of the idea of symmetry and
invariant subspace. To see this, we regard the driving vari-
ablex in Eq. ~2! and the dynamical variabley as two inter-
connected components of a single variablez[~x,y!. Since
the asymptotic value of the off state isy50 andg~0!50, we
see thaty50 defines an invariant subspace in the full phase
spacez. We say a subspace is invariant if initial conditions in
the subspace result in trajectories that remain in the subspace
forever. The variablex is produced by the dynamics in this
invariant subspace that can be either deterministically cha-
otic or stochastic. The variablex thus provides driving to the

y subspace that is transverse to the invariant subspace. On-
off intermittency in y occurs when the dynamics near the
invariant subspace isweakly unstablewith respect to trans-
verse perturbationsdy to trajectory points in the invariant
subspace@4,5#. To quantify this instability one can define the
transverse Lyapunov spectrum@4# as

l'
i 5 lim

N→`

1

N (
n51

N

lnzG~xn!Dg~yn!uyn50•ui z, ~5!

where Dg(yn)uyn50 is the Jacobian matrix of the mapg
evaluated atyn50 and ui is one of the eigenvectors in the
eigenspace of)n51

` Dg(yn)uyn50 . For a randomly chosen unit
vectoru, Eq. ~5! yields the largest transverse Lyapunov ex-
ponent, which we denote byl' . The dynamics in the vicin-
ity of the invariant subspace is weakly unstable whenl' is
only slightly positive. In this case, on average, trajectories
are repelled away from the invariant subspaceyn50 so that
ynÞ0 can occur. This corresponds to the on behavior. But
sincel' is only slightly positive, in any finite time trajecto-
ries can be attracted towards and then stay in the vicinity of
the invariant subspace. This leads to the off behavior. These
behaviors can be more precisely quantified by fluctuations in
the values ofl' computed for an ensemble of trajectories
restricted to the invariant subspace in finite times@4,5#.

With this dynamical picture of on-off intermittency in
mind, we now consider the following version of Eqs.~1! and
~2!:

xn115 f ~xn!, yn115
1

2p
~pxn!sin 2pyn , ~6!

where bothx andy are one dimensional, so that they define
a two-dimensional map, andf (x) is a chaotic map. They
equation is invariant under the symmetric operationy→2y
and hencey50 defines the one-dimensional invariant sub-
space. In order to see the on-off intermittent behavior, we
restrict our investigation to cases where the dynamics in the
invariant subspace described byf (x) generates a chaotic at-
tractor with invariant densityr(x). In the following we
present numerical experiments for two cases where~i! r(x)
appears to contain an infinite number of singularities such as
that produced by the logistic map for most of the parameter
values in the chaotic regime and~ii ! r(x) is smooth.

A. Class-I on-off intermittency

We choosef (x) to be the logistic mapf (x)5rx(12x) at
r53.8. In this case, numerical computation indicates that
r(x) appears to contain an infinite number of singularities, as
shown in Fig. 1, wherer(x) is computed using a trajectory
of 107 points. These singularities come from the successive
iterations of the critical point of the mapxc50.5 @9#. The
transverse Lyapunov exponent is

l'5E
0

1

lnupxur~x!dx. ~7!

Thus we havepc5exp@2*0
1 lnuxur(x)dx#, wherel'>0 for

p>pc and l',0 for p,pc . On-off intermittency occurs
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when p*pc . For r53.8, we numerically find that
pc'1.725. Figure 2~a! shows a time seriesyn of 5000 itera-
tions ~after 106 preiterations! resulting from an arbitrary ini-
tial condition 0,x0,1 and 0,y0,0.5 for p51.75
(up2pcu'2.531022). Clearly, there are time intervals when
yn stays neary50 ~the off state!, but there are also intermit-
tent bursts ofyn ~the on state! away from the off state. This
is due to the fact thatl' is only slightly positive whenp*pc
~l''0.014!. Imagine we choose an ensemble of initial con-
ditions in x, computel' for each initial condition at a finite
time, and then construct a histogram of these exponents.
Since the asymptotic value ofl' is only slightly positive,
there is a spread of the histogram into the negative side,
indicating that a trajectory can spend long stretches of time
neary50 in finite times. But sincel' is positive, occasion-
ally the trajectory can be repelled away fromy50. Thus
on-off intermittency occurs. To see how close a typical tra-
jectory can be toy50 while in the off state, we plot the
same time series on a semilogarithmic scale log10 yn versus
n, as shown in Fig. 2~b!, where we clearly see a gap.

B. Class-II on-off intermittency

We choose f (x) to be the 2x mod~1! map:
xn1152xnmod~1!, wherex>0. This map produces a uni-
form invariant densityr(x)51 for 0<x<1. The transverse
Lyapunov exponent is therefore given byl'5ln p21, so
on-off intermittency occurs whenp*pc5e52.718 28. . . .
Figure 3~a! shows such an on-off intermittent time seriesyn
of 5000 iterations~after 106 preiterations! from an arbitrary
initial condition ~0,x0,1 and 0,y0,0.5! for
p52.743 28. Here, again, we have (p2pc)'2.531022 and
l''0.012. Figure 3~b! shows the same time series on the
semilogarithmic scale log10(yn) versusn.

We now compare class-I with class-II on-off intermit-
tency. Although both cases produce on-off intermittent time
series as shown in Figs. 2 and 3, there is a subtle difference
between them. For class-I@Fig. 2~a!# on-off intermittency,
there appears to be a very small gap between the minimum
value of yn and the invariant subspacey50. The gap is
particularly clear whenyn is plotted on a logarithmic scale,
as shown in Fig. 2~b!. We see that for the 5000 iterations

shown, the minimum value ofyn is about 10
24. If yn could

get arbitrarily close to the asymptotic off statey50, the
numerically computed value ofyn would attain values that
are arbitrarily close to the computer roundoff about&10216,
which indeed occurs frequently for class-II on-off intermit-
tency, as shown in Fig. 3~b!. Thus, for class-I on-off inter-
mittency, it is very difficult for a trajectory to get arbitrarily
close toy50. In order to seeyn to fall within less than 10

24

of the off state, it is necessary to iterate Eq.~6! for at least
more than 5000 iterations, while for class-II on-off intermit-
tency, a trajectory can easily get extremely close toy50,
which is apparent even in the linear plot@Fig. 3~a!#. For the
5000 iterations shown, the minimum value ofyn is about
10216 ~the computer roundoff!. Thusyn may even be closer
to y50 than that shown in Figs. 3~a! and 3~b!. Note that both
time series are generated at the parameter values about
2.531022 above the critical parameter valuepc with similar
values ofl' . Thus the qualitatively different time series in
Figs. 2 and 3 may be due to the different characteristics in
the invariant densityr(x) of the chaotic process in the in-
variant subspacey50. In fact, we have examined a large
number of differentr(x) to test this hypothesis. For class I,
the examples examined include the logistic map at various

FIG. 2. ~a! On-off intermittent time seriesyn generated by Eq.
~6!, wherep51.75 [(p2pc)'2.531022]. The x dynamics is the
logistic map atr53.8. ~b! Same time series plotted on the semi-
logarithmic scale log10 yn versusn. For the 5000 iterations shown,
there is a gap betweenyn and the computer roundoff, indicating that
it is difficult for the trajectory to get arbitrarily close to the invariant
subspace.

FIG. 1. Invariant densityr(x) of the logistic map atr53.8
obtained from a trajectory of 107 points. Numerically,r(x) appears
to contain an infinite number of singularities.
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values of the parameterr that seem to generater(x) with an
infinite number of singularities when examined numerically.
For class II, the examples examined include the tent map and
stochastic processes that produce smooth probability densi-
ties. For all the cases examined, we obtain similar results, as
exemplified by Figs. 2 and 3. Therefore, we propose the
conjecture that characteristically different invariant densities
of the driving variable produce distinct on-off intermittent
time series. In what follows we shall quantify the scaling
behavior of these distinct on-off intermittent processes and
give heuristic arguments to support the scaling.

III. SCALING BEHAVIOR OF CLASS-I ON-OFF
INTERMITTENCY

Two convenient ways to characterize on-off intermittency
reported in the literature are~i! to examine the statistics of
laminar phases@3# and~ii ! to compute the fractal dimension
of the on-off intermittent time series@6#. In method~i!, a
small distancee from the invariant subspace is set so that one
can distinguish the off state from the on state. If a trajectory
falls within e of the invariant subspace, it is regarded as

being in the off state; otherwise it is considered in the on
state. In method~ii !, a threshold at a distancee from the
invariant subspace is set so that the fractal dimension of the
set of intersecting points of the trajectory at the threshold
distance can be computed. In both approaches, it is essential
that the thresholde be set properly so that there are either
sufficiently many laminar phases or sufficiently many inter-
secting points at the threshold to guarantee a meaningful
numerical computation of the laminar-phase statistics or the
fractal dimension.

For systems that exhibit class-I on-off intermittency, it is
extremely difficult for a trajectory to get arbitrarily close to
the invariant subspace. Thus, to examine the laminar-phase
statistics or to compute the fractal dimension in a computa-
tionally feasible way, it is necessary to sete at somewhat
larger values. Indeed, for example, the laminar phase statis-
tics so obtained obeys the algebraic scaling law. Figure 4~a!
shows, on a logarithmic scale, a histogram of 108 laminar
phases for the on-off intermittent time series in Fig. 2~a!,
wheree51023. Apparently, the histogram exhibits the alge-
braic scaling behaviorP(T);T23/2. If one sets the threshold
e to be much smaller than, say, 1023, it is computationally
difficult to determine whether the laminar-phase scaling
would still be algebraic in short time scales because it would
take a prohibitively long time to observe a typical trajectory

FIG. 3. ~a! On-off intermittent time seriesyn generated in they
equation in Eq.~6! when thex dynamics is the 2x mod~1! map that
produces a uniform probability distribution inxP[0,1]. The param-
eter is p52.743 28 [(p2pc)'2.531022]. ~b! Same time series
plotted on the semilogarithmic scale log10 yn versusn. In this case,
the trajectory can get arbitrarily close to the invariant subspace
since the minimum value ofyn can be as small as the computer
roundoff.

FIG. 4. ~a! Laminar-phase distributionP(T) for the on-off in-
termittent time series in Fig. 2~a! computed at the threshold
e51023. Roughly, we haveP(T);T23/2. ~b! Average transient
time t~e! versuse on a logarithmic scale. Clearly,t~e!;e2a, where
a.0 is the algebraic scaling exponent.
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to fall below the threshold, let alone to accumulate enough
statistics to extract the correct scaling behavior. In this sense,
the laminar-phase statistics is inadequate to capture the scal-
ing behavior of the class-I on-off intermittent time seriesat
small distances, at least from the standpoint of performing
the computation or experimental observation in realistic
time.

We thus seek to use alternative scaling quantities to char-
acterize the small distance behavior of class-I on-off inter-
mittency. We propose to study the scaling of the average
transient timet~e! for a typical trajectory to first fall in thee
neighborhood of the off state. Figure 4~b! shows, for the
same parameter setting as in Fig. 2,t~e! versuse on a loga-
rithmic scale. To obtain this plot, 5000 trajectories resulting
from random initial conditions uniformly chosen from
x0P(0,1) andy0P(0,0.5) are used to compute the average
value oft~e! for each value ofe. We see that the plot can be
fitted by a straight line, indicating a robust algebraic scaling
behavior@Eq. ~3!#. For e,1025, the transient time for some
trajectories become prohibitively long fort~e! to be com-
puted in reasonable time.

We now give a heuristic argument for the algebraic scal-
ing of t~e!. Take a trajectory that starts with an initial con-
dition y0;1. In order for the trajectory to fall withine of the
invariant subspacey50, on average the trajectory must ex-
perience attraction towardsy50 in time t~e!. It is thus in-
sightful to study the statistics of the time intervals in which
trajectories experience contraction on average. For simplicity
we consider the dynamics in the vicinity ofy50. For yn
small we have yn11'pxnyn from Eq. ~6!, so
ym'(pm) i50

m21xi)y0 . Thus we are led to consider the se-
quence inx: $x0 ,x1 , . . . ,xm21%, which satisfies

pm)
i50

m21

xi[~px̄m!m;e, ~8!

where (x̄m)
m[x0x1•••xm21 andpx̄m,1. The integerm is in

fact the time interval that a trajectory is attracted towards the
invariant subspace on average. As a crude approximation we
assume thatx̄m is independent ofm and write x̄m5 x̄. We
then ask, What is the probability distributionP(m) for the
lengthm of the sequence? To answer this question, we ob-
serve that points in the sequence$x0 ,x1 , . . . ,xm21% can be
divided into two groups: one withpxi>1 ~or xi>xc[1/p!
and one withpxi,1 ~or xi,xc!. For the logistic map at
r53.8, we observe that for most times, a typical trajectory
visits the regionx,xc and x>xc in an alternative fashion.
Numerical computation using a trajectory of 108 iterations
reveals that the probability for a trajectory to visitx,xc for
two consecutive iterations is negligible and no event for the
trajectory of this length to visitx,xc consecutively for more
than two times has been observed. Thus we have the crude
estimation

P~m!;qm/2,

where q is the probability for two consecutive trajectory
pointsx1 andx2 , one on left ofxc and the other on right of
xc ~or vice versa!, to satisfy (px1)(px2),1. We thus see that
P(m) decays exponentially:

P~m!;exp~2u ln qum/2!. ~9!

Figure 5 shows such an exponential decay computed numeri-
cally for the logistic map atr53.8, wheree51023 and 107

values ofm are accumulated to compute the histogram
P(m). The exponential decay indicates that it is highly un-
likely for m, the average time interval in which a trajectory
experiences net attraction towards the invariant subspace, to
be large. Combining Eqs.~8! and ~9! yields

P~e!;P~m!;e u ln qu/~2u ln p x̄u!. ~10!

Sincet(e);1/P(e), Eq.~10! immediately yields Eq.~3!, the
algebraic scaling law fort~e!, with the scaling exponent
given bya'uln qu/~2uln px̄u!. From Eq.~9! and Fig. 5, we see
that uln qu/2'0.05. To estimate the quantityuln(px̄) u, we
make use of Fig. 5, where the average value ofm for
(px̄)m;e51023 to be satisfied ism̄;2011/0.05540.
Thus uln px̄u;ln 1023/40'0.17. We obtaina'0.29.

We stress that the argument leading to Eq.~3! is only
heuristic. There are several very crude approximations used
in arriving at Eq.~3!. Thus, naturally our argument does not
yield a good estimate of the algebraic scaling exponenta
@about 1.18 from Fig. 4~b!#. Nonetheless, the argument
serves to establish the algebraic scaling relation betweent~e!
and e, which is supported by extensive numerical experi-
ments.

IV. SCALING OF t„e… FOR CLASS-II ON-OFF
INTERMITTENCY

For class-II on-off intermittency, trajectories can get arbi-
trarily close to the invariant subspace. Therefore, the conven-
tional laminar-phase statistics@3# or fractal dimension@6#
characterization suffices to quantify this type of on-off inter-
mittency. Computationally, an arbitrarily small thresholde
can be used to determine the laminar-phase statistics. After
extensive numerical experiments, we find that this class of
on-off intermittency is most likely to be generated by chaotic
or random variables that have smooth invariant density in the
invariant subspace. In this case, a trajectory in the invariant
subspace can stay in the contracting region (px,1) for a
large number of iterations, in contrast to the previous case in
Sec. III where trajectories must visit both the contracting and

FIG. 5. Distribution P(m) @Eq. ~9!# for the logistic map at
r53.8 plotted on a semilogarithmic scale. Clearly,P(m) decays
exponentially, which gives rise to the algebraic scaling oft~e! seen
in Fig. 4~b!.
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expanding regions alternatively. For instance, consider the
case in Fig. 3, wherer(x) is uniform in xP[0,1]. The con-
tracting region is given byp.x,1 or x,xc51/p. The prob-
ability for x to stay inx,xc consecutivelyfor n iterations is
p2n. As a consequence, the probabilityP(m) defined in Sec.
III no longer decays exponentially, but rather it can attain
appreciable values even whenm is large.

To derive the scaling of the average transient time for
class-II on-off intermittency, we make use of the previously
established algebraic scaling of the laminar-phase
P(T);T2g @3#. SinceT is the time that a typical trajectory
stays in the off state, whilem in Eq. ~9! is the time during
which a trajectory experiences contraction towards the in-
variant subspace, we havem;T. Thus we expectP(m) to
follow a similar algebraic scaling law. We write
P(m);m2b. Using Eq.~8! to expressm in terms of uln eu
and usingt(e);1/P(e), we immediately obtain Eq.~4!. One
implication is that sinceP(m);P(T), the scaling exponent
b in Eq. ~4! should be close to the scaling exponent3

2 in
P(T) whena*ac . Figure 6~a! showsP(T) versusT on a
logarithmic scale for the on-off intermittency in Fig. 3,
where we sete51023 and use 106 laminar phases to calcu-
late the histogram@11#. Figure 6~b! showst~e! versusuln eu
on a logarithmic scale, where for eache, 5000 trajectories are
used to computet~e!. Note that the range of abscissa in the

plot ~lnuln euP@1.0,3.0#! corresponds to approximately the
rangeeP@0.06,1.831029#. The robust fitting of the data to a
straight line in thise range indicates that scaling relation Eq.
~4! is valid for at least seven orders of magnitude ine. When
e'0.06,t~e!'8. Whene is decreased to about 1029, we have
t~e!5220. Thus the increase int~e! is only incremental com-
pared to the decrease ine, indicating that it is not signifi-
cantly more difficult for a typical trajectory to get within
0.06 than to get within 1029 of the invariant subspacey50.
This behavior is qualitatively different from that shown in
Fig. 4~b!, where t~e! increases faster than the rate thate
decreases. Furthermore, we see that the slope of the fitted
line in Fig. 6~b! is about 1.75, which is close to the exponent
3
2 in the scaling ofP(T).

V. DISCUSSION

The main point of the paper is that there can be distinct
small-distance scaling behaviors associated with on-off inter-
mittency in chaotic dynamical systems. Numerical results
and qualitative arguments support the conjecture that these
distinct scaling behaviors are caused by the different types of
dynamical processes in the invariant subspace that provide
the ‘‘driving’’ to generate on-off intermittency in dynamical
variables in the transverse subspace. In particular, if the driv-
ing is such that the time intervals during which a typical
trajectory is attracted towards the asymptotic off state obey
an exponentially decaying law, it is very difficult for trajec-
tories to get arbitrarily close to the invariant subspace. In this
case, the conventional characteristics of on-off intermittency
reported in the literature, such as the laminar-phase distribu-
tion, are inadequate to capture the statistical behavior of the
trajectories near the invariant subspace. We quantify this
small-distance behavior by studying the scaling of the aver-
age transient timet~e!. We argue, with numerical support,
that t~e! scales withe algebraically for this type of on-off
intermittency~class I!. If, on the other hand, the invariant
density of the driving variables is smooth, it appears that a
typical trajectory can get arbitrarily close to the invariant
subspace. This class of on-off intermittency is the one that
has been investigated extensively in the literature. We show
that the laminar-phase statistics in this case does yield the
correct small-distance scaling behavior. The average tran-
sient timet~e! scales withuln eu algebraically~class II! over
many orders of magnitude ine, which is a direct conse-
quence of the previously established algebraic scaling for the
length of the laminar phases@3#.

The numerical tests for the small-distance scaling behav-
iors @Eqs.~3! and~4!# are only performed on limited distance
scales. Thus the question remains of whether Eqs.~3! and~4!
would hold in the asymptotic limite→0. We conjecture that
the asymptotic scaling law for both class-I and class-II inter-
mittency should be algebraic. To see whyt~e! decays alge-
braically for class-II on-off intermittency ase→0, we note
that the laminar-phase distributionP(T) appears to decay
exponentially asT→` @3#. Thus, asymptotically,P(m) also
decays exponentially, leading to the algebraic scaling behav-
ior in t~e! ase→0. Consequently, we expect the scaling law
Eq. ~4! for class-II on-off intermittency to be valid only in a
finite range of distance scales. Nonetheless, from a practical
point of view, it is impossible to observe the asymptotic

FIG. 6. ~a! Laminar-phase distributionP(T) for the on-off in-
termittent time series in Fig. 3~a! computed at the threshold
e51023. Again, we haveP(T);T23/2. ~b! In this case, the average
transient timet~e! obeys the scaling law Eq.~4!, as shown in the
plot of ln t~e! versus lnuln eu. The scaling exponentb is close to32.
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behavior ofP(T) at T→` or that oft~e! at e→0 in numeri-
cal or physical experiments. Thus our main results Eqs.~3!
and ~4! are important in practical situations.

The distinct scaling behaviors observed for class-I and
class-II on-off intermittency have direct implications in prac-
tical applications such as controlling chaos. Suppose that for
a system that exhibits on-off intermittency, the desirable op-
erational state corresponds to the off state. One thus wishes
to stabilize a trajectory in the vicinity of the invariant sub-
space to achieve better system performance by using arbi-
trarily small perturbations to an accessible system parameter
or state~the controlling chaos idea proposed by Ott, Grebogi,
and Yorke @10#!. Assuming there is a maximum allowed
magnitude for the parameter controld!1. In order to achieve
control, one sets a controlling neighborhood of the off state
with sizee proportional tod. Feedback control law can then
be designed for a trajectory in thee neighborhood of the
invariant subspace@12#. In realizing the control, one waits
until a trajectory resulting from a random initial condition to
fall in the e neighborhood to activate the parameter pertur-
bations. The average waiting time is precisely the average
transient timet~e! whose scaling behavior is investigated in

this paper. We see that for class-I on-off intermittency, the
waiting time increases drastically ase is decreased. This puts
a practical limit to how small the magnitude of the feedback
control can be, as there is a tradeoff between the smallness of
the parameter perturbation one wishes to apply and the time
one has to wait, while for class-II on-off intermittency, the
average waiting time scales withe as some power ofuln~e!u.
This indicates that the required waiting time increases only
incremently even ife is decreased by many orders of mag-
nitude. Therefore, it is possible to apply extremely small
parameter perturbations to achieve the desirable system per-
formance in a relatively short timewhen one controls
class-II on-off intermittency.
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