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Distinct small-distance scaling behavior of on-off intermittency in chaotic dynamical systems
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On-off intermittency in chaotic dynamical systems refers to the situation where some dynamical variables
exhibit two distinct states in their course of time evolution. One is the “off” state, where the variables remain
approximately a constant, and the other is the “on” state, where the variables temporarily burst out of the off
state. Previous work demonstrates that there appears to be a universal scaling behavior for on-off intermittency.
In particular, the length of off time intervals, or the length of the laminar phase, obeys the algebraic scaling
law. We present evidence that there are in fact distinct classes of on-off intermittency. Although the statistics
of their laminar phase obeys the algebraic scaling, quantities such as the average transient time for trajectories
to fall in a small neighborhood of the asymptotic off state exhibit qualitatively different scaling behaviors. The
dynamical origin for producing these distinct classes of on-off intermittency is elucidated.
[S1063-651%96)08907-9

PACS numbdys): 05.45+b

I. INTRODUCTION Xpt1="T(Xn), 2

Recently, there has been a growing interest in the phewheref(x) is a chaotic map. Systems so described can pro-
nomenon of on-off intermittency in nonlinear dynamical sys-duce on-off intermittency iry for a wide class of driving
tems [1-6]. On-off intermittency refers to the situation functions G(x,) [3]. Heagy, Platt and Hammel specifically
where some dynamical variables of the system exhibit twaonsidered the case where bgthndx are one dimensional,
distinct states as the system evolves in time. One is thg(y)=y(1—y) and G(x)=ax, with a being a parameter
“off” state, where the dynamical variables remain approxi- characterizing the driving strength. Different driving dynam-
mately constant values in various time intervals. There cafcs f(x) in Eq. (2), including uniform random variables, the
also be occasional bursts of the dynamical variables awayent map, the  mod1) map, and the logistic map, were
from their constant values in the off state. These bursts argsted, all producing on-off intermittency ynwhen the driv-
referred to as the “on” state, which occurs intermittently asing strengtha is larger than some critical valug, [the value
time progresses. Mechanisms for generating on-off intermitof a, generally depends of(x)] [3].
tency and characterizations of on-off time series have been Statistical properties of on-off intermittent time series
investigated 1-3]. It has also been shown that on-off inter- have also been investigatg8i6]. A remarkable result is that
mittency is in fact closely related to the phenomenon ofcertain characterizations of on-off intermittency appear to
riddled basing7,4,9. follow universal scaling laws in the sense that they hold

A general class of dynamical systems that can generat@gardless of the type of driving dynamiis). Among these
on-off intermittency is systems that are driven either rancharacterizations, a natural one is the probability distribution
domly or chaoticallyf 1-3]. A simple but representative class of laminar phases, i.e., the distributi®{T), whereT is the
of systems is the discrete map investigated by Heagy, Plattime interval for which the trajectory stays in the off state. It
and Hamme(3] was shown by Heagy, Platt, and Hammg) that whenx is

a random variable with smooth densiB(T) obeys an alge-

1) braic scalingP(T)~T~ 7, where the scaling exponentat-
tains a universal value of whena=a, (a, is the critical
value for the birth of on-off intermittengy Numerical com-

wherey,, is anN-dimensional state vectog(y,,) is a nonlin-  putation indicates that the same result appears to hold even if
ear function,G(x,,p) is a scalar function that models the x is a deterministically chaotic variables,8]. It was also
external driving to they dynamics, andg is a parameter of shown that asymptoticallyp(T) decays exponentiallj3].

the driving function. Without loss of generality, we assumeSubsequent work by Venkataramaial. [6] shows that on-

that the asymptotic value of the off state is definedyby0  off intermittent time series are in fact fractal time series in
and therefore the nonlinear functiagty) has the property that the set of intersecting points of the time segiéd with

that g(0)=0. The dynamics ok can be either a stochastic y=cons&0 is a fractal set in certain time scales. kera,,

process or a deterministic chaotic process; the latter can bsuch a fractal set possesses a box-counting dimensign of
written as an equivalent of the fact thatis equal to3 in the scaling of
P(T).
In this paper, we present evidence that there can in fact be
*Also at Kansas Institute for Theoretical and Computational Sci-distinct classes of on-off intermittency in chaotic dynamical
ence, The University of Kansas, Lawrence, KS 66045. Electronisystems. In particular, different dynamics governing the driv-
address: lai@poincare.math.ukans.edu ing may lead togualitatively differenttypes of on-off inter-

Yn+1=G(Xn,P)A(Yn),
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mittent time series. While the conventional laminar-phasey subspace that is transverse to the invariant subspace. On-
statistics for these different types of on-off intermittency still off intermittency iny occurs when the dynamics near the
obey the universal algebraic scaling lqprovided that one invariant subspace iweakly unstablavith respect to trans-
carefully sets the threshold for countiggt) as being in the verse perturbationgy to trajectory points in the invariant

off state, as we will discuss laferthere are other statistical subspacé4,5]. To quantify this instability one can define the
properties of the on-off intermittent time series that exhibittransverse Lyapunov spectryd] as

gualitatively different scaling behaviors. When the invariant
N

density p(x) of the driving variablex appears to contain an o1
infinite number of singularitiegnumerically so that the A= lime 21 In|G (%) DG(Yn)ly, =0 uil, 5)
probability distributionP(m) of the time intervalsn during N-—ee 01

which a typical trajectory experiences attraction towards the i ) .

invariant subspace decays exponentially, it would take a prohere Dg(Yn)ly, —o is the Jacobian matrix of the mag
hibitively long time for the system to get arbitrarily close to evaluated ay,=0 andu; is one of the eigenvectors in the
the off state. Thus, if one plots the time series of finiteeigenspace dﬂﬁ:ng(yn)|yn:0. For a randomly chosen unit

length, one observes a “gap” in the distance of the trajectoryectoru, Eq. (5) yields the largest transverse Lyapunov ex-
from the off state. We call thislass-lon-off intermittency.  ponent, which we denote by, . The dynamics in the vicin-
If, on the other handp(x) is smooth so thaP(m) decays ity of the invariant subspace is weakly unstable wheris
algebraically, one expects to be able to observe the systeghly slightly positive. In this case, on average, trajectories
being as close to the off state as one practically wishes. Wgre repelled away from the invariant subspgge0 so that
call this class-1l on-off intermittency. To quantitatively dis- yn;eo can occur. This Corresponds to the on behavior. But
tinguish these two different classes of on-off intermittency,since), is only slightly positive, in any finite time trajecto-
we examine the scaling behavior of the average transierfes can be attracted towards and then stay in the vicinity of
time 7(e), defined to be the time for a typical trajectory to the invariant subspace. This leads to the off behavior. These
enter thee neighborhood of the off state. Our main results pehaviors can be more precisely quantified by fluctuations in
can be summarized as follows. For class-lI on-off intermit-the values Oﬁ\J_ Computed for an ensemble of trajectories
tency, 7(e) scales withe algebraically, restricted to the invariant subspace in finite tiniés].
w With this dynamical picture of on-off intermittency in
T(e)~e 7, (3 mind, we now consider the following version of E¢$) and

(2):

wherea>0 is the scaling exponent. For class-Il on-off inter-
mittency, 7€) scales algebraically withn €,

1 .
7(€)~|In e|5, (4) Xn+1=F(Xn), yn+1:E (px,)sin 2wy, (6)

whereB>0 is the scaling exponent and the scaling relation isvhere bothx andy are one dimensional, so that they define
valid for small e values ranging over many orders of magni- a two-dimensional map, anf{x) is a chaotic map. Thg
tude. We provide heuristic arguments and numerical eviequation is invariant under the symmetric operatjen —y
dence for Eqs(3) and (4). and hencey=0 defines the one-dimensional invariant sub-
This paper is organized as follows. In Sec. Il we presenspace. In order to see the on-off intermittent behavior, we
numerical evidence that qualitatively different types of on-restrict our investigation to cases where the dynamics in the
off intermittency can be generated by different types of driv-invariant subspace described b{x) generates a chaotic at-
ing. In Secs. Il and IV we give theoretical arguments andtractor with invariant densityp(x). In the following we
numerical results for the scaling of(e) for class-l and present numerical experiments for two cases wiigrp(x)
class-Il on-off intermittency, respectively. In Sec. V we appears to contain an infinite number of singularities such as
present a discussion. that produced by the logistic map for most of the parameter
values in the chaotic regime arid) p(x) is smooth.

Il. EFFECT OF DRIVING ON CHARACTERISTICS
OF ON-OFF INTERMITTENT TIME SERIES A. Class-I on-off intermittency

A powerful tool to study the dynamical mechanism for ~We choosé (x) to be the logistic maj(x) =rx(1-x) at
on-off intermittency to occur in the general class of systenf =3.8. In this case, numerical computation indicates that
Egs.(1) and(2) is to make use of the idea of symmetry and p(X) appears to contain an infinite number of singularities, as
invariant subspace. To see this, we regard the driving varishown in Fig. 1, where(x) is computed using a trajectory
ablex in Eq. (2) and the dynamical variablg as two inter- ~ Of 10 points. These singularities come from the successive
connected components of a single variabte(x,y). Since iterations of the critical point of the mag,=0.5[9]. The
the asymptotic value of the off stateyis=0 andg(0)=0, we  transverse Lyapunov exponent is
see thaty=0 defines an invariant subspace in the full phase 1
spacez. We say a subspace is invariant if initial conditions in A = J In|pX| p(x)dx. 7
the subspace result in trajectories that remain in the subspace 0
forever. The variable is produced by the dynamics in this
invariant subspace that can be either deterministically chaFhus we havep,=exd — 3 In|x|p(x)dx], wherex, =0 for
otic or stochastic. The variablethus provides driving to the p=p, and A\, <0 for p<p.. On-off intermittency occurs



54 DISTINCT SMALL-DISTANCE SCALING BEHAVIOR OF . .. 323

18 @
0.25
0.2 -
124
® 0.15-
(=% :>f
6 0.1~
0.05 -
O f T T I
0O 02 04 06 08 1 0 : I
X 0 1000 2000 3000 4000 5000
n
FIG. 1. Invariant densityp(x) of the logistic map atr=3.8 o (b)
obtained from a trajectory of 1(oints. Numericallyp(x) appears f j
to contain an infinite number of singularities. N WM WA w W W ¥
R AT
when p=p.. For r=3.8, we numerically find that o
Pc~1.725. Figure@) shows a time serieg, of 5000 iter_a? >é> _8-
tions (after 1¢ preiterationy resulting from an arbitrary ini- o
tial condition 0<x,<1 and O<y,<0.5 for p=1.75 S "gap”
(|Ip—pe=2.5x10 ?). Clearly, there are time intervals when -12 Computf(;r
y, stays neay=0 (the off statg, but there are also intermit- roundo
tent bursts ofy,, (the on stateaway from the off state. This -16- \L v
is due to the fact that, is only slightly positive whemp=p, oo S
(A, ~0.014. Imagine we choose an ensemble of initial con- 0 1000 2000 3000 4000 5000
ditions inx, compute\, for each initial condition at a finite n

time, and then construct a histogram of these exponents.
Since the asymptotic value of, is only slightly positive, FIG. 2. (a) On-off intermittent time seriey,, generated by Eq.
there is a spread of the histogram into the negative sidgg), wherep=1.75 [(p— p.)~2.5% 10~ 2]. The x dynamics is the
indicating that a trajectory can spend long stretches of timeygistic map atr =3.8. (b) Same time series plotted on the semi-
neary=0 in finite times. But sinc&,, is positive, occasion- |ogarithmic scale log,y,, versusn. For the 5000 iterations shown,
ally the trajectory can be repelled away froys=0. Thus  there is a gap betwesgp, and the computer roundoff, indicating that
on-off intermittency occurs. To see how close a typical tra-it s difficult for the trajectory to get arbitrarily close to the invariant
jectory can be toy=0 while in the off state, we plot the subspace.

same time series on a semilogarithmic scalgJgg versus

n, as shown in Fig. @), where we clearly see a gap. shown, the minimum value of,, is about 10%. If y, could
get arbitrarily close to the asymptotic off staye=0, the
numerically computed value of, would attain values that
are arbitrarily close to the computer roundoff abetit0 16,

We choose f(x) to be the 2Zmodl) map: which indeed occurs frequently for class-Il on-off intermit-
Xn+1=2Xpmod1), wherex=0. This map produces a uni- tency, as shown in Fig.(B). Thus, for class-l on-off inter-
form invariant densityp(x) =1 for 0=x<1. The transverse mittency, it is very difficult for a trajectory to get arbitrarily
Lyapunov exponent is therefore given by=Inp—1, so  close toy=0. In order to seg, to fall within less than 10*
on-off intermittency occurs whep=p.=e=2.71828... of the off state, it is necessary to iterate E6). for at least
Figure 3a) shows such an on-off intermittent time serigs  more than 5000 iterations, while for class-1l on-off intermit-
of 5000 iterationgafter 1¢ preiterationy from an arbitrary  tency, a trajectory can easily get extremely closeyte0,
initial  condition (0<xy<1l and <yy<0.5 for  which is apparent even in the linear p[¢tig. 3(@)]. For the
p=2.743 28. Here, again, we havp{ p.)~2.5x10 2 and 5000 iterations shown, the minimum value yf is about
\,~0.012. Figure @) shows the same time series on the 10 1 (the computer roundoff Thusy, may even be closer
semilogarithmic scale lag(y,) versusn. to y=0 than that shown in Figs(8 and 3b). Note that both

We now compare class-I with class-Il on-off intermit- time series are generated at the parameter values about
tency. Although both cases produce on-off intermittent time2.5x 102 above the critical parameter valpe with similar
series as shown in Figs. 2 and 3, there is a subtle differencealues of\, . Thus the qualitatively different time series in
between them. For classfFig. 2(@)] on-off intermittency, Figs. 2 and 3 may be due to the different characteristics in
there appears to be a very small gap between the minimunie invariant density(x) of the chaotic process in the in-
value ofy, and the invariant subspage=0. The gap is variant subspacg=0. In fact, we have examined a large
particularly clear whery,, is plotted on a logarithmic scale, number of differenfp(x) to test this hypothesis. For class I,
as shown in Fig. @). We see that for the 5000 iterations the examples examined include the logistic map at various

B. Class-1I on-off intermittency
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FIG. 3. (a) On-off intermittent time serieg, generated in thg FIG. 4. (a) Laminar-phase distributioR(T) for the on-off in-

equation in Eq(6) when thex dynamics is the 2 mod1) map that  termittent time series in Fig. (8 computed at the threshold
produces a uniform probability distribution i [0,1]. The param-  €=10"3. Roughly, we haveP(T)~T %2 (b) Average transient
eter isp=2.743 28 [p—p.)~2.5< 10 ?]. (b) Same time series time 7(e) versuse on a logarithmic scale. Clearly{e)~¢ ¢, where
plotted on the semilogarithmic scale lgy,, versusn. In this case, >0 is the algebraic scaling exponent.

the trajectory can get arbitrarily close to the invariant subspac% L ) L . .
since the minimum value of, can be as small as the computer P€ING in the off state; otherwise it is considered in the on

roundoff. state. In methodii), a threshold at a distance from the
invariant subspace is set so that the fractal dimension of the
values of the parameterthat seem to generaggx) with an St of intersecting points of the trajectory at th_e _thresholo_l
infinite number of singularities when examined numerically.distance can be computed. In both approaches, it is essential
For class II, the examples examined include the tent map ani#@t the threshold be set properly so that there are either
stochastic processes that produce smooth probability densifficiently many laminar phases or sufficiently many inter-
ties. For all the cases examined, we obtain similar results, 83Cting points at the threshold to guarantee a meaningful
exemplified by Figs. 2 and 3. Therefore, we propose th@umerlcgl computation of the laminar-phase statistics or the
conjecture that characteristically different invariant densitiedractal dimension. . _ _ .
of the driving variable produce distinct on-off intermittent ~ FOr systems that exhibit class-I on-off intermittency, it is
time series. In what follows we shall quantify the scaling extrgmely difficult for a trajectory to get arbitrarily g:lose to
behavior of these distinct on-off intermittent processes andhe invariant subspace. Thus, to examine the laminar-phase

give heuristic arguments to support the scaling. statistics or to compute the fractal dimension in a computa-
tionally feasible way, it is necessary to sefat somewhat

. SCALING BEHAVIOR OF CLASS-I ON-OFF Iarger valugs. Indeed, for examplez the Igminar phz_ase statis-
INTERMITTENCY tics so obtained obeys the algebraic scaling law. Figuae 4

shows, on a logarithmic scale, a histogram of fd@minar
Two convenient ways to characterize on-off intermittencyphases for the on-off intermittent time series in Figa)2
reported in the literature ar@) to examine the statistics of wheree=10"2. Apparently, the histogram exhibits the alge-
laminar phasef3] and (i) to compute the fractal dimension braic scaling behavioP(T)~T~ %2 If one sets the threshold
of the on-off intermittent time serie5]. In method(i), a € to be much smaller than, say, 19 it is computationally
small distance: from the invariant subspace is set so that onedifficult to determine whether the laminar-phase scaling
can distinguish the off state from the on state. If a trajectorywould still be algebraic in short time scales because it would
falls within e of the invariant subspace, it is regarded astake a prohibitively long time to observe a typical trajectory
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to fall below the threshold, let alone to accumulate enough
statistics to extract the correct scaling behavior. In this sense,
the laminar-phase statistics is inadequate to capture the scal-
ing behavior of the class-1 on-off intermittent time seras -4
small distancesat least from the standpoint of performing
the computation or experimental observation in realistic ’g
time. & 64
We thus seek to use alternative scaling quantities to char- =
acterize the small distance behavior of class-I on-off inter-

-2

slope = 0.05

mittency. We propose to study the scaling of the average -84

transient timer(e) for a typical trajectory to first fall in the

neighborhood of the off state. Figurdb} shows, for the 10 J | ' |

same parameter setting as in Fig.70) versuse on a loga- 0O 20 40 60 80 100
rithmic scale. To obtain this plot, 5000 trajectories resulting m

from random initial conditions uniformly chosen from

Xo€ (0,1) andy,e (0,0.5) are used to compute the average FIG. 5. Distribution P(m) [Eq. (9)] for the logistic map at

value of 7(e) for each value ok. We see that the plot can be r=23.8 plotted on a semilogarithmic scale. Cleaf(m) decays

fitted by a straight line, indicating a robust algebraic scalingexponentially, which gives rise to the algebraic scaling{(ej seen

behavior[Eq. (3)]. For e<10 °, the transient time for some in Fig. 4b).

trajectories become prohibitively long fafe) to be com-

puted in reasonable time. Figure 5 shows such an exponential decay computed numeri-
We now give a heuristic argument for the algebraic scal<ally for the logistic map at =3.8, wheree=10"° and 10

ing of 7(e). Take a trajectory that starts with an initial con- values of m are accumulated to compute the histogram

dition y,~1. In order for the trajectory to fall withia of the ~ P(m). The exponential decay indicates that it is highly un-

invariant subspacg=0, on average the trajectory must ex- likely for m, the average time interval in which a trajectory

perience attraction towards=0 in time r(e). It is thus in- experiences net attraction towards the invariant subspace, to

sightful to study the statistics of the time intervals in which be large. Combining Eqs8) and(9) yields

trajectories experience contraction on average. For simplicity I gl/(2lin px)

we consider the dynamics in the vicinity gf=0. Fory, P(e)~P(m)~e : (10)

small we have y,,;~pxXy, from Eg. (6), so . . . .
(pmppm-1, . _Sincer(e)~1/P(€), Eq.(10) immediately yields Eq(3), the
Ym=(P™11i=0 X;)Yo. Thus we are led to consider the se algebraic scaling law forr(e), with the scaling exponent

quence i {Xo, Xy, - - - Xm-1}, which satisfies given bya~|In q|/(2|In px]). From Eq.(9) and Fig. 5, we see
m-1 that |In q|/2~0.05. To estimate the quantityn(px)|, we
P[] x=(px,)™~e, (8) ~make use of Fig. 5, where the average valuenoffor
=0 (pX)"~€e=10"2 to be satisfied ism~20+ 1/0.05=40.

Thus|In px~In 10 %/40~0.17. We obtaine~0.29.

We stress that the argument leading to E8). is only
uristic. There are several very crude approximations used
arriving at Eq.(3). Thus, naturally our argument does not

where ) "=XoX;"* Xy 1 andpx,<1. The integem is in
fact the time interval that a trajectory is attracted towards th% e
invariant subspace on average. As a crude approximation we

assume thak,, is independent o and write x,,=x. We . . : .
> Lo T yield a good estimate of the algebraic scaling exponent
then ask, What is the probability distributiad®(m) for the [about 1.18 from Fig. @)]. Nonetheless, the argument

? i i = . . . .
length m of the sequence? To answer this question, we Observes to establish the algebraic scaling relation betwéegn
serve that points in the sequereg,X;, . . . Xn_1} Can be

divided into two groups: one witpx.=1 (or X, =x,=1/p) and ¢, which is supported by extensive numerical experi-

and one withpx, <1 (or x;<x.). For the logistic map at ments.

r=23.8, we observe that for most times, a typical trajectory

visits the regionx<x. andx=x, in an alternative fashion. IV. SCALING OF (e) FOR CLASS-Il ON-OFF

Numerical computation using a trajectory of®liferations INTERMITTENCY

reveals that the probability for a trajectory to visit-x for For class-Il on-off intermittency, trajectories can get arbi-

two consecutive iterations is negligible and no event for thegrily close to the invariant subspace. Therefore, the conven-

trajectory (_)f this length to visk<x. consecutively for more  ional laminar-phase statistid8] or fractal dimensior{6]

than two times has been observed. Thus we have the cruggaracterization suffices to quantify this type of on-off inter-

estimation mittency. Computationally, an arbitrarily small threshaid
P(m)~qm2 can be used to determine the laminar-phase statistics. After

' extensive numerical experiments, we find that this class of

where q is the probability for two consecutive trajectory On-Off intermittency is most likely to be generated by chaotic

pointsx, andx,, one on left ofx, and the other on right of ©OF random variables that have smooth invariant density in the

X, (or vice vers to satisfy px,)(px,)<1.We thus see that invariant subspace. In this case, a trajectory in the invariant

P(m) decays exponentially: subspace can stay in the contracting regipm<(1) for a
large number of iterations, in contrast to the previous case in

P(m)~exp —|In g/m/2). (9 Sec. lll where trajectories must visit both the contracting and
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plot (In|in € €[1.0,3.0) corresponds to approximately the

0 (@) ‘ ‘ rangeee[0.06,1.8<10 °]. The robust fitting of the data to a

K straight line in thise range indicates that scaling relation Eq.
(4) is valid for at least seven orders of magnitudeiwhen
€~0.06, 7(€)~8. Whene is decreased to about 1% we have
7(€)=220. Thus the increase ifie) is only incremental com-
pared to the decrease & indicating that it is not signifi-
cantly more difficult for a typical trajectory to get within
0.06 than to get within 1% of the invariant subspacge=0.
This behavior is qualitatively different from that shown in
Fig. 4b), where r(€) increases faster than the rate that
decreases. Furthermore, we see that the slope of the fitted
line in Fig. Gb) is about 1.75, which is close to the exponent
0 05 1 15 2 25 3 in the scaling ofP(T).

e=10"°

(— slope = 1.5

6 V. DISCUSSION

. The main point of the paper is that there can be distinct
small-distance scaling behaviors associated with on-off inter-
mittency in chaotic dynamical systems. Numerical results
and qualitative arguments support the conjecture that these
distinct scaling behaviors are caused by the different types of
dynamical processes in the invariant subspace that provide
the “driving” to generate on-off intermittency in dynamical
variables in the transverse subspace. In particular, if the driv-
ing is such that the time intervals during which a typical
trajectory is attracted towards the asymptotic off state obey
1 15 2 9.5 3 an exponentially decaying law, it is very difficult for trajec-

tories to get arbitrarily close to the invariant subspace. In this

In(|Ing|) : - : .

case, the conventional characteristics of on-off intermittency
reported in the literature, such as the laminar-phase distribu-
tion, are inadequate to capture the statistical behavior of the
trajectories near the invariant subspace. We quantify this
small-distance behavior by studying the scaling of the aver-
age transient time(e). We argue, with numerical support,
that (e) scales withe algebraically for this type of on-off
expanding regions alternatively. For instance, consider th@atermittency(class ). If, on the other hand, the invariant
case in Fig. 3, wherg(x) is uniform inxe[0,1]. The con-  density of the driving variables is smooth, it appears that a
tracting region is given bp.x<<1 or x<x.=1/p. The prob- typical trajectory can get arbitrarily close to the invariant
ability for x to stay inx<\x. consecutivelyor n iterations is  subspace. This class of on-off intermittency is the one that
p~". As a consequence, the probabilkym) defined in Sec. has been investigated extensively in the literature. We show
[ll no longer decays exponentially, but rather it can attainthat the laminar-phase statistics in this case does yield the
appreciable values even whemis large. correct small-distance scaling behavior. The average tran-

To derive the scaling of the average transient time forsient timer(e) scales with|in € algebraically(class 1) over

class-Il on-off intermittency, we make use of the previouslymany orders of magnitude i\, which is a direct conse-
established algebraic scaling of the laminar-phaseuence of the previously established algebraic scaling for the
P(T)~T~ 7 [3]. SinceT is the time that a typical trajectory length of the laminar phas¢8].
stays in the off state, whilen in Eq. (9) is the time during The numerical tests for the small-distance scaling behav-
which a trajectory experiences contraction towards the iniors[Egs.(3) and(4)] are only performed on limited distance
variant subspace, we have~T. Thus we expecP(m) to  scales. Thus the question remains of whether EB)and(4)
follow a similar algebraic scaling law. We write would hold in the asymptotic limig—0. We conjecture that
P(m)~m . Using Eq.(8) to expressm in terms of|In ¢ the asymptotic scaling law for both class-I and class-II inter-
and usingr(e)~1/P(€), we immediately obtain Ed4). One  mittency should be algebraic. To see wHy) decays alge-
implication is that sincd?(m)~ P(T), the scaling exponent braically for class-Il on-off intermittency as—0, we note
B in Eq. (4) should be close to the scaling exponénin  that the laminar-phase distributio®(T) appears to decay
P(T) whena=a,. Figure &a) showsP(T) versusT on a  exponentially a§ — o [3]. Thus, asymptoticallyP(m) also
logarithmic scale for the on-off intermittency in Fig. 3, decays exponentially, leading to the algebraic scaling behav-
where we set=10"3 and use 10laminar phases to calcu- ior in 7(e) ase—0. Consequently, we expect the scaling law
late the histograni11]. Figure Gb) shows(e) versus|in €| Eq. (4) for class-Il on-off intermittency to be valid only in a
on a logarithmic scale, where for eaghb000 trajectories are finite range of distance scales. Nonetheless, from a practical
used to compute(e). Note that the range of abscissa in the point of view, it is impossible to observe the asymptotic

slope=1.76 ——>»

Int(e)
S

FIG. 6. (a) Laminar-phase distributioP(T) for the on-off in-
termittent time series in Fig. (8 computed at the threshold
€=10"2. Again, we haveP(T)~T~ %2 (b) In this case, the average
transient timer(e) obeys the scaling law Ed4), as shown in the
plot of In 7(e) versus Ifin €. The scaling exponerg is close tog.
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behavior of P(T) at T—« or that of (e) at e—0 in numeri-  this paper. We see that for class-I on-off intermittency, the
cal or physical experiments. Thus our main results Egs. waiting time increases drastically ass decreased. This puts
and (4) are important in practical situations. a practical limit to how small the magnitude of the feedback
The distinct scaling behaviors observed for class-I andontrol can be, as there is a tradeoff between the smallness of
class-Il on-off intermittency have direct implications in prac- the parameter perturbation one wishes to apply and the time
tical applications such as controlling chaos. Suppose that fasne has to wait, while for class-1l on-off intermittency, the
a system that exhibits on-off intermittency, the desirable opaverage waiting time scales withas some power dfn(e)|.
erational state corresponds to the off state. One thus wishdshis indicates that the required waiting time increases only
to stabilize a trajectory in the vicinity of the invariant sub- incremently even ife is decreased by many orders of mag-
space to achieve better system performance by using arbiitude. Therefore, it is possible to apply extremely small
trarily small perturbations to an accessible system parametgarameter perturbations to achieve the desirable system per-
or state(the controlling chaos idea proposed by Ott, Grebogiformance in a relatively short timewhen one controls
and Yorke[10]). Assuming there is a maximum allowed class-Il on-off intermittency.
magnitude for the parameter cont@k1. In order to achieve
control, one sets a controlling neighborhood of the off state
with size e proportional tod. Feedback control law can then
be designed for a trajectory in the neighborhood of the This work was supported by AFOSR through Grant No.
invariant subspacgl2]. In realizing the control, one waits F49620-96-1-0066. This work was also supported by a New
until a trajectory resulting from a random initial condition to Faculty Research Fund at the University of Kansas. The nu-
fall in the € neighborhood to activate the parameter pertur-merical computation involved in this work was supported by
bations. The average waiting time is precisely the averagthe Kansas Institute for Theoretical and Computational Sci-
transient timer(e) whose scaling behavior is investigated in ence through the KSTAR NSF EPSCoR Program.
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