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The existence of symmetry in chaotic dynamical systems often leads to one or several low-dimensional
invariant subspaces in the phase space. We demonstrate that complex behaviors can arise when the dynamics
in the invariant subspace is Hamiltonian but the full system is dissipative. In particular, an infinite number of
distinct attractors can coexist. These attractors can be quasiperiodic, strange nonchaotic, and chaotic with
different positive Lyapunov exponents. Finite perturbations in initial conditions or parameters can lead to a
change from nonchaotic attractors to chaotic attractors. However, arbitrarily small perturbations can lead to
dynamically distinct chaotic attractors. This work demonstrates that the interplay between conservative and
dissipative dynamics can give rise to rich complexity even in physical systems with a few degrees of freedom.
@S1063-651X~96!05311-1#

PACS number~s!: 05.45.1b

I. INTRODUCTION

The study of complexity has been an area of growing
recent interest@1–5#. Complex systems are characterized by
three properties:~i! A complex system consists of many
components that are interconnected in a complicated manner,
~ii ! the components of a complex system can be either regu-
lar or irregular, and~iii ! the components exist on different
length and/or time scales, i.e., a complex system exhibits a
hierarchy of structures. These are also thethree traitschar-
acterizing a complex system@1–5#. Complex systems arise
in many different fields such as physics, chemistry, fluid me-
chanics, biology, economics, and computer science. Some
specific examples are Rayleigh-Be´nard convection@6#, neu-
ronal activity @7#, extended nonlinear optical systems@8#,
and fluid beds@9#. Because of the hierarchical structure of a
complex system, the state of the system can ‘‘hop’’ between
different components when small perturbations are applied to
the system or when the system is in a noisy environment.
Thus one can control the behavior of a complex system to
achieve desirable system performance by using small feed-
back perturbations to an accessible parameter or state of the
system@5#.

Complexity can arise in systems with few degrees of free-
dom. For instance, the double rotor map derived from a me-
chanical system of two degrees of freedom under external
periodic kick @10# exhibits all three traits of a complex sys-
tem in wide parameter ranges@5#. Often there are many co-
existing periodic attractors whose basins of attraction are in-
terconnected via unstable chaotic saddles in the basin
boundaries in a very complicated manner. More recently, it
has been demonstrated that the standard map, which de-
scribes the dynamics of a periodically kicked rotor~one and

a half degrees of freedom!, can exhibit a huge number of
coexisting periodic attractors when there is a weak dissipa-
tion in the system@11#. The basins of the mostly periodic
attractors are interwoven in a complex way and the basin
boundaries permeate most of the phase space. As a practical
consequence of these complicated basin structures, the final
asymptotic state of the system for a given initial condition
and a given parameter set cannot be predicted reliably@12#.

In the study of complex systems, it is important to be able
to understand how complexity arises so that one may have a
better understanding and thus be better able to control and
manipulate the system. In particular, one wishes to establish
the fundamental linkbetween the intrinsic properties of the
nonlinear dynamical systems and the observed complex be-
havior. In this regard, the study of complexity in low-
dimensional dynamical systems is appealing because these
systems are more accessible to understanding due to the suc-
cess of low-dimensional chaos theory@13#. The purpose of
this paper is to introduce a class of low-dimensional dynami-
cal systems that exhibit extremely rich complex behavior and
to understand the complexity in terms of the nonlinear dy-
namics of the system. In particular, we study dynamical sys-
tems with a simple kind of symmetry. The existence of sym-
metry often leads to low-dimensional invariant subspaces in
the full phase space. We demonstrate that complexity can
arise when the dynamics in the invariant subspace is conser-
vative ~Hamiltonian!, but the full system is dissipative. We
call such systemsHamiltonian-driven dissipative dynamical
systems. For such a system, an infinite number of distinct
attractors coexist. These attractors can be quasiperiodic,
strange nonchaotic, or chaotic with different positive
Lyapunov exponents. Finite perturbations in initial condi-
tions or parameters can lead to change from quasiperiodic or
strange nonchaotic attractors to chaotic attractors. However,
arbitrarily small perturbations can lead to dynamically dis-
tinct chaotic attractors. The main point of the paper is that
the interplay between conservative and dissipative dynamics
can give rise to extremely rich complexity even when the
system is low dimensional.

The paper is organized as follows. In Sec. II, we give a
general argument that Hamiltonian-driven dissipative dy-
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namical systems can generate rich complex behavior in the
form of a hierarchy of qualitatively distinct attractors. This
behavior fits the three traits characterizing a complex system.
In Sec. III, we give a numerical example described by a
three-dimensional map. In Sec. IV, we characterize the de-
gree of unpredictability upon small perturbations by using
the uncertainty exponent@12#. In Sec. V, we present a dis-
cussion.

II. HAMILTONIAN-DRIVEN DISSIPATIVE
DYNAMICAL SYSTEMS

We consider dynamical systems with a low-dimensional
invariant subspace denoted byS. SinceS is invariant, initial
conditions inS result in trajectories that remain inS forever.
Now imagine that the dynamics inS is conservative, math-
ematically described by Hamiltonian flows or area-
preserving maps. Assume that ‘‘friction’’ occurs in the sub-
spaceT that is transverse toS. Thus the dynamics in the
transverse subspace is dissipative and hence the full system
is also dissipative. Specifically, we consider the following
general class ofN-dimensional discrete maps inRN,

xn115f~xn!,

yn115F~xn ,p!G~yn!, ~1!

wherexPS,RNS, yPT,RNT, NS>1, NT>1, NS1NT5N,
andp is a parameter. The vector functionG~y! possesses a
certain symmetry, e.g.,G~2y!52G~y!, so thatG~0!50. The
symmetric invariant subspace is then defined byy50. We
assume that both thex and y dynamics are bounded. The
vector functionf~x! is an area-preserving map that exhibits
typical features of Hamiltonian phase space: the coexistence
of the Kolmogorov-Arnold-Moser~KAM ! tori and chaotic
regions in wide parameter ranges@14#. The functions
F~xn ,p! andG~yn! are chosen such that the magnitude of the
determinant of the Jacobian matrixuDJyu[u]yn11/]ynu is less
than one in some phase-space regions. For simplicity we
assume that the system~1! has a skew-product structure, i.e.,
the x dynamics is not influenced by they dynamics. Since
f~x! is area preserving, the determinant of the Jacobian ma-
trix of the full system Eq.~1! is determined solely byDJy .
Thus Eq.~1! is dissipative and the asymptotic sets of the
system can be attractors. Since Eq.~1! has a skew-product
structure, the attractors can be conveniently characterized by
the largest Lyapunov exponents, denoted byLS andLT , for
the invariant and transverse subspaces, respectively. Specifi-
cally, LS andLT are given by

LS5 lim
L→`

1

L (
n51

L

lnuDf~xn!•uu,

~2!

LT5 lim
L→`

1

L (
n51

L

lnuF~xn ,p!DG~yn!•vu,

whereDf~xn![]f~xn!/]xn , DG~yn![]G~yn!/]yn , andu andv
are unit vectors inS and T, respectively. Another useful
quantity is the transverse Lyapunov exponentL' that char-
acterizes the transverse stability for trajectoriesrestrictedto
the invariant subspaceS @15#. It is given by

L'5 lim
L→`

1

L (
n51

L

lnuF~xn ,p!DG~0!•vu, ~3!

whereDG~0![]G~yn!/]ynuyn50 is evaluated atyn50. In gen-
eral, if L',0, theny50 is asymptotically stable and hence
LT5L' . However,LTÞL' if L'.0.

Under fairly general conditions, Eq.~1! can generate all
three traits characterizing a complex system. This can be
seen as follows. First, sincef~x! is an area-preserving map,
for typical parameter values there is apparently an infinite
number of invariant sets inS corresponding to chaotic sets
and KAM surfaces~or tori! of different rotation numbers.
We restrict our study to these parameter values. In such a
case, different initial conditionsx0 in S yield different invari-
ant measures. Notice that in Eq.~1!, the x dynamics can be
regarded as the ‘‘driving’’ to the transversey dynamics.
Thus different invariant measures inS generate different
driving and consequently generate distinct attracting motions
in T or distinct attractors in the full phase space. Depending
on the parameters, attractors in the full phase space with a
different number of positive Lyapunov exponents can be cre-
ated by changing initial conditions. Since the KAM tori and
the chaotic regions inS are interconnected in a complicated
way @14#, we expect that the basins of the attraction for the
attractors in the full phase space are also connected in a
complex way. This is trait 1. Second, since there are both
regular~KAM surfaces! and irregular~chaotic sets! compo-
nents inS, depending on the drivingF~x,p!, the attractors
can also be nonchaotic~ordered! with no positive Lyapunov
exponent or chaotic~random! with one or several positive
Lyapunov exponents. Small amount of noise can push a tra-
jectory from one attractor to another. This is trait 2. Finally,
it is known that KAM surfaces typically form a hierarchy of
the so-called island-around-island structure@14# and hence
the attractors in the full phase space are also organized in a
hierarchy of structures. This is trait 3.

III. NUMERICAL EXAMPLE

We consider the three-dimensional version of Eq.~1!,

xn115xn1yn , mod~2p!,

yn115yn1k sin~xn1yn!, mod~2p!, ~4!

zn115
1

2p
~a cosxn1b cosyn1c!sin~2pzn!,

wherek, a, b, andc are parameters. The invariant subspace
is given byz50 and hence it is two dimensional. The dy-
namics in the invariant plane is conservative and it is that of
a periodically kicked rotor~the standard map inx and y!.
The transverse subspace is one dimensional~in z! and
bounded. The determinant of the Jacobian matrix of Eq.~4!
is uDJu5~a cosxn1b cosyn1c!cos(2pzn), whose magni-
tude can be less than one in some phase-space regions. The
system~4! is thus dissipative in these regions. We choose
k51 in the standard map so that the invariant subspace con-
tains both KAM surfaces and distinct chaotic regions. The
transverse Lyapunov exponentL' is given by
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L'5 lim
n→`

1

n (
j51

n

lnua cosxj1b cosyj1cu

5E
0

2p

~ lnua cosxn1b cosyn1cu!r~x,yux0 ,y0!dx dy,

~5!

wherer(x,yux0 ,y0) is the invariant density ofx andy in the
standard map for the trajectory starting from the initial con-
dition (x0 ,y0). The Lyapunov exponent of the transverse
subspaceLT is

LT5Lz'L'1E lnucos~2pzn!urz~zux,y!dz, ~6!

whererz(zux,y) is the invariant density ofz under thex and
y driving. We note that ifL',0, thenLz5L' because in
this case the invariant (x,y) plane attracts points nearby. As

a consequence,zn approaches zero asymptotically and the
integral in Eq.~6! vanishes. In subsequent numerical experi-
ments, we fixa53, b50, andc51. To examine multiple
coexisting attractors and their basin structures, we uniformly
choose initial conditions from the one-dimensional line de-
fined by x0P@0,2p#, y05p, and z050.68. For each initial
condition, we computeL' , Lz , and alsoLS5Lh , the larg-
est Lyapunov exponent for trajectories generated by the stan-
dard map in the invariant subspace. The computation is done
by using 106 iterations and 106 preiterations. Note that since
the dynamics in the invariant subspace is Hamiltonian,Lh
must be non-negative: It is zero when the trajectory (x,y)
falls on KAM surfaces and it is positive when the trajectory
is in the chaotic component. Figures 1~a!–1~c! showL' , Lz ,
andLh versusx0. It can be seen that these plots contain both
smooth parts and wildly oscillating parts. The smooth parts
correspond to trajectories whose motion inx andy occurs on
KAM islands and the values ofLh for these parts are zero
@Fig. 1~c!#. The wildly oscillating parts correspond to trajec-

FIG. 1. For Eq.~4!, the Lyapunov exponents versus the initial conditionx0 for x0P@0,2p# ~y05p, z050.68!: ~a! L' versusx0, ~b! Lz

versusx0, and~c! Lh versusx0. The parameter setting isk51 in the standard map,a53, b50, andc51. The Lyapunov exponents show
both smooth parts and wildly oscillating parts, corresponding to trajectories in the invariant plane on KAM surfaces and in chaotic
components, respectively.
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tories in the chaotic component in the invariant plane. Since
there are bounding KAM circles, different initial conditions
generate characteristically different chaotic sets in the invari-
ant plane, giving rise to different values of the Lyapunov
exponents. For most initial conditions,L' is always positive,
indicating that the invariant plane (x,y) is repulsive in the
transverse directionz for most initial conditions. This is due
to the rather large value ofa ~a53! used. Decreasinga can
causeL' to have both positive and negative values. From
Fig. 1~b! we see thatLz can be either positive or negative.
Thus, from Figs. 1~b! and 1~c!, we see that depending on the
initial condition, qualitatively different attractors in the full
phase space (x,y,z) can be generated. These attractors can
have~i! no positive Lyapunov exponent~Lh50, Lz,0!, ~ii !
one positive Lyapunov exponent~Lh.0, Lz,0, or Lh50,
Lz.0!, and ~iii ! two positive Lyapunov exponents~Lh.0,
Lz.0!. In case~i!, depending on the sign ofL' , there can be
quasiperiodic attractors~L',0! or strange nonchaotic attrac-
tors ~L'.0!. In the following, we discuss the dynamical
mechanism for generating these different types of attractors.

A. Quasiperiodic attractors and strange nonchaotic attractors

For a given initial condition, if there are no positive
Lyapunov exponents, both quasiperiodic attractors and
strange nonchaotic attractors@16# can arise. Quasiperiodic
attractors occur if~a! the initial condition (x0 ,y0) leads to a
trajectory on a KAM surface in the invariant planez50 and
~b! L',0 so that points in the transverse subspace are at-
tracted towardsz50. Figure 2~a! shows such an attractor for
x050.613 in the phase space for whichL'5Lz'20.063 and
Lh50. Clearly, the motion is confined to a period-2 torus in
the (x,y) plane. Figure 2~b! shows the power spectrum com-
puted from the time seriesyn of 2

15 trajectory points. This is
a discrete power spectrum of the two-frequency quasiperi-
odic motion.

The more interesting case is the occurrence of strange
nonchaotic attractors. These are attractors that are geometri-
cally complicated, but trajectories on these attractors exhibit
no sensitive dependence on initial conditions@16#. The word
strangeusually refers to the complicated geometry of the
attractor: A strange attractor contains an uncountably infinite
number of points and it is not piecewise differentiable. The
word chaoticrefers to a sensitive dependence on initial con-
ditions: Trajectories originating from nearby initial condi-
tions diverge exponentially in time. Strange nonchaotic at-
tractors occur commonly in quasiperiodically driven
dissipative dynamical systems@16#. We find that, in our case,
strange nonchaotic attractor can arise when the trajectory in
the (x,y) plane falls on a KAM surface butL'.0 so that the
invariant plane repels, transversely, points in its vicinity. Fig-
ures 3~a! and 3~b! show, forx050.541, the (x,y) projection
and the (x,z) projection of such an attractor, respectively.
The values of the Lyapunov exponents areLz'20.016,
Lh50, andL'50.485. In this case, the (x,y) projection of
the attractor is quasiperiodic@Fig. 3~a!#, but the attractor ap-
pears to be strange in the (x,z) plane@Fig. 3~b!#. Since both
Lz andLh are nonpositive, the attractor is nonchaotic. Figure
3~c! shows the power spectrum of the time serieszn . The
spectrum has the broad band-looking feature, in spite of the
attractor’s being nonchaotic, which is also typical of strange
nonchaotic attractors@16#.

To understand how the quasiperiodic dynamics in the in-
variant plane gives rise to a strange nonchaotic attractor in
the full phase space, we note that whenL'.0, the KAM
surface in the invariant plane istransversely unstable. Con-
sequently, there are time intervals during which a trajectory
in the vicinity of z50 is repelled away from it. In this case,
if there are no other attractors in the phase space, the trajec-
tory must return to the neighborhood ofz50 intermittently
because the dynamics is bounded inz. Thus the asymptotic
attractor in the full phase space exhibits a complicated geo-
metric shape. But sinceLz is negative, the attractor, though
geometrically complex, is not chaotic. Thus a strange non-
chaotic attractor is created@17#.

B. Chaotic attractors with one positive Lyapunov exponent

There are two possibilities for generating chaotic attrac-
tors with one positive Lyapunov exponent.

Case (a):Lh.0 andLz,0. This corresponds to the situ-
ation where the trajectory in the invariant plane is chaotic,
but the z dynamics is not chaotic. Figures 4~a! and 4~b!

FIG. 2. Forx050.613~a! the quasiperiodic attractor atz50 and
~b! the power spectrum of 215 points from the time seriesyn . The
Lyapunov exponents areL'5Lz'20.063 andLh50. Note that
L',0 so thatzn approaches zero asymptotically.
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show, forx050.904, the~x,y! projection and the~x,z! pro-
jection of such an attractor. It can be seen that the~x,y!
projection of the attractor fills a chaotic layer of the Hamil-
tonian phase space in the invariant plane@Fig. 4~a!#. The two
Lyapunov exponents areLh'0.063 andLz'20.099. The
Lyapunov dimension@18# of the attractor is thus between 2
and 3. The transverse Lyapunov exponent isL''0.418.
SinceL' is positive, points in the vicinity of the invariant
plane can be repelled away from it and hence the attractor
spreads into both the positive and negativez directions, as
shown in Fig. 4~b!. The reason whyL' is positive butLz is
negative can be understood by noting that the integral in Eq.
~6! is always negative. Thus, in general, we haveLz,L' and
hence it is possible to haveL'.0 andLz,0. The power
spectrum of this attractor has a broadband feature, as shown
in Fig. 4~c!.

Case (b):Lh50 andLz.0. In this case, the motion in the
invariant plane is quasiperiodic, but the quasiperiodic driving
generates sensitive dependence on initial conditions in the
transversez direction. Figures 5~a! and 5~b! show, respec-
tively, the (x,y) projection and the (x,z) projection of such

an attractor forx050.634, where the Lyapunov exponents
areLh50 andLz'0.024. Thus the Lyapunov dimension of
the attractor is 2. The transverse Lyapunov exponent is
L''0.243. The quasiperiodic motion in the invariant plane
is evident, as can be seen in Fig. 5~a!. Note the similarity
between Figs. 5~b! and 3~b! as both are generated by quasi-
periodic driving in the invariant plane. In fact, the chaotic
attractor in Fig. 5 develops from strange nonchaotic attrac-
tors at smaller value of the parametera. This was verified by
fixing the initial conditionx0 and examiningL' andLz asa
increases froma51. The power spectrum of the time series
zn exhibits a broadband feature that is typical of chaotic at-
tractors, as shown in Fig. 5~c!.

C. Chaotic attractors with two positive Lyapunov exponents

This type of chaotic attractors is generated by chaotic tra-
jectories in the invariant plane. Usually, the transverse
Lyapunov exponent has large positive values. The invariant
densityrz(zux,y) generated leads to a small negative value
for the integral in Eq.~6! so thatLz is positive. Figures 6~a!

FIG. 3. Forx050.541 ~strange nonchaotic attractor! ~a! the corresponding quasiperiodic motion in the invariant plane (x,y), ~b! the
projection of the attractor onto the (x,z) plane, and~c! the the power spectrum of the time serieszn . The Lyapunov exponents are
L''0.485,Lz'20.016, andLh50. Strange nonchaotic attractor arises becauseL'.0, butLz,0 ~see the text!.
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and 6~b! show, forx050.832, the (x,y) projection and the
(x,z) projection of such an attractor, respectively. The
Lyapunov exponents areLh'0.133, Lz'0.083, and
L''0.603. The Lyapunov dimension of the attractor is be-

tween 2 and 3. This type of hyperchaotic attractor is usually
created when the trajectory in the invariant plane is in a large
chaotic component@19#, as can be seen in Fig. 6~a!. The
power spectrum of the time serieszn is shown in Fig. 6~c!,
which has a broadband feature.

FIG. 4. For x050.904 ~chaotic attractor with one positive
Lyapunov exponent! ~a! the corresponding chaotic motion in the
invariant plane (x,y), ~b! the projection of the attractor onto the
(x,z) plane, and~c! the power spectrum of the time serieszn . The
Lyapunov exponents areL''0.418,Lz'20.099, andLh'0.063.
In this case, the motion in the invariant plane is chaotic, but thez
Lyapunov exponent is negative.

FIG. 5. For x050.634 ~chaotic attractor with one positive
Lyapunov exponent! ~a! the corresponding quasiperiodic motion in
the invariant plane (x,y), ~b! the projection of the attractor onto the
(x,z) plane, and~c! the power spectrum of the time serieszn . The
Lyapunov exponents areL''0.243.0, Lz'0.024.0, andLh50.
Note that the chaotic attractor is generated by a quasiperiodic driv-
ing in the invariant plane.
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IV. FINAL-STATE SENSITIVITY
AND THE UNCERTAINTY EXPONENTS

The wild oscillation of the Lyapunov exponents in Figs.
1~a!–1~c! as the initial condition varies continuously along a

straight line in the invariant plane indicates that the asymp-
totic attractor of the system depends sensitively on the initial
condition: A small change in the initial condition may lead to
qualitatively different attractors. This is the so-calledfinal-
state sensitivity@12#. An implication is that the basins of
attraction of various coexisting chaotic and nonchaotic at-
tractors are interwoven in a complicated way.

The final-state sensitivity can be quantified by the uncer-
tainty exponent@12#. Suppose that we choose a random ini-
tial conditionx0 and apply a small perturbatione to it to get
another nearby initial conditionx01e. Since, obviously,
there is an infinite number of attractors@Figs. 1~b! and 1~c!#,
small perturbations would lead to either a completely differ-
ent type of attractor with Lyapunov exponents of different
sign or a similar attractor with Lyapunov exponents only
differing in magnitude but not in sign. Our goal is to assess,
numerically, whether small perturbations can lead to qualita-
tively different attractors. Thus we compute the Lyapunov
exponentsLz andLh for both initial conditionsx0 andx01e.
For simplicity, we distinguish three cases:~i! Lz.0 and
Lh.0 ~two positive exponents!; ~ii ! Lz.0 andLh50, or
Lz,0 andLh.0 ~one positive exponent!; and~iii ! Lz,0 and
Lh,0 ~no positive exponent!. If x0 and x01e lead to
Lyapunov exponents belonging to these different cases, we
say that the initial conditionx0 is uncertain with respect to
the perturbatione. For fixed e, a large number of random
initial conditions can be chosen to yield the fractions of the
uncertain initial conditions. Specifically, chooseNT ~large!
initial conditions. LetN21~e! be the number of initial condi-
tions that are uncertain between case~i! and case~ii ! ~two
positive Lyapunov exponents versus one positive Lyapunov
exponent! and letN210~e! be the number of uncertain initial
conditions between case~i! or ~ii ! and case~iii ! ~chaotic ver-
sus nonchaotic!. The corresponding uncertain fractions are
f 21(e)'N21/NT and f 210(e)'N210/NT . In general, f 12~e!
and f 120~e! scale withe algebraically,

f 21~e!;ea21, f 210~e!;ea210, ~7!

where the non-negative scaling exponentsa21 anda210 are
called the uncertainty exponents. Such algebraic scaling re-
lations have been argued for general dynamical systems in
Ref. @12# and have been rigorously proven for axiom-A sys-
tems in Ref.@20#.

Figures 7~a! and 7~b! show f 21~e! and f 210~e! versuse on
a logarithmic scale, where initial conditions are chosen from
the same one-dimensional line used to compute Figs. 1~a!–
1~c!. In the computation, we increaseNT until N21 reaches
500 to obtainf 21~e! and f 210~e!. The uncertainty exponents
area21'0.0 anda21050.4260.05.0. These different values
of the uncertainty exponents have significant consequences
regarding predictability of the asymptotic attractor of the
system. In particular, regarde as the error in specifying the
initial conditionx0. The fact thata21 cannot be distinguished
from zero indicates thatf 21~e! does not decreases apprecia-
bly even whene is decreased by many orders of magnitude.
This implies the worst case of predictability: It is impossible
to predict,for specific initial conditions, whether the attractor
has two positive Lyapunov exponents or one positive expo-
nent. However, the situation is improved if one attempts to
predict whether the attractor is chaotic or nonchaotic because

FIG. 6. For x050.832 ~chaotic attractor with two positive
Lyapunov exponents! ~a! the corresponding chaotic motion in the
invariant plane (x,y), ~b! the projection of the attractor onto the
(x,z) plane, and~c! the power spectrum of the time serieszn . The
Lyapunov exponents areL''0.603,Lz'0.083, andLh'0.133. In
this case, the motion in the invariant plane is chaotic and thez
Lyapunov exponent is also positive.
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a210 has a finite value of about 0.42. For instance, when
e51021, we havef 210~e!;0.4. In order to reducef 210~e! to,
say, 1023, one needs to reducee to about 1029. Although a
decrease ine does not yield an equal decrease inf 210~e!, the
situation is better than the one withf 21~e! that does not de-
crease regardless of how muche is decreased. The reason
that a210.0 is directly related to the Hamiltonian phase-
space structure in the invariant plane. Note that nonchaotic
attractors must be generated by trajectories falling on KAM
surfaces in the invariant plane. It is believed that the set of
phase-space regions occupied by the chaotic components is a
fat fractal, i.e., a fractal with a positive Lebesgue measure
@21#. Thus, if an initial condition yields a chaotic trajectory
in the invariant plane, a small perturbation to the initial con-
dition can yield a quasiperiodic trajectory on the KAM sur-
face. But for an initial condition that yields a trajectory on
the KAM surface, small perturbation always produce trajec-
tories that are still on the KAM surfaces.

V. DISCUSSION

In this paper we have introduced a class of low-
dimensional dynamical systems that exhibit extremely rich
complex behavior. The system is a mixture of Hamiltonian
and dissipative dynamics, where the Hamiltonian dynamics
occurs in some invariant subspace of the system and the
dissipation occurs in the transverse subspace. The dynamics
in the full phase space is thus dissipative and, for typical
initial conditions, the asymptotic sets can be attractors. We
demonstrate that this class of systems exhibits all three traits
characterizing a complex system. In particular, for typical
parameter values, a variety of distinct attractors coexist.
These are quasiperiodic attractors, strange nonchaotic attrac-
tors, and chaotic attractors with different number of positive
Lyapunov exponents. The basins of these attractors appear to
be interwoven in a complicated manner. As a consequence,
the qualitative prediction of even the type of the asymptotic
attractor for specific initial conditions and parameters be-
comes extremely difficult. We remark that Hamiltonian dy-
namics is common in physical systems, but small friction is
inevitable. Our work thus demonstrates that the the combi-
nation and interplay of conservative and dissipative dynam-
ics can lead to complex behavior even for physical systems
with a few degrees of freedom.

Recent work by Feudelet al. @11# demonstrated that com-
plexity can arise in the weakly dissipative standard map. Due
to the weak dissipation, the original elliptic periodic orbits
become small sinks and hence an infinite number of periodic
attractors can coexist. It was found that the basins of these
sinks are usually interwoven in a complicated way. We
should mention that our system is quite different from
Hamiltonian systems with weak dissipation. In the latter
case, the system itself is weakly dissipative and there is no
Hamiltonian component in the system. In contrast, our sys-
tem has Hamiltonian dynamics in the invariant subspace and
the dissipation can be strong and it occurs in the transverse
direction. While the observed complexity in our system is a
direct consequence of the Hamiltonian phase-space structure
that typically contains chaotic components and hierarchies of
KAM islands, we see that the introduction of dissipation in
the transverse direction gives rise to much richer complexity.
Quasiperiodic motion on KAM surfaces in the invariant sub-
space can lead to quasiperiodic, strange nonchaotic, and cha-
otic attractors in the full phase space. Chaotic motion in the
invariant subspace can induce chaotic attractors with differ-
ent numbers of positive Lyapunov exponents. Thus the rich
complexity observed in this paper is anontrivial manifesta-
tion of the invariant Hamiltonian dynamics in the full phase
space.
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FIG. 7. Uncertain fractions~a! f 21~e! and~b! f 210~e! versuse on
a logarithmic scale. The uncertainty exponents area21'0.0 and
a210'0.42. Sincea21 cannot be distinguished from zero, it is prac-
tically impossible to predict whether the attractor has one or two
positive Lyapunov exponents. However, sincea210 is finite, it is
possible to distinguish chaotic attractors from nonchaotic ones if
initial conditions and parameters are specified with sufficient preci-
sion ~see the text!.
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