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Complexity in Hamiltonian-driven dissipative chaotic dynamical systems
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The existence of symmetry in chaotic dynamical systems often leads to one or several low-dimensional
invariant subspaces in the phase space. We demonstrate that complex behaviors can arise when the dynamics
in the invariant subspace is Hamiltonian but the full system is dissipative. In particular, an infinite number of
distinct attractors can coexist. These attractors can be quasiperiodic, strange nonchaotic, and chaotic with
different positive Lyapunov exponents. Finite perturbations in initial conditions or parameters can lead to a
change from nonchaotic attractors to chaotic attractors. However, arbitrarily small perturbations can lead to
dynamically distinct chaotic attractors. This work demonstrates that the interplay between conservative and
dissipative dynamics can give rise to rich complexity even in physical systems with a few degrees of freedom.
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[. INTRODUCTION a half degrees of freedomcan exhibit a huge number of
coexisting periodic attractors when there is a weak dissipa-
The study of complexity has been an area of growingtion in the systen{11]. The basins of the mostly periodic
recent interesfl-5]. Complex systems are characterized byattractors are interwoven in a complex way and the basin
three properties{i) A complex system consists of many boundaries permeate most of the phase space. As a practical
components that are interconnected in a complicated mannetpnsequence of these complicated basin structures, the final
(if) the components of a complex system can be either reguasymptotic state of the system for a given initial condition
lar or irregular, and(iii) the components exist on different and a given parameter set cannot be predicted relidtdy
length and/or time scales, i.e., a complex system exhibits a In the study of complex systems, it is important to be able
hierarchy of structures. These are also tiwee traitschar-  to understand how complexity arises so that one may have a
acterizing a complex systefil—5]. Complex systems arise better understanding and thus be better able to control and
in many different fields such as physics, chemistry, fluid me-manipulate the system. In particular, one wishes to establish
chanics, biology, economics, and computer science. Somge fundamental linkbetween the intrinsic properties of the
specific examples are Rayleigh+d convectiori6], neu-  nonlinear dynamical systems and the observed complex be-
ronal activity [7], extended nonlinear optical systef8,  havior. In this regard, the study of complexity in low-
and fluid bed49]. Because of the hierarchical structure of adimensional dynamical systems is appealing because these
complex system, the state of the system can “hop” betweersystems are more accessible to understanding due to the suc-
different components when small perturbations are applied teess of low-dimensional chaos thedi3]. The purpose of
the system or when the system is in a noisy environmenthis paper is to introduce a class of low-dimensional dynami-
Thus one can control the behavior of a complex system teal systems that exhibit extremely rich complex behavior and
achieve desirable system performance by using small feede understand the complexity in terms of the nonlinear dy-
back perturbations to an accessible parameter or state of tlmamics of the system. In particular, we study dynamical sys-
system[5]. tems with a simple kind of symmetry. The existence of sym-
Complexity can arise in systems with few degrees of freemetry often leads to low-dimensional invariant subspaces in
dom. For instance, the double rotor map derived from a methe full phase space. We demonstrate that complexity can
chanical system of two degrees of freedom under externarise when the dynamics in the invariant subspace is conser-
periodic kick[10] exhibits all three traits of a complex sys- vative (Hamiltonian, but the full system is dissipative. We
tem in wide parameter ranggs]. Often there are many co- call such systemsiamiltonian-driven dissipative dynamical
existing periodic attractors whose basins of attraction are insystemsFor such a system, an infinite number of distinct
terconnected via unstable chaotic saddles in the basiattractors coexist. These attractors can be quasiperiodic,
boundaries in a very complicated manner. More recently, istrange nonchaotic, or chaotic with different positive
has been demonstrated that the standard map, which deyapunov exponents. Finite perturbations in initial condi-
scribes the dynamics of a periodically kicked rofone and  tions or parameters can lead to change from quasiperiodic or
strange nonchaotic attractors to chaotic attractors. However,
arbitrarily small perturbations can lead to dynamically dis-
*Permanent address: Departments of Physics and Astronomy artithct chaotic attractors. The main point of the paper is that
of Mathematics, University of Kansas, Lawrence, KS 66045. Electhe interplay between conservative and dissipative dynamics
tronic address: lai@poincare.math.ukans.edu can give rise to extremely rich complexity even when the
TAlso at Department of Mathematics, Institute for Physical Sci-system is low dimensional.
ence and Technology, University of Maryland, College Park, MD  The paper is organized as follows. In Sec. Il, we give a
20742. general argument that Hamiltonian-driven dissipative dy-
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namical systems can generate rich complex behavior in the 1 L

form of a hierarchy of qualitatively distinct attractors. This A= lim T 2 In|F(X,,p)DG(0)-v|, ©)]
behavior fits the three traits characterizing a complex system. Loe = n=1

In Sec. lll, we give a numerical example described by a

three-dimensional map. In Sec. IV, we characterize the dewhereDG(0)=dG(y,)/dyy|y, -0 is evaluated ay,=0. In gen-
gree of unpredictability upon small perturbations by usingeral, if A, <0, theny=0 is asymptotically stable and hence
the uncertainty exponeifi2]. In Sec. V, we present a dis- A;=A, . However,A;#A if A, >0.

cussion. Under fairly general conditions, Eql) can generate all
three traits characterizing a complex system. This can be

Il. HAMILTONIAN-DRIVEN DISSIPATIVE seen as follows. First, sindéx) is an area-preserving map,
DYNAMICAL SYSTEMS for typical parameter values there is apparently an infinite

) ) ) ) ~number of invariant sets i corresponding to chaotic sets

We consider dynamical systems with a low-dimensionalagng KAM surfaces(or tori) of different rotation numbers.
invariant subspace denoted BySinceSis invariant, initial e restrict our study to these parameter values. In such a
conditions inS result in trajectories that remain Biforever.  case, different initial conditions, in Syield different invari-
Now imagine that the dynamics i is conservative, math- gnt measures. Notice that in Ed), thex dynamics can be
ematically described by Hamiltonian flows or area-regarded as the “driving” to the transverse dynamics.
preserving maps. Assume that “friction” occurs in the sub-Thys different invariant measures ® generate different
spaceT that is transverse t&. Thus the dynamics in the driving and consequently generate distinct attracting motions
transverse subspace is dissipative and hence the full systg@T or distinct attractors in the full phase space. Depending
is also dissipative. Specifically, we consider the followingon the parameters, attractors in the full phase space with a

general class ol-dimensional discrete maps &l", different number of positive Lyapunov exponents can be cre-
% 1= (X0 ated by changing initial conditions. Since the KAM tori and
n+1 n’s the chaotic regions i are interconnected in a complicated
—F(x,.p)G(y,) ) way [14], we expect that the basins of the attraction for the

Yn+1 n:P)SYn), attractors in the full phase space are also connected in a

wherexe SCRNS, ye TCRNT, Ng=1, Ny=1, Ng+ N;r=N complex way. This is trait 1. Second, since there are both
i L S ene o~ Tegular(KAM surfaces and irregular(chaotic setscompo-
nents inS, depending on the driving(x,p), the attractors

symmetric invariant subspace is then definedyby0. We ~ Can also be nonchaotiordered with no positive Lyapunov
exponent or chaoti¢random with one or several positive

assume that both the andy dynamics are bounded. The I f o h
vector functionf(x) is an area-preserving map that exhibits LYaPunov exponents. Small amount of noise can push a tra-

typical features of Hamiltonian phase space: the coexistend§Ctery from one attractor to another. This is trait 2. Finally,
of the Kolmogorov-Armold-MosefKAM ) tori and chaotic it is known that KAM surfaces typically form a hierarchy of

regions in wide parameter rangdd4]. The functions the so-called island-around-island struct(itef] and hence

F(x,,p) andG(y,) are chosen such that the magnitude of thethe attractors in the full phase space are also organized in a

determinant of the Jacobian mattBxJy|=|dy,, ,/dy,| is less hierarchy of structures. This is trait 3.
than one in some phase-space regions. For simplicity we

assume that the systefh) has a skew-product structure, i.e., IIl. NUMERICAL EXAMPLE
the x dynamics is not influenced by thedynamics. Since
f(x) is area preserving, the determinant of the Jacobian ma-
trix of the full system Eq(1) is determined solely b{pJ, .
Thus Eqg.(1) is dissipative and the asymptotic sets of the
system can be attractors. Since Eh). has a skew-product )
structure, the attractors can be conveniently characterized by Ynr1=Yn Tk sin(x,+yn), mod2m), 4
the largest Lyapunov exponents, denoted\ayand A+, for

the invariant and transverse subspaces, respectively. Specifi-
cally, Ag and A are given by

andp is a parameter. The vector functi@i(y) possesses a
certain symmetry, e.gG(—y)=—G(y), so thatG(0)=0. The

We consider the three-dimensional version of Eg,

Xn+1=Xnt+VYn, mod2m),

1
Zni1=5 (a cosx,+b cosy,+c)sin(2wz,),

L

1 wherek, a, b, andc are parameters. The invariant subspace
As=lim = >, In|Df(x,)-ul, P P
1

is given byz=0 and hence it is two dimensional. The dy-

Loe T @) namics in the invariant plane is conservative and it is that of
1L a periodically kicked rotoithe standard map ix andy).
A= lim = E In|F(x,,p)DG(y,) -V, The transverse subs_pace is one dlm_en5|d|rral_z) and
Lo b n=1 bounded. The determinant of the Jacobian matrix of (By.

is |DJ|=(a cosx,+b cosy,+ c)cos(2rz,), whose magni-
whereDf(x,)=df(x,)/x, , DG(y,)=dG(y,)/dy,, andu andv  tude can be less than one in some phase-space regions. The
are unit vectors inS and T, respectively. Another useful system(4) is thus dissipative in these regions. We choose
quantity is the transverse Lyapunov expondntthat char- k=1 in the standard map so that the invariant subspace con-
acterizes the transverse stability for trajectoriestrictedto  tains both KAM surfaces and distinct chaotic regions. The
the invariant subspac®[15]. It is given by transverse Lyapunov exponefyt is given by
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FIG. 1. For Eq.(4), the Lyapunov exponents versus the initial conditigrfor x,e[0,27] (=1, Z,=0.68: (a) A, versusxgy, (b) A,
versusxg, and(c) A, versusxy. The parameter setting Is=1 in the standard mag=3, b=0, andc=1. The Lyapunov exponents show
both smooth parts and wildly oscillating parts, corresponding to trajectories in the invariant plane on KAM surfaces and in chaotic
components, respectively.

10 a consequence,, approaches zero asymptotically and the

A, =lim — E Inja cosx;+b cosy;+c] integral in Eq.(6) vanishes. In subsequent numerical experi-
n—ee M=1 ments, we fixa=3, b=0, andc=1. To examine multiple

o coexisting attractors and their basin structures, we uniformly

= Jo (Inja cosx,+b cosy,+c|)p(X,y|Xg,Yo)dX dY, choose initial conditions from the one-dimensional line de-

fined by xye[0,27], yo=m, and z,=0.68. For each initial
(5)  condition, we computé\, , A,, and alsoAs= Ay, the larg-

est Lyapunov exponent for trajectories generated by the stan-
wherep(X,Yy|Xq,Yo) is the invariant density of andy in the  dard map in the invariant subspace. The computation is done
standard map for the trajectory starting from the initial con-by using 16 iterations and 1Dpreiterations. Note that since
dition (Xq,Yp). The Lyapunov exponent of the transversethe dynamics in the invariant subspace is Hamiltoniag,
subspace\; is must be non-negative: It is zero when the trajectoxyy)
falls on KAM surfaces and it is positive when the trajectory
is in the chaotic component. Figure@t-1(c) showA  , A,,
andA,, versusx,. It can be seen that these plots contain both
smooth parts and wildly oscillating parts. The smooth parts
wherep,(z|x,y) is the invariant density of under thex and  correspond to trajectories whose motiorxiandy occurs on
y driving. We note that ifA; <0, thenA,=A, because in KAM islands and the values oA,, for these parts are zero
this case the invarianix(y) plane attracts points nearby. As [Fig. 1(c)]. The wildly oscillating parts correspond to trajec-

Ar=A=A+ [ lcoszrzlpzleyidz  ©)
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tories in the chaotic component in the invariant plane. Since
there are bounding KAM circles, different initial conditions (a)
generate characteristically different chaotic sets in the invari-
ant plane, giving rise to different values of the Lyapunov
exponents. For most initial conditions, is always positive,
indicating that the invariant plane(y) is repulsive in the
transverse direction for most initial conditions. This is due

to the rather large value @& (a=3) used. Decreasing can
causeA, to have both positive and negative values. From
Fig. 1(b) we see that\, can be either positive or negative.
Thus, from Figs. (b) and Xc), we see that depending on the
initial condition, qualitatively different attractors in the full
phase spacex(y,z) can be generated. These attractors can
have(i) no positive Lyapunov exponefi\,=0, A,<0), (ii)

one positive Lyapunov exponefip,>0, A,<0, or A,=0,
A,>0), and (iii) two positive Lyapunov exponenis\; >0,
A,>0). In cas€(i), depending on the sign df, , there can be
quasiperiodic attractors\, <0) or strange nonchaotic attrac- (b)
tors (A, >0). In the following, we discuss the dynamical 0
mechanism for generating these different types of attractors.

~-1}F
A. Quasiperiodic attractors and strange nonchaotic attractors

For a given initial condition, if there are no positive -2f

Lyapunov exponents, both quasiperiodic attractors and
strange nonchaotic attractof$6] can arise. Quasiperiodic
attractors occur ifa) the initial condition &g,y,) leads to a
trajectory on a KAM surface in the invariant plare-0 and
(b) A, <0 so that points in the transverse subspace are at- "
tracted towardg=0. Figure 2a) shows such an attractor for
Xo=0.613 in the phase space for whith=A,~-0.063 and
Ay=0. Clearly, the motion is confined to a period-2 torus in ‘l H ” ‘
the (x,y) plane. Figure @) shows the power spectrum com- _AUtl H (L el L L l ll L,
puted from the time serigg, of 2° trajectory points. This is 0 0.1 02 0.3 0.4
a discrete power spectrum of the two-frequency quasiperi- k/M
odic motion.

The more interesting case is the occurrence of strange
nonchaotic attractors. These are attractors that are geometri- FIG. 2. Forx,=0.613(a) the quasiperiodic attractor at-0 and
cally complicated, but trajectories on these attractors exhibif?) the power spectrum of'2 points from the time serieg,. The
no sensitive dependence on initial conditi¢ts]. The word ~ Lyapunov exponents aré, =A,~—0.063 andA,=0. Note that

strange usually refers to the complicated geometry of the’\r <0 SO thaiz, approaches zero asymptotically.

attractor: A strange attractor contains an “F‘COU”‘?‘b'y infinite To understand how the quasiperiodic dynamics in the in-
number of points and it is not piecewise differentiable. The,

. o L variant plane gives rise to a strange nonchaotic attractor in
word chaoticrefers to a sensitive dependence on initial con-

ditions: Trajectories originating from nearby initial condi- the full phase space, we note that whén=>0, the KAM

tions diver xponentially in time. Stranae nonchaoti tsurface in the invariant plane teansversely unstableCon-
ons diverge exponentially in time. Strange honchaotic a 'sequently, there are time intervals during which a trajectory
tractors occur commonly in quasiperiodically driven

A X ) ) in the vicinity of z=0 is repelled away from it. In this case,
dissipative dynam_lcal systerfiso]. W? find that, in OUr Case, i there are no other attractors in the phase space, the trajec-
strange nonchaotic attractor can arise when the trajectory

ity ; ; :
ry must return to the neighborhood B0 intermittently

Fhe (>§,y) plane falls on a KAM surface k.)uh.>c.) so_thgt the. because the dynamics is boundedzinThus the asymptotic
invariant plane repels, transversely, points in its wqmty. I:'g'attractor in the full phase space exhibits a complicated geo-
:Leds tﬁ?e) znz(; a;?z)jsei(t)i\(l)vﬁ fgfr Xsoli:%il,ai?reaé,oﬁ) Irjerzgjpe:gtci)\?ely metric shape. But sinc4, is negative, the attractor, though
The values of the Lyapunov exponents akg~—0.016, geometrically complex, is not chaotic. Thus a strange non-

A,=0, andA, =0.485. In this case, thex(y) projection of chaotic attractor is creat¢d?].
the attractor is quasiperiodj€ig. 3@)], but the attractor ap-
pears to be strange in th&,g) plane[Fig. 3(b)]. Since both
A, and Ay, are nonpositive, the attractor is nonchaotic. Figure There are two possibilities for generating chaotic attrac-
3(c) shows the power spectrum of the time serzgs The  tors with one positive Lyapunov exponent.

spectrum has the broad band-looking feature, in spite of the Case (a):A,>0 and A,<0. This corresponds to the situ-
attractor’'s being nonchaotic, which is also typical of strangeation where the trajectory in the invariant plane is chaotic,
nonchaotic attractorl6]. but the z dynamics is not chaotic. Figureda} and 4b)

=3}

log4(Sk)

-6

B. Chaotic attractors with one positive Lyapunov exponent
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FIG. 3. Forxy=0.541 (strange nonchaotic attraciof@) the corresponding quasiperiodic motion in the invariant plang)( (b) the
projection of the attractor onto thex,¢) plane, and(c) the the power spectrum of the time serigs The Lyapunov exponents are
A, ~0.485,A,~—0.016, andA,,=0. Strange nonchaotic attractor arises because0, but A,<0 (see the text

show, forx,=0.904, the(x,y) projection and thdx,z) pro- an attractor forx,=0.634, where the Lyapunov exponents
jection of such an attractor. It can be seen that (he) are A;,=0 andA,~0.024. Thus the Lyapunov dimension of
projection of the attractor fills a chaotic layer of the Hamil- the attractor is 2. The transverse Lyapunov exponent is
tonian phase space in the invariant plghRg. 4a)]. The two A, ~0.243. The quasiperiodic motion in the invariant plane
Lyapunov exponents ard,~0.063 andA,~—0.099. The s evident, as can be seen in Figah Note the similarity
LyapUnOV dimenSiOfﬁlS] of the attractor is thus between 2 between F|gs @) and gb) as both are generated by quasi_
and 3. The transverse Lyapunov exponentAis~0.418.  periodic driving in the invariant plane. In fact, the chaotic
Since A, is positive, points in the vicinity of the invariant 4ractor in Fig. 5 develops from strange nonchaotic attrac-

plane can be re?]ellﬁd away from it and hence the attractqfy g ot smaller value of the paramegerThis was verified by
spreads into both the positive and negatvirections, as fixing the initial conditionxy, and examining\, andA, asa

shown in Fig. 4b). The reason why, is positive butA, is increases froma=1. The power spectrum of the time series

negative can be understood by hoting that the integral in Ean exhibits a broadband feature that is typical of chaotic at-
(6) is always negative. Thus, in general, we hayecA, and 7 0 < o< shown in Fig (8

hence it is possible to havé, >0 and A,<0. The power
spectrum of this attractor has a broadband feature, as shown _ _ iy
in Fig. 4(c). C. Chaotic attractors with two positive Lyapunov exponents
Case (b):A;,=0 andA,>0. In this case, the motion in the This type of chaotic attractors is generated by chaotic tra-
invariant plane is quasiperiodic, but the quasiperiodic drivingectories in the invariant plane. Usually, the transverse
generates sensitive dependence on initial conditions in theyapunov exponent has large positive values. The invariant
transversez direction. Figures &) and 5b) show, respec- densityp,(z|X,y) generated leads to a small negative value
tively, the (x,y) projection and thex,z) projection of such for the integral in Eq(6) so thatA, is positive. Figures @)
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FIG. 4. For x,=0.904 (chaotic attractor with one positive FIG. 5. For xo=0.634 (chaotic attractor with one positive

Lyapunov exponent(a) the corresponding chaotic motion in the Lyapunov exponent(a) the corresponding quasiperiodic motion in
invariant plane X,y), (b) the projection of the attractor onto the the invariant planex,y), (b) the projection of the attractor onto the
(x,2) plane, andc) the power spectrum of the time seres. The  (X.2) plane, andc) the power spectrum of the time serigs. The
Lyapunov exponents ar&, ~0.418, A,~—0.099, andA,~0.063.  Lyapunov exponents ar&, ~0.243>0, A,~0.024>0, andA,=0.
In this case, the motion in the invariant plane is chaotic, butzthe Note that the chaotic attractor is generated by a quasiperiodic driv-
Lyapunov exponent is negative. ing in the invariant plane.

tween 2 and 3. This type of hyperchaotic attractor is usually
and Gb) show, forx,=0.832, the X,y) projection and the created when the trajectory in the invariant plane is in a large
(x,z) projection of such an attractor, respectively. Thechaotic componenfl19], as can be seen in Fig(#. The
Lyapunov exponents areA,~0.133, A,~0.083, and power spectrum of the time serigs is shown in Fig. 6c),
A, ~0.603. The Lyapunov dimension of the attractor is be-which has a broadband feature.
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FIG. 6. For xq=0.832 (chaotic attractor with two positive
Lyapunov exponenjs(a) the corresponding chaotic motion in the
invariant plane X,y), (b) the projection of the attractor onto the
(x,2) plane, andc) the power spectrum of the time serigs. The
Lyapunov exponents ark, ~0.603,A,~0.083, andA,~0.133. In
this case, the motion in the invariant plane is chaotic andzthe
Lyapunov exponent is also positive.

IV. FINAL-STATE SENSITIVITY
AND THE UNCERTAINTY EXPONENTS

The wild oscillation of the Lyapunov exponents in Figs.

straight line in the invariant plane indicates that the asymp-
totic attractor of the system depends sensitively on the initial
condition: A small change in the initial condition may lead to
qualitatively different attractors. This is the so-callaial-
state sensitivityf12]. An implication is that the basins of
attraction of various coexisting chaotic and nonchaotic at-
tractors are interwoven in a complicated way.

The final-state sensitivity can be quantified by the uncer-
tainty exponenf12]. Suppose that we choose a random ini-
tial conditionx, and apply a small perturbatianto it to get
another nearby initial conditiorxy+e. Since, obviously,
there is an infinite number of attractdiSigs. 1b) and Xc)],
small perturbations would lead to either a completely differ-
ent type of attractor with Lyapunov exponents of different
sign or a similar attractor with Lyapunov exponents only
differing in magnitude but not in sign. Our goal is to assess,
numerically, whether small perturbations can lead to qualita-
tively different attractors. Thus we compute the Lyapunov
exponents\, and A, for both initial conditions<, andxy+e.

For simplicity, we distinguish three case§) A,>0 and
Ay>0 (two positive exponenjs (i) A,>0 and A,=0, or
A,<0 andA,>0 (one positive exponeptand(iii) A,<0 and
Ah<0 (no positive exponent If x, and x,+e lead to
Lyapunov exponents belonging to these different cases, we
say that the initial conditiorx, is uncertain with respect to
the perturbatione. For fixed ¢, a large number of random
initial conditions can be chosen to yield the fractions of the
uncertain initial conditions. Specifically, choosk- (large
initial conditions. LetN,,(e) be the number of initial condi-
tions that are uncertain between cdbeand casdii) (two
positive Lyapunov exponents versus one positive Lyapunov
exponent and letN,;e) be the number of uncertain initial
conditions between cas® or (ii) and caseiii ) (chaotic ver-
sus nonchaotjc The corresponding uncertain fractions are
fo1(€)=N,/N and fy€)~NydNt. In general, fi5(e)
andf,4e) scale withe algebraically,

foi(e)~ €2, i €)~ €210 (7)

where the non-negative scaling exponeajs and a4, are
called the uncertainty exponents. Such algebraic scaling re-
lations have been argued for general dynamical systems in
Ref.[12] and have been rigorously proven for axigwsys-
tems in Ref[20].

Figures Ta) and fb) showf,;(e) andf,;€) versuse on
a logarithmic scale, where initial conditions are chosen from
the same one-dimensional line used to compute Figg—1
1(c). In the computation, we increa®é; until N,,; reaches
500 to obtainf,,(€) and f,;4€). The uncertainty exponents
are a,1~0.0 anda,1,=0.42+0.05>0. These different values
of the uncertainty exponents have significant consequences
regarding predictability of the asymptotic attractor of the
system. In particular, regarelas the error in specifying the
initial conditionx,. The fact thatx,; cannot be distinguished
from zero indicates that,,(e) does not decreases apprecia-
bly even where is decreased by many orders of magnitude.
This implies the worst case of predictability: It is impossible
to predict,for specific initial conditionswhether the attractor
has two positive Lyapunov exponents or one positive expo-
nent. However, the situation is improved if one attempts to

1(a)-1(c) as the initial condition varies continuously along a predict whether the attractor is chaotic or nonchaotic because
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V. DISCUSSION

In this paper we have introduced a class of low-
-05} ; dimensional dynamical systems that exhibit extremely rich
complex behavior. The system is a mixture of Hamiltonian
and dissipative dynamics, where the Hamiltonian dynamics
occurs in some invariant subspace of the system and the
. dissipation occurs in the transverse subspace. The dynamics
. . " in the full phase space is thus dissipative and, for typical
initial conditions, the asymptotic sets can be attractors. We
-0.8} ] demonstrate that this class of systems exhibits all three traits
characterizing a complex system. In particular, for typical
parameter values, a variety of distinct attractors coexist.
These are quasiperiodic attractors, strange nonchaotic attrac-
tors, and chaotic attractors with different number of positive
YT o % -5 4 s 2 4 Lyapunov exponents. The basins of these attractors appear to

be interwoven in a complicated manner. As a consequence,
the qualitative prediction of even the type of the asymptotic
_05 : , , . ‘ attractor for specific initial conditions and parameters be-
comes extremely difficult. We remark that Hamiltonian dy-
namics is common in physical systems, but small friction is
inevitable. Our work thus demonstrates that the the combi-
nation and interplay of conservative and dissipative dynam-
ics can lead to complex behavior even for physical systems
with a few degrees of freedom.

Recent work by Feudedt al.[11] demonstrated that com-
plexity can arise in the weakly dissipative standard map. Due
to the weak dissipation, the original elliptic periodic orbits
become small sinks and hence an infinite number of periodic
attractors can coexist. It was found that the basins of these
sinks are usually interwoven in a complicated way. We
should mention that our system is quite different from
Hamiltonian systems with weak dissipation. In the latter
case, the system itself is weakly dissipative and there is no
Hamiltonian component in the system. In contrast, our sys-
tem has Hamiltonian dynamics in the invariant subspace and
. . the dissipation can be strong and it occurs in the transverse

FIG. 7. Uncertain fraction&) fy() and(b) faide) versuse on direction. While the observed complexity in our system is a
a logarithmic scale. The uncertainty exponents age~0.0 and - - .
ay1~0.42. Sincen,, cannot be distinguished from zero, it is prac- direct consequence of the Hamlltonlan phase-sp_ace Str_ucture
tically impossible to predict whether the attractor has one or twothat ty_plcally contains chaotic c_omponer_1ts and hle_rarc_hles_ of
positive Lyapunov exponents. However, sineg is finite, it is KAM islands, W(_a se(_a thaF the .|ntroduct|on ‘_Jf dissipation _|n
possible to distinguish chaotic attractors from nonchaotic ones ifhe tr‘f"ns\/erse dlrgctlon gives rise to muf:h r'cher Cqmplex'ty'
initial conditions and parameters are specified with sufficient preciQuasiperiodic motion on KAM surfaces in the invariant sub-
sion (see the text space can lead to quasiperiodic, strange nonchaotic, and cha-
otic attractors in the full phase space. Chaotic motion in the
r{'nvariant subspace can induce chaotic attractors with differ-
ent numbers of positive Lyapunov exponents. Thus the rich
complexity observed in this paper isnantrivial manifesta-
tion of the invariant Hamiltonian dynamics in the full phase
space.

logyg far(e)

&

2

[ |
(]
»
L ]

[

q

L
o
®
.

L
»

(a) logyg€

1t

-1.5¢

logy, faro(e)

=2F

(b) log;q €

ay10 has a finite value of about 0.42. For instance, whe
e=10"1, we havef,,{€)~0.4. In order to reducé,,q ) to,
say, 103, one needs to reduceto about 10°. Although a
decrease ire does not yield an equal decreasef jpye), the
situation is better than the one with,(e) that does not de-
crease rega(dles:s of how muehs decrease_d. The reason ACKNOWLEDGMENTS
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