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A route to chaos in quasiperiodically driven dynamical systems is investigated whereby the Lyapunov
exponent passes through zero linearly near the transition. A dynamical consequence is that, after the transition,
the collective behavior of an ensemble of trajectories on the chaotic attractor exhibits an extreme type of
intermittency. The scaling behavior of various measurable quantities near the transition is examined.
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Transitions to chaos, the scenarios by which chaotic at-
tractors arise with variation of a system parameter, are a
fundamental problem in the study of nonlinear dynamical
systems. So far there are four known major routes to chaotic
attractors:~i! the period-doubling cascade route@1#; ~ii ! the
intermittency transition route@2#; ~iii ! the crisis route@3#;
and ~iv! the route to chaos in quasiperiodically driven sys-
tems@4#. In the period-doubling route~i!, a chaotic attractor
appears in a parameter region immediately following the ac-
cumulation of an infinite number of period doublings@1#. In
the intermittency route~ii !, as a parameter passes through a
critical value, a simple periodic orbit is replaced by a chaotic
attractor in such a way that the chaotic behavior is inter-
spersed with a periodiclike behavior in an intermittent fash-
ion. In the crisis route~iii !, a chaotic attractor is suddenly
created to replace a nonattracting chaotic saddle as the pa-
rameter passes through the crisis value@3#. In systems such
as the two-frequency quasiperiodically forced systems, chaos
can arise through the following route~iv!: ~three-frequency
quasiperiodicity!→~strange nonchaotic behavior!→~chaos!
@4#. In the past, scaling behaviors of routes~i!–~iii ! have
been investigated@1,2,5#. Moreover, the dynamical picture
for the route to chaos for quasiperiodically driven systems
~iv! is rather clear@4,6–12#, but the scaling behavior of such
a transition remained unknown.

In this paper we examine the scaling with parameter of
various measurable quantities near the transition to chaos in
quasiperiodically driven systems. We argue both numerically
through a physical model and analytically through an analyz-
able model, which captures the essential dynamics, that for
quasiperiodically driven dynamical systems the largest non-
trivial Lyapunov exponent passes through zerolinearly with
the parameter near the transition to chaos. Furthermore, near
the transition, the tangent vector along a typical trajectory
experiences both time intervals of expansion and time inter-
vals of contraction. On the nonchaotic side, the Lyapunov
exponent is slightly negative and, hence, contraction domi-
nates over expansion. On the chaotic side where the
Lyapunov exponent is slightly positive, expansion dominates
over contraction. A striking consequence of this is that the
collective behavior of an ensemble of trajectories observed at
different instants of time exhibits an extreme type of inter-

mittency on the chaotic side of the transition. During the
expansion time intervals, the trajectories burst out by sepa-
rating from each other, but during the contraction time inter-
vals the trajectories merge together. Therefore, if one looks
at the snapshot of slices of the attractor@13# of this ensemble
of trajectories at different times, one finds that the size of the
slice of the chaotic attractor varies wildly in time in an in-
termittent fashion. We find that the average size of the snap-
shot of a slice of the attractor scaleslinearly with a param-
eter above but near the transition. In addition, we find that
the average interval between bursts also scales linearly with
the parameter above the transition.

To illustrate our findings, we present results with quasip-
eriodic systems driven by two incommensurate frequencies.
We consider the following quasiperiodically forced damped
pendulum@7#:

d2u

dt2
1n

du

dt
1sinu5K1V@cos~v1t !1cos~v2t !#, ~1!

whereu is the angle of the pendulum with the vertical axis,n
is the dissipation rate,K is a constant,V is the forcing am-
plitude, andv1 andv2 are the two incommensurate frequen-
cies. Introducing two new variables,t→nt andf[u1p/2,
Eq. ~1! becomes

1

p

d2f

dt2
1
df

dt
2cosf5K1V@cos~v1t !1cos~v2t !#,

wherep5n2 is a new parameter, andv1 andv2 have been
rescaled accordingly:v1→v1n andv2→v2n. In terms of the
dynamical variablesf, v[df/dt, andz[v2t, we have

df

dt
5v,

dv
dt

5pHK1VFcosS v1

v2
zD1coszG1cosf2vJ , ~2!

dz

dt
5v2 .
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It has been argued that Eq.~2! exhibits rich dynamical phe-
nomena@7,8#. In particular, for different parameters in the
K-V plane, one finds two- and three-frequency quasiperiodic
attractors, strange nonchaotic attractors@7,8#, and chaotic at-
tractors. Chaotic attractors can develop from two-frequency
quasiperiodic attractors. It is interesting to note that in the
strong damping limitp→`, Eq. ~2! reduces to a first-order
equation which is isomorphic to the Schro¨dinger equation
with quasiperiodic potentials@9#.

To gain intuition, we present numerical experiments with
Eq. ~2! for K50.8, V50.55, v15(A521)/2 ~the inverse
golden mean!, v251.0, and choosep as the control param-
eter. For large values ofp (p.1.0), the damping is strong so
that the motion is typically periodic or quasiperiodic@7,8#.
As p decreases, say,p,pc'1.0, both strange nonchaotic
and chaotic attractors exist. Figure 1 shows the largest non-
trivial Lyapunov exponentL @one Lyapunov exponent is al-
ways zero for Eq.~2!# for pP[0.969,0.972]. The transition
occurs atp5pc'0.9707 whereL.0 for p,pc andL,0 for
p.pc . The attractors forp,pc are therefore chaotic. To
visualize the attractors, we plot the variablesf andv on the
stroboscopic surface of section defined byz5n(2p),
n50,1,... . Figure 2~a! shows a single long trajectory on the
chaotic attractor forp50.9702,pc ~L'0.002!. Examina-
tion of the attractors forp*pc indicates that they are strange
nonchaotic@14#. One feature about the transition is that the
Lyapunov exponentL passes through zero linearly, apart
from fluctuations caused by finite length of trajectories used
in numerical computation. The mechanism behind such a
smooth transition can be understood by examining the rela-
tive weights of the phase-space regions where the trajectory
experiences expansion and contraction@15#.

To explore the properties of the chaotic attractor for
p&pc , we seek to study the time evolution of a snapshot of
slices of the attractor@13#. Specifically, we choose a particu-
larly relevant ensemble of initial conditions on the [f,v]
plane and let them evolve in time. These initial conditions,
are chosen to have the samez(0)50 ~they start to evolve at
the same time!. A snapshot of slices of the attractor, i.e., the
distribution of the trajectories resulting from these initial
conditions in the phase space at fixed subsequent instants of
time, are examined. We find that the properties of the snap-

shot of slices of the attractor are qualitatively different for
p*pc ~L&0! andp&pc ~L*0!. In particular, forp*pc on
the nonchaotic side, the trajectories resulting from these ini-
tial conditions eventually converge to a single trajectory. At
any instant of time~after sufficiently long transient time!, the
snapshot of a slice of the attractor of these trajectories con-
sists of only one point in the phase space. As time
progresses, the single point for all trajectories moves in the
phase space, tracing out a trajectory which lies on the strange
nonchaotic attractor. The time required for the ensemble of
trajectories to converge to a single trajectory scales as
t;1/uLu;1/up2pcu. The interesting behavior, however, oc-
curs on the chaotic side whenp&pc with L being slightly
positive. In this case, the snapshot of slices of the attractor
are no longer single points even after long transient time.
There are time intervals during which the snapshot of slices
of the attractor consist of points spread over the entire cha-
otic attractor. There are also time intervals during which the
snapshot of slices of the attractor appear to consist of points
concentrated on extremely small regions in the phase space.
The sizeof the snapshot of slices of the attractor therefore
changes drastically with time in an intermittent fashion. To
quantify this situation, we define the time-dependent size of
the snapshot of a slice of the attractor,

S~ t !5S 1N (
i51

N

$@f i~ t !2^f~ t !&#21@v i~ t !2^v~ t !&#2% D 1/2,
~3!

FIG. 1. For Eq.~2!, the largest nontrivial Lyapunov exponentL
versus the parameterp ~damping rate! for 0.969<p<0.972. Other
parameter values areV50.55,K50.8,v251, andv1 is chosen to
be the inverse golden mean.

FIG. 2. ~a! A single trajectory of 20 000 points on the chaotic
attractor atp50.9702~L'0.002!. ~b! S(t), the size of the snapshot
of slices of the attractor computed using 128 trajectories, versus
time t for p50.9702.
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whereN is the number of points on the snapshot of slices of
the attractor, [̂f(t)&,^v(t)&] defines the geometric center of
these points at a given time:^f(t)&[(1/N)( i51

N f i(t) and
^v(t)&[(1/N)( i51

N v i(t). Figure 2~b! showsS(t) versust
for p50.9702, wheret is the integer time measured on the
surface of section corresponding to the real timet(2p/v2),
and the snapshot of slices of the attractor are computed from
128 initial conditions uniformly chosen along the diagonal
line of the rectangle defined byf~0!P@0,2p# and v(0)P
[21,1]. It can be seen that the size of the snapshot of slices
of the attractors exhibits an extreme type of intermittent be-
havior, the so-called ‘‘on-off’’ intermittency@16#. There are
time intervals during which the snapshot of slices of the
attractor are concentrated on regions with extremely small
size ~,10214! @17#. The time averaged size of the snapshot
of slices of the attractoron the chaotic sidenear the transi-
tion, defined aŝ S(t)&5limT→`(1/T)* 0

TS(t)dt, obeys the
following scaling relation:

^S~ t !&;L;up2pcu, ~4!

as shown in Fig. 3~a!, whereT520 000(2p/v2) with tran-
sient time 1000~2p/v2! has been used in the computation.
Figure 3~a! also shows that forp*pc on the nonchaotic side,
the averaged size of the snapshot of a slice of the attractor is
quite small, yet nonzero. This is due to the finite transient

time used in the computation. As the transient time increases,
the averaged size decreases towards zero. This has been veri-
fied for severalp values on the nonchaotic side. Figure 3~b!
shows the fraction of timesFe for which S(t) is larger than
e versusp, wheree51026. It can be seen thatFe increases
roughly linearly but saturates in the same range of Fig. 3~a!.
This indicates that the main factor contributing to the in-
crease in^S(t)& for p&pc ~the chaotic side! is a gradual
filling of the ‘‘gaps’’ corresponding to the time intervals in
which S(t) is close to zero.

The fundamental reason for the on-off intermittent behav-
ior in the size of the snapshot of slices of the attractor can be
understood by noting that there are finite-time fluctuations in
the Lyapunov exponentL. WhenL is slightly positive, tra-
jectories actually experience finite-time periods whenL is
negative. Imagine that one chooses a large number of initial
conditions in the phase space and computeL(T) for trajec-
tories resulting from these initial conditions over a timeT.
The histogram of all theseL(T) is usually a distribution with
finite width around the asymptotic value ofL which is only
slightly positive. Thus there is a spread of the histogram into
the negative side, indicating that there are trajectories expe-
riencing contraction in finite times. This leads to the ob-
served on-off intermittent behavior: trajectories spend
stretches of time expanding~leading to nonzero-size snap-
shot of slices of the attractor!, yet there are also long
stretches of time during which the trajectories experience
contraction, resulting in extremely small-size snapshot of
slices of the attractor.

To understand the scaling relation Eq.~4!, we note that
near the transition on the chaotic side, a typical trajectory
experiences slightly more expansion than contraction when it
wanders on the attractor under the quasiperiodic forcing@15#.
Thus we are motivated to consider here the following simple
expansion-contraction model:

yn115H 2yn mod~1! if f ~un!>0

yn/2 if f ~un!,0.
~5!

In the model, f (un)5p1cos(un) and un115un12pv,
wherev is an irrational number in~0,1!, andp is a param-
eter. The dynamics ofu models a quasiperiodic forcing. In
contrast to the pendulum example, model~5! exhibits a tran-
sition from two-frequency quasiperiodicity to chaos. Forn
large,u is uniformly distributed in@0,2p#. Equation~5! is a
modified version of the expansion-contraction model studied
for random maps in Ref.@18#. Consider the case wherep*0.
The probability for y to expand and to contract
are P$yn1152yn%5@2p22 cos21(p)]/2p'(p12p)/(2p)
51/21p/p, and P$yn115yn/2%'1/22p/p, respectively.
The Lyapunov exponent of they dynamics is therefore given
by l(p)5(1/21p/p)ln21(1/22p/p)ln~1/2!5~2 ln2/p!p.
Thusl(p) passes through zero linearly asp passes through
zero, an analogous situation to Fig. 1. To compute the aver-
age size of the snapshot of slices of the attractor, we take an
ensemble of initial conditions uniformly distributed in@0,1#
at n50. For subsequent times, the trajectories are uniformly
distributed in the interval [0,Sn], whereSn can take a se-
quence of values$1,1/2,1/22,...,1/2k%, wherek,n. ThusSn
is the size of the snapshot of slices of the attractor~up to a

FIG. 3. ~a! The average size of the snapshot of slices of the
attractor versus the parameterp for 0.969<p<0.972.~b! The frac-
tion of timesFe(p) at which the size of the snapshot of a slice of
the attractor is larger thane for 0.969<p<0.972, wheree51026.
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constant proportional factor!. The evolution ofSn is Sn1151
if anSn.1 andSn115anSn if anSn!1, wherean52 @with
probability (1/21p/p)# or 1/2 @with probability (1/22p/
p)#. ForSn!1, lettinghn52lnSn , we obtain a random walk
in hn : hn11
52lnan1hn . Let P(h,n) be the probability distribution
function for h at timen. For p*0, the average drift of the
random walk isn52^ln an&52l&0. ThusP(h,n) approxi-
mately obeys the diffusion equation

]P

]n
1n

]P

]h
5D

]2P

]h2
,

where D5~ln22l!2(1/21p/p)1~ln1/22l!2(1/22p/p)
'~ln2!2 is the diffusion coefficient. Whenl*0, the diffusion
equation can be solved to yield the asymptotic distribution
functionP(h)5(l/D)e2lh/D. The average size of the snap-
shot of a slice of the attractor is therefore given by
^Sn&'* 0

`e2hP(h)dh 5l/(D1l)'l/D5@2/~p ln2!#p for
p*0 ~it can be shown that̂Sn&50 asymptotically when
p,0!. We see that̂Sn& increases linearly asp. It should be
stressed that this linear behavior is only valid forp*0. Nu-

merical experiments with Eq.~5! verify the linear scaling
behavior of^Sn&.

We remark that quasiperiodically driven dynamical sys-
tems are relevant to many physical and biological situations.
The route to chaos in quasiperiodically driven systems is
fundamentally different from other major routes to chaos
such as the period doubling, the intermittency, and the crisis
routes. The linear scaling at the onset of the on-off intermit-
tent behavior of snapshot of slices of the attractor is a distinct
physical fingerprint of the onset of chaos in quasi-
periodically-driven systems.
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