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The challenging problem of network reconstruction from dynamical data can in general be formulated as an
optimization task of solving multiple linear equations. Existing approaches are of the two types: Point-by-point
(PBP) and global methods. The local PBP method is computationally efficient, but the accuracies of its solutions
are somehow low, while a global method has the opposite traits: High accuracy and high computational cost.
Taking advantage of the network symmetry, we develop a novel framework integrating the advantages of both
the PBP and global methods while avoiding their shortcomings: i.e., high reconstruction accuracy is guaranteed,
but the computational cost is orders of magnitude lower than that of the global methods in the literature. The
mathematical principle underlying our framework is block coordinate descent (BCD) for solving optimization
problems, where the various blocks are determined by the network symmetry. The reconstruction framework
is validated by numerical examples with a variety of network structures (i.e., sparse and dense networks) and
dynamical processes. Our success is a demonstration that the general principle of exploiting symmetry can be
extended to tackling the challenging inverse problem or reverse engineering of complex networks. Since solving
a large number of linear equations is key to a plethora of problems in science and engineering, our BCD-based
network reconstruction framework will find broader applications.
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I. INTRODUCTION

In applications of complex network theories, an essential
requirement is that the network structure is known to be able
to study the pertinent dynamical processes on the network,
predict the future state of the system, and even harness the
network dynamics through the articulation of some optimal
control strategies, and so on. However, in real-world situa-
tions, the detailed structure or topology of a complex network
is often unknown, or only the dynamical signals (time se-
ries) from different locations of the network are available,
rendering fundamental the problem of inferring the network
structure from data [1,2]. In the past two decades, various
methods have been developed to address this challenging “in-
verse” problem in modern network science and engineering
[2–10].

A natural reconstruction approach is to utilize the sim-
ilarity or correlation among dynamic signals of individual
nodes to infer the network structure. In this context, various
metrics such as the Pearson correlation coefficient, Jaccard
coefficient, mutual information, and Granger causality anal-
ysis can be used to capture the interactions between nodes.
The ultimate network structure is then derived by applying a
selected threshold. Furthermore, if the node signal data adhere
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to a Gaussian distribution, the network structure can be ascer-
tained through the covariance matrix [11]. Another approach
to network reconstruction involves identifying neighboring
nodes in the network by regressing the state of a given node
against the states of other nodes [12]; among these methods,
linear regression is the most frequently utilized technique.

A common operational principle underlying most existing
data-based network reconstruction methods is based on the
“point-by-point” (PBP) strategy whereby the local network
structure at each and every available node is inferred, and then
all the resulting local connections (links) are combined (e.g.,
intersection, union, or average) to remove spurious connec-
tions so as to generate a set of mutually consistent links among
the nodes. Mathematically, this entails solving multiple sets
of linear equations, because the local inference problem often
can be cast as finding the solutions of a set of linear equations.
For example, if the network to be inferred is sparse, local
reconstruction can be formulated as a sparse optimization (or
compressive sensing) problem [13,14], which is essentially
a problem of solving a set of linear algebraic equations.
This method is applied to the network reconstruction of a
diverse array of dynamical processes: Coupled oscillatory
dynamics [3,4,15], evolutionary game dynamics [13,16], epi-
demic spreading dynamics [17–22], transportation dynamics
[2,16,23], and collective dynamics [24,25].

The existing PBP methods, while demonstrated to be rea-
sonably effective in specific contexts, have failed to take
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advantage of an essential and common feature of complex
networks: Symmetry. In undirected networks, symmetry is
natural because the network adjacency matrix is symmetric.
In fact, real-world networks typically possess a large number
of symmetries that shape not only the structural properties of
the network such as the spectrum and redundancy but also
the dynamical processes on it [26–34]. In particular, in the
coupled dynamic network, the symmetries of the network
can lead to phase relations, resonances, and synchronous or
cycling chaos [35–37]. Since the symmetry constraints were
not taken into account in the existing PBP-based methods,
significant errors can arise in solving the linear equations at
each node and in combining the local solutions. Intuitively, an
alternative is to develop some sort of global method in which
the reconstruction is not done locally at the nodal level but
is done at the global scale of the whole network, i.e., solving
all the equations at all nodes in the network at the same time,
taking into account the network symmetry [38]. Apparently,
this strategy is practically workable only for small networks.
Compared with the symmetry constraint method, the error
generated by the PBP method depends on the amount of data
used for network reconstruction. If the data are insufficient,
the PBP method will yield errors and inevitably lead to low
reconstruction accuracy. While how large the network can be
for the global method to be effective depends on many factors
such as the total number of nodes, the phase-space dimension
of the nodal dynamical processes, the available computational
resources, etc., it is not unreasonable to anticipate the global
method to fail in real-world applications that involve large
complex networks. To develop a computationally feasible and
efficient framework for data-based network reconstruction,
taking advantage of the network symmetry so as to achieve
high accuracies is highly desired.

One should note that the symmetry constraint considered
in this work requires that not only is the network structure
symmetric but also the matrix formed by the solution of this
set of linear equations is symmetric. A counterexample is
the reconstruction of a gene regulatory network. The network
dynamics are nonlinear, and in the vicinity of a steady state,
one can apply small perturbations to the system to generate a
set of linear equations characterizing the connections in the
local neighborhood of each node [10,39,40]. Even though
its network structure (adjacency matrix) is symmetric, our
method is not applicable for this case because the matrix
formed by solving this set of linear equations may not be
symmetric.

In this paper, we develop a framework to solve multi-
ple linear equations subject to various symmetry constraints,
which integrates the advantages of both the PBP and global
methods while avoiding their shortcomings, i.e., when solv-
ing linear equation at each node, we regard the solution of
the linear equation of other nodes as constraints (network
symmetry) and obtain the solution through an iterative pro-
cess. Our framework can be proved to be convergent to
the global method by the block coordinate descent (BCD)
method, so it not only guarantees the high accuracy of
network reconstruction but also is computationally efficient
(with computational load far less than that with any global
reconstruction method). Differing from previous methods
based on sparse optimization, our reconstruction framework is

effective for both sparse and dense networks. Because the
mathematical underpinnings of our framework are the block
coordinate descent (BCD) method for solving optimization
problems, it is called the BCD framework. In brief, BCD is
an iterative algorithm for optimization that successively mini-
mizes the objective function in each block coordinate while
leaving the other coordinates fixed. Exploiting the network
symmetry to determine the blocks, we arrive at an opti-
mization framework for efficiently solving the complicated
set of linear equations resulting from the inverse problem
of data-based network reconstruction. Since the optimization
process uses the symmetry constraint when each of the nodes
(blocks) is optimized, the method is global and enjoys the high
accuracy—the intrinsic advantage of any global optimization
method. But since each optimization is done on only a block
(node), the computational load can be significantly reduced as
compared with the standard global method. Our mathematical
formulation and numerical experiments with a variety of net-
work structures and dynamical processes demonstrate that the
BCD method has the reconstruction accuracy of the traditional
global method but with a computational load comparable to
that of the local optimization method. These advantages are
brought upon by the network symmetry, providing another
example demonstrating the power of using symmetry to tackle
difficult problems. While the development of our BCD opti-
mization framework is motivated by and tested on data-based
reconstruction of complex networks with diverse network
structures and dynamical processes, the universal core of the
optimization problem is to solve a set of sophisticated lin-
ear equations, which is key to many problems in different
fields of science and engineering. We expect that our BCD
framework will find broader applications beyond network
reconstruction.

II. A BRIEF REVIEW OF POINT-BY-POINT
AND GLOBAL METHODS

To place our work in a proper context, we review the basics
of the previous PBP and global methods in the language of
linear-equation solving. Such a description facilitates an ex-
planation and understanding of our BCD based reconstruction
framework.

The network reconstruction problem from some dynamics
often can be cast as finding the solutions of a set of linear
equations. A typical example is a complex network of n nodes
with coupled nonlinear oscillatory dynamics system [1] (see
Appendix A 1 for a more detailed description), which can be
described by

ẋi = f i(xi ) +
n∑

j=1

ai, jgi, j (xi, x j ), (1)

where xi ∈ RD is the state vector of the ith node, and the
functions f i: R

D → RD and gi, j : R
D × RD → RD govern the

intrinsic and interaction dynamics of node i, respectively, and
ai, j is an element of the adjacency matrix A: ai, j = 1 if there is
a physical interaction from node i to j, and ai, j = 0 otherwise.
The network reconstruction task entails obtaining solutions of
the adjacency matrix A.
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For the dth component of the state vector at node i, the
dynamical equation is

ẋ(d )
i (τm) = f (d )

i (xi(τm)) +
n∑

j=1

ai, jg
(d )
i, j (xi(τm),x j (τm)). (2)

In general, ẋ(d )
i (τm) and x(d )

i (τm) can be sampled as time-
series data. When f i and gi, j are known, it is clear that Eq. (2)
can be rewritten as the following linear equations:

C i · Ai = yi, (3)

where C i ∈ Rmi×n and yi ∈ Rmi , which can be calculated by
x(d )

i (τm) of sampling mi times, i.e., m = 1, 2, . . . , mi, and mi

represents the length of time series or the number of equa-
tions in the linear equations: mi = M, i = 1, 2, . . . , n with M
being the length of the time series recording of the nodal state.
The quantity to be solved is Ai = [ai,1, . . . , ai,i, . . . , ai,n]T ,
which represents the ith row of the adjacency matrix A, where
ai, j > 0 if node j is a neighbor of node i and ai, j = 0 oth-
erwise. The neighbors of node i can be inferred when Ai is
solved from the set of linear equations in Eq. (3), and the
whole network can be reconstructed by inferring the neigh-
bors of all nodes.

A. Point-by-point method

To reconstruct the network structure from continuous or
discrete dynamics, one infers the neighbor of each node i in
the network. Similar to the network reconstruction from cou-
pled nonlinear oscillatory dynamics, the local reconstruction
task is equivalent to solving the following linear equations [1–
4,10,13–18,20,21,38–48]:

C i · Ai = yi+εi, (4)

where εi ∈ Rmi represents the noise in the time series
measurements from node i. The whole network can be recon-
structed by inferring the neighbors of all the nodes, a task that
requires solving n sets of mi linear equations, one for each
node:

C1 · A1 = y1 + ε1,

C2 · A2 = y2 + ε2,

...

Cn · An = yn + εn. (5)

1. Point-by-point method without sparsity constraint

The essence of the PBP method is to treat the linear equa-
tions in Eq. (5) as independent, which are solved one by one.
For example, each equation can be solved by the least-squares
method:

min ‖C i · Ai − yi‖2
2, (6)

whose solution is

Ai = [(C i)T · C i]−1 · (C i )T · yi, (7)

where the matrix (C i )T · C i can be invertible only for mi � n.
To this end, a two-norm constraint (i.e., ridge regression) is

often introduced to ensure that the matrix inverse in Eq. (7)
exists:

min ‖C i · Ai − yi‖2
2 + β‖Ai‖2

2. (8)

With this constraint, the solution of Eq. (8) can be written as

Ai = [(C i)
T · C i + βI]−1 · (C i )T · yi, (9)

where I is the identify matrix and β is a hyperparameter. For
β = 0, Eq. (9) reduces to Eq. (7). Otherwise, (C i)T · C i + βI
is invertible for β > 0.

For an nth-order matrix, the computational time required
for solving the inverse of the matrix is O(n3), and the time to
solve (C i)T · C i is O(Mn2) for mi = M, i = 1, 2, . . . , n. There-
fore, the total time required for solving Eq. (5) is O(n(Mn2 +
n3)) = O(Mn3 + n4). In general, M has a linear dependence
on n [M = O(n)]. Overall, the required computational time
for reconstructing a general, nonsparse network is O(n4).
Since each equation of Eqs. (5) is solved independently, the
computations can be done in parallel. Therefore, we have an
effective runtime of O(n4/p) by assuming that there are p
processors.

2. PBP-ADMM method for sparse networks

Many real-world networks are sparse, i.e., the number of
neighbors of each node is much smaller than the size of
the network, rendering applicable compressed sensing based
sparse optimization method for solving each linear equation in
Eqs. (5) with a small amount of data. In general, Lasso regres-
sion can be used [16,49]:

min 1
2‖C i · Ai − yi‖2

2 + λ‖Ai‖1, (10)

where λ is a hyperparameter. The classical method to solve the
linear equations defined by Eq. (10) is the alternating direction
method of multipliers (ADMM) [50]. In particular, the opti-
mization problem (10) is equivalent to the follow equation:

min 1
2‖C i · Ai − yi‖2

2 + λ‖Zi‖1 s.t. Ai − Zi = 0, (11)

where Zi ∈ Rn and whose augmented Lagrangian function is
given as

Lρ (Ai, Zi,V i ) = 1

2
‖C i · Ai − yi‖2

2 + λ‖Zi‖1

+ (V i )T · (Ai − Zi ) + ρ

2
‖Ai − Zi‖2

2,

(12)

where V i ∈ Rn is the vector of n Lagrange multipliers. The
ADMM algorithm gives

(Ai )k+1 = arg min
Ai

Lρ (Ai, (Zi )
k
, (V i )

k
),

(Zi )k+1 = arg min
Zi

Lρ ((Ai )
k+1

, Zi, (V i )
k
),

(V i )k+1 = (V i )k + ρ((Ai )
k+1 − (Zi )

k+1
), (13)

where k represents the kth iteration in ADMM algorithm.
The main steps are as follows: First, by solving (Ai )k+1 =
arg minAi Lρ (Ai, (Zi )

k
, (V i )

k
), one gets

(Ai )k+1 = [(C i)T · C i + ρI]−1

· [(C i)T · yi + ρ(Zi )k − (V i )k]. (14)
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Next, by solving (Zi )k+1 = arg minZi Lρ ((Ai )
k+1

, Zi, (V i )
k
),

one obtains

(Zi )k+1 = S λ
ρ

(
(Ai )

k+1 + (V i )
k

ρ

)

=
[(

(Ai )
k+1 + (V i )

k

ρ

)
− λ

ρ

]
+

−
[(

−(Ai )k+1 − (V i )k

ρ

)
− λ

ρ

]
+
, (15)

where (x − y)+ = [(x − y) + |x − y|]/2. Equation (13) can
then be rewritten as

(Ai )k+1 = [(C i)T · C i+ρI]−1 · [(C i)T · yi+ρ(Zi )k−(V i )k],

(Zi )k+1 = (
Sk

1 + ∣∣Sk
1

∣∣)/2 − (
Sk

2 + ∣∣Sk
2

∣∣)/2,

(V i )k+1 = (V i )k + ρ((Ai )
k+1 − (Zi )

k+1
), (16)

with

Sk
1 = (Ai )k+1 + (V i )

k

ρ
− λ

ρ
,

Sk
2 = −(Ai )k+1 − (V i )

k

ρ
− λ

ρ
. (17)

The neighbors of each node can be determined by iterat-
ing Eq. (16) until it reaches a steady state [i.e., ‖(Ai )k+1 −
(Ai )k‖2

2 � ε = 0.001] or the maximum number of iterations
(1000 is given). Once the neighborhoods of all nodes are
determined, the whole network structure can be obtained.

The required computational time is determined by two
factors. First, it is necessary to calculate [(C i )T · C i + ρI]−1

and (C i )T · yi for each node i. Both are invariant quantities
that can be solved before iteration, for which the time require-
ment is O(n3) [M = O(n)]. Second, the time needed for the
iteration process Eq. (16) for each node is O(tmaxn2) with
tmax being the maximum number of iterations. As a result,
the total computational time of the PBP-ADMM algorithm is
O(tmaxn3 + n4). Similarly, the local network structure at each
node can be reconstructed independently, the computations
can be done in parallel. Namely, when there are p processors,
we have an effective runtime of O(tmaxn3/p + n4/p).

B. Global method

A tacit assumption underlying the PBP or PBP-ADMM
methods is that the resulting linear equations are independent
of each other. This may lead to errors, especially for symmet-
ric networks. For example, for an undirected network with a
symmetric adjacency matrix: ai, j = a j,i for i, j = 1, 2, . . . , n,
the PBP or PBP-ADMM methods can generate solutions that
violate this symmetric relation: ai, j �= a j,i as ai, j is solved
from node i but a j,i is obtained from node j. In fact, for
undirected networks, Eq. (5) is a set of multiple linear equa-
tions with symmetric properties. Failure to take into account
the symmetry in the equations will result in reduced solution
accuracies. An approach is to develop a global method with or
without the sparsity constraint by treating Eq. (5) as a whole.

1. Global method without sparsity constraint

The problem to solve Eq. (5) as a whole can be formulated
as

min
∑

i

‖C i · Ai − yi‖2
2, (18)

with the symmetry ai, j = a j,i, where the number of unknown
quantities is n(n + 1)/2. Adding the two-norm constraint to
Eq. (18) to ensure that the matrix is invertible leads to

min
∑

i

‖C i · Ai − yi‖2
2 + β

2
‖A‖2

2. (19)

Globally, Eq. (19) can be written as

min ‖Ĉ · Â − ŷ‖2
2 + β‖Â‖2

2, (20)

where the vector Â = [a1,1, . . . , a1,n, a2,2, . . . , a2,n,

. . . , an−1,n, an,n]T has n(n + 1)/2 components, Ĉ ∈
R[M∗n]×[n(n+1)/2] and ŷ ∈ RM∗n are the global matrix and
vector, respectively. The solution of Eq. (20) can be written as

Â = [(Ĉ)
T · Ĉ + βI]−1 · (Ĉ)T · ŷ. (21)

Because Ĉ is a matrix with Mn rows and n(n + 1)/2 columns,
the time required for calculating (Ĉ)T · Ĉ is O(n2(Mn)n2) =
O(Mn5). Note that the dimension of the matrix [(Ĉ)T · Ĉ +
βI] is [n(n + 1)/2] × [n(n + 1)/2]. Since the time required
to calculate the inverse of an n × n matrix is O(n3), the time
needed for directly calculating the inverse of [(Ĉ)T · Ĉ + βI]
is O(n6). The total computational time required to obtain the
global solution is thus O(Mn5 + n6), which is O(n6) if M =
O(n).

2. Global-ADMM method for sparse networks

For sparse networks, Eq. (18) is subject to the sparsity
constraint and becomes

min
∑

i

‖C i · Ai − yi‖2
2 + λ‖A‖1, (22)

which can be written in the following global form:

min ‖Ĉ · Â − ŷ‖2
2 + 2λ‖Â‖1, (23)

where the matrix Ĉ and the vectors Â and ŷ have the same
forms as those in Eq. (20). Equation (23) can be rewritten as

min 1
2‖Ĉ · Â − ŷ‖2

2 + λ‖Â‖1

s.t. Â − Ẑ = 0,
(24)

whose augmented Lagrangian function is

Lρ (Â, Ẑ, V̂ ) = 1

2
‖Ĉ · Â − ŷ‖2

2 + 2λ‖Ẑ‖1

+ (V̂ )T (Â − Ẑ) + ρ

2
‖Â − Ẑ‖2

2, (25)

where V̂ ∈ Rn(n+1)/2 is the vector of n(n + 1)/2 Lagrange
multipliers. Application of the ADMM algorithm leads to

(Â)k+1 = [(Ĉ)
T · Ĉ + ρI]−1 · [(Ĉ)

T · ŷ + ρ(Ẑ)
k − (V̂ )

k
],

(Ẑ)k+1 = Sk
1+|Sk

1|
2 − Sk

2+|Sk
2|

2 ,

(V̂ )k+1 = (V̂ )k + ρ((Â)
k+1 − (Ẑ)

k+1
),

(26)
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with

Sk
1 = (Â)k+1 + (V̂ )

k

ρ
− λ

ρ
,

Sk
2 = −(Â)k+1 − (V̂ )

k

ρ
− λ

ρ
.

(27)

The connectivity of each node can be inferred by iterating
Eq. (26) until convergence is achieved. The matrix inverse
[(Ĉ)T · Ĉ + ρI]−1 and the vector (Ĉ)T · ŷ can be calculated
before the iterations with the computational time O(n6)
for M = O(n). The iteration process requires computational
time O(tmaxn4). The total computational time required of the
global ADMM algorithm under the sparsity constraint is thus
O(tmaxn4 + n6).

III. METHOD BASED ON BLOCK
COORDINATE DESCENT

The PBP method and its variant PBP-ADMM method suf-
fer one significant drawback of low accuracy, because Eq. (5)
is solved point by point without taking into account the net-
work symmetry. In fact, the PBP or PBP-ADMM solutions
typically violate the symmetry. While synthesizing all the
local equations into a set of global equations overcomes this
difficulty as the symmetry is naturally represented in the
equations (i.e., GLO and GLO-ADMM methods), the amount
of computation required is often infeasible because of the
need to solve equations with a very large number of unknown
variables at the same time.

The fact that, for the solutions of Eq. (5), the global method
has higher accuracy and the PBP method is computationally
efficient has motivated us to integrate the two methods by
exploiting the natural symmetry of the network. In particular,
when solving each linear equation in Eq. (5), we regard the
other linear equations as constraints (network symmetry) and
obtain the solution through an iterative process. This leads to
our general BCD framework. The basic idea is that when solv-
ing the ith equation (i.e., ai,1, . . . , ai,i, . . . , ai,n) of Eqs. (5),
the solution of other equations about a1,i, . . . , ai,i, . . . , an,i

can be taken as the constraint condition (i.e., symmetry
constraint ai, j = a j,i), and iterating this process leads to an
optimal solution.

A. General block coordinate descent method without
sparsity constraint

More specifically, when the values of A j for j = 1, . . . , i −
1, i + 1, . . . , n are given in advance, the problem of solving
(ai,1, . . . , ai,i, . . . , ai,n) without the sparsity constraint can be
written as solving the following optimization problem:

min ‖C i · Ai − yi‖2
2 + α‖C̃ i · Ai − ỹi‖2

2 + β‖Ai‖2
2, (28)

where the solution of C̃ i · Ai = ỹi is a1,i, . . . , ai,i, . . . , an,i in
A j for j = 1, . . . , i − 1, i + 1, . . . , n, then ‖C̃ i · Ai − ỹi‖2

2 in-
dicates the solutions of other linear equations about Ai as
constraints (network symmetry ai, j = a j,i) when the ith linear
equation of Eq. (5) is solved, and the parameter α ∈ [0, 1] is a

hyperparameter. Here, we set

C̃ i ≡ [(
C 1

i

)T
, . . . ,

(
C i−1

i

)T
, 0,

(
C i+1

i

)T
, . . . ,

(
C n

i

)T ]T
,

ỹi ≡ [(
Y 1

i

)T
, . . . ,

(
Y i−1

i

)T
, 0,

(
Y i+1

i

)T
, . . . ,

(
Y n

i

)T ]T
,

(29)

where

C j
i =

⎡⎢⎢⎢⎢⎢⎣
0 · · · 0 C j

1,i 0 · · · 0

0 · · · 0 C j
2,i 0 · · · 0

· · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 C j

mj ,i
0 · · · 0

⎤⎥⎥⎥⎥⎥⎦, (30)

and

Y j
i =

⎡⎢⎢⎢⎣
y j

1 − ∑
l �=i Ci

1,l a j,l

...

y j
mj − ∑

l �=i Ci
mj ,l

a j,l

⎤⎥⎥⎥⎦, (31)

with C j
k,i being the element of the kth row and the ith column

in matrix C j , and y j
i is the ith component of vector y j .

The above settings can ensure the convergence of BCD
method to global method when α = 1, the detailed process
is given Theorem 1 at the end of this section. The hyperpa-
rameter α represents the degree of dependence on other linear
equations when solving the ith linear equation of Eq. (5). If α

is large, the solution at the current time step is close to that at
the preceding time step, implying slow convergence. A way
to improve the convergence rate is to reduce the dependence
on the solutions at the preceding time step, i.e., reduce the
value of α. For α = 0, each linear equation of Eqs. (5) is
solved independently, and the BCD method reduces to the
PBP method.

With Eq. (28), the solution of Ai is obtained as

Ai = [(Ci)
T · Ci + α(C̃i )

T · C̃i + βI]−1

· [(Ci)
T · yi + α(C̃i )

T · ỹi]. (32)

We set F i ≡ (C i )T · C i and Gi ≡ (C i)T · yi and, then analyze

the terms in Eq. (32) one by one. First, the term (C̃i)
T · C̃i can

be calculated as

(C̃i )
T · C̃i = diag

([
F 1

i,i, . . . , F i−1
i,i , 0, F i+1

i,i , . . . , F n
i,i

]T )
,

(33)

with F j
k,i being the element of the kth row and the ith column

in matrix F i, diag(x) represents a diagonal matrix if x is a
vector, or diag(X ) denotes a vector composed of the diagonal
elements of the matrix X . Second, the term (C̃i )T · ỹi can be
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calculated as(
C̃i

)T · ỹi =
∑
j �=i

(
C j

i

)T · Y j
i

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G1
i

...

Gi−1
i

0

Gi+1
i

...

GN
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−diag

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1(i, :)

...

F i−1(i, :)

F i(i, :)

F i+1(i, :)

...

F N (i, :)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
A1

i

)T

...(
Ai−1

i

)T

0(
Ai+1

i

)T

...(
AN

i

)T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(34)

where Gj
i is the ith component of vector G j , F j (i, :) [or

F j (:, i)] is the ith row (or ith column) of matrix F j , and A j
i =

[a j,1, . . . , a j,i−1, 0, a j,i+1, . . . , a j,n]T . Furthermore, letting

Bi ≡ [
G1

i , . . . , Gi−1
i , 0, Gi+1

i , . . . , Gn
i

]T
,

�i ≡ [F1(:, i), . . . , Fn(:, i)]T ,

	i ≡ [
A1

i , . . . , Ai−1
i , 0, Ai+1

i , . . . , An
i

]T
,

we can simplify Eq. (34) as

(C̃i )
T · ỹi = Bi − diag(�i · 	i ). (35)

Finally, the solution in Eq. (28) can be written as

Ai = 
 i · [Gi + α(Bi − diag(�i · 	i ))], (36)

where


 i ≡ [
F i + βI + α · diag([
F 1

i,i, . . . , F i−1
i,i , 0, F i+1

i,i , . . . , F n
i,i

]T )]−1
.

In Eq. (36), only quantity 	i contains the elements of A.
However, the other quantities (i.e., 
 i, �i, Gi, and Bi) do
not contain the elements of A, so they can be calculated in
advance.

In general, solving A is an iterative process. Given the
initial value A, we calculate Ai for each node i according to
Eq. (36) until the solution converges. A key advantage of our
BCD-based method is that the matrices 
 i and �i as well as
the vectors Gi and Bi in Eq. (36) can be calculated before the
iteration process, making it highly efficient. In fact, the main
reason behind the high efficiency of our BCD method is that
the key matrix 
 i can be obtained in advance of the iterative
process.

The computational load of our BCD method is determined
by two tasks. First, the time required for calculating 
 i, �i,
Gi, and Bi for all nodes is O(n4) [assuming M = O(n)]. Obvi-
ously, each node can be processed independently, so the time
required in parallel is O(n4/p) when there are p processes.
Second, the iteration process requires computational time on
the order of O(tmaxn3). As a result, the total time required of
our BCD method is O(tmaxn3 + n4) [or O(tmaxn3 + n4/p) in
parallel]. Compared with the PBP method, there is an extra

time on the order of O(tmaxn3) from the iteration process.
However, the total time required of our BCD algorithm is
practically negligible in comparison with the time required
for a global algorithm. Remarkably, the final solution of our
BCD method in general converges to the solution of the global
method, thereby guaranteeing high accuracy.

Theorem 1. The convergence of the BCD method to the
global method when α = 1, i.e., the iterative Eq. (28) can
converge to the solution of Eq. (19), when C̃ i and ỹi are given
in Eq. (29) and α = 1.

Proof. As shown in Sec. II B 1, for general complex net-
works without any sparsity constraint, solving Eq. (5) as a
whole is equivalent to obtaining solutions to the following
optimization problem (global method):

min
∑

i

‖C i · Ai − yi‖2
2 + β

2
‖A‖2

2, (37)

which has the same form as Eq. (19).
For Eq. (37), we can use the block coordinate de-

scent (BCD) method to solve it. The basic idea is to
calculate the values of ai,1, . . . , ai,i, . . . , ai,n by fixing the
values of a j,1, . . . , a j,i−1, a j,i+1, . . . , a j,n for j = 1, . . . , i −
1, i + 1, . . . , n. When the iterative process converges, the
resulting solution is the exact solution of Eq. (37). A
theoretical analysis of the iterative process and its conver-
gence is given in Appendix B. More specifically, if the
values of aj,1, . . . , a j,i−1, a j,i+1, . . . , a j,n for j = 1, . . . , i −
1, i + 1, . . . , n are given in advance, the problem of solving
(ai,1, . . . , ai,i, . . . , ai,n) from Eq. (28) is equivalent to solving
the following optimization problem:

min ‖C i · Ai − yi‖2
2+

∑
j �=i

∥∥ai, jC j (:, i) − Y j
i

∥∥2

2 + β‖Ai‖2
2,

(38)

where C j (:, i) is the ith column of matrix C j , and the vector
Y j

i is given by

Y j
i =

⎡⎢⎣ y j
1 − ∑

l �=i Ci
1,l a j,l

...

y j
mj − ∑

l �=i Ci
mj ,l

a j,l

⎤⎥⎦.

Obviously, when C̃ i and ỹi are set as shown in Eq. (29),
Eq. (38) can be calculated as

min ‖C i · Ai − yi‖2
2 + ‖C̃ i · Ai − ỹi‖2

2 + β‖Ai‖2
2. (39)

Therefore, Eq. (39) is consistent with Eq. (28) when α = 1,
namely, the BCD method converges to the global method. �

B. Block coordinate descent method for sparse networks

With the sparsity constraint, the solutions of Eq. (22) is
equivalent to

min
∑

i ‖C i · Ai − yi‖2
2 + λ‖Z‖1

s.t. A − Z = 0.
(40)
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The augmented Lagrangian function is

Lρ (A,Z,V ) =
∑

i

‖C i · Ai − yi‖2
2 + λ‖Z‖1

+
∑

i

(V i )
T · (Ai − Zi ) + ρ

2
‖A − Z‖2

2,

(41)

where A, Z , and V are symmetric matrices. Application of the
ADMM algorithm gives

(A)k+1 = arg minA Lρ (A, (Z )k, (V )k ),

(Z )k+1 = arg minZ Lρ ((A)k+1,Z, (V )k ),

(V )k+1 = (V )k + ρ((A)k+1 − (Z )k+1).

(42)

The most complex problem in solving Eq. (42) is di-
rectly to solve A, therefore, the BCD method will be used
to improve efficiency and ensure accuracy, which we call the
BCD-ADMM method. Our BCD-ADMM method consists of
two steps.

Step 1: Solving (A)k+1 = arg minA Lρ (A, (Z )k, (V )k ).
Similar to solving the BCD method, solving A is an it-

erative process. In particular, given the initial value A, we
calculate Ai for each node i according to the following formula
until the solution converges:

min ‖C i · Ai − yi‖2
2+α‖C̃ i · Ai − ỹi‖2

2

+ 2(V i )T · (Ai − Zi ) + ρ‖Ai − Zi‖2
2. (43)

The solution of Eq. (43) is

Ai = 
̃ i[Gi + α(Bi − diag(�i · 	i )) + ρZi − V i], (44)

with


̃ i = [
F i + α · diag

([
F 1

i,i, . . . , F i−1
i,i , 0, F i+1

i,i , . . . , F n
i,i

]T )
+ ρI

]−1
. (45)

Step 2: Solving (Z )k+1 = arg minZ Lρ ((A)k+1,Z,Vk ).
Solving the optimization problem

min λ‖Z‖1 +
∑

i

(V i )
T · (Ai − Zi ) + ρ

2
‖A − Z‖2

2 (46)

we obtain

Z = Sλ / ρ

(
A + V

ρ

)
=

[(
A + V

ρ

)
− λ

ρ
I
]

+
−

[(
−A − V

ρ

)
− λ

ρ
I
]

+
. (47)

Solving for A is thus an iterative process. Given the ini-
tial condition for A, we iterate Eq. (42) until it converges,
where the number of iterations required is tmax. The quantity
(A)k+1 = arg minA Lρ (A, (Z )k, (V )k ) can then be calculated
using Eq. (44) using t̃max rounds of iteration.

In executing the ADMM algorithm, it is not necessary to
demand high accuracy in the iterative process for matrix A
[50]. We can then set t̃max = 1. The quantities 
̃ i, Gi, Bi,
and �i in Eq. (44) can be calculated prior to the iteration
process because their calculation is independent of that of
A, making it highly efficient. Overall, the computational load

of the BCD-ADMM algorithm comes from two components.
First, for each node i, the time required to calculate 
̃ i, Gi, Bi,
and �i is O(n4) for M = O(n). Second, the time required of
the iteration process is O(tmaxt̃maxn3). For t̃max = 1, the total
computational time is O(tmaxn3 + n4) [or O(tmaxn3 + n4/p) in
parallel], which is similar to that of the PBP-ADMM algo-
rithm and considerably lower than that of the global ADMM
method.

Taken together, for both the BCD and BCD-ADMM
algorithms, the essence is to divide the multiple linear
equations into a series of equations, so high efficiency is guar-
anteed. As the equations are solved one by one, the solutions
of the other equations are treated as constraints [e.g., Eqs. (28)
and (43)] by incorporating the network symmetry. We can
prove that the solutions are in fact the global solution.

IV. NUMERICAL VALIDATION

We test and evaluate the accuracy and efficiency of our
BCD or BCD-ADMM method using representative networks
and dynamics.

A. Evaluation metrics

We use the following criterion to reconstruct a network
from data: If the calculated element ai, j of the adjacency
matrix exceeds 0.5, an edge connecting nodes i and j exists;
otherwise, such an edge does not exist if ai, j < 0.5. The recon-
struction accuracy can be measured by the F1 index defined as

F1 = 2 × Precision × Recall

Precision + Recall
, (48)

where 0 � F1 � 1, Precision = TP
TP+FP , Recall = TP

TP+FN , with
TP, FP, and FN denoting the rates of true positive, false
positive, and false negative, respectively, a larger value of
F1 indicates a higher reconstruction. accuracy. Perfect recon-
struction is achieved for F1 = 1.

B. Experimental results

Figure 1 presents the results of reconstructing the Zachary
karate club network with coupled nonlinear oscillatory dy-
namics. The sparse network has 34 nodes and 78 edges,
as shown in Fig. 1(a). (The details of the coupled nonlin-
ear oscillatory dynamics model are given in Appendix A 1).
Figure 1(b) shows the reconstruction results from the BCD-
ADMM method, where the values of ai, j for the existent
edges (blue dots) and nonexistent edges (yellow dots) can be
unambiguously distinguished, but the PBP-ADMM method
fails this task. Figure 1(c) shows the F1 scores from the BCD-
ADMM method for α = 1 and α = 0.05, as well as the F1
score from the PBP-ADMM method. It can be seen that, for
α = 0.05, the F1 score reaches its perfect unity value even
when the iteration time t is small. For t > 1000, the F1 score
from the BCD-ADMM method with α = 1 reaches the unity
value. In contrast, the F1 score from the PBP-ADMM method
can never exceed 0.9. Note that the convergence speed and
accuracy in solving each linear equation is different with the
PBP-ADMM method. For example, the convergence speed is
fast and the accuracy is high when solving the linear equa-
tions associated with the small degree nodes, but the opposites

034304-7



MA, LAI, LI, AND ZHANG PHYSICAL REVIEW E 108, 034304 (2023)

FIG. 1. Reconstruction of the Zachary karate club network with
coupled nonlinear oscillatory dynamics. (a) The actual network (the
ground truth). (b) The estimated values of the elements of the
network adjacency matrix ai, j from the PBP-ADMM (left dashed
boxes), BCD-ADMM with α = 0.05 (central dashed boxes), and
BCD-ADMM with α = 1 (right dashed boxes). The horizontal axes
in each dashed box represent the IDs of all edges, which are ran-
domly arranged. The length of the time series is M = 12, where
M is the number of accessible time instants in the coupled non-
linear oscillatory dynamics. The parameter setting is t̃max = 1 and
tmax = 2000. (c) F1 score versus the iteration length t for three cases:
BCD-ADMM with α = 0.05, BCD-ADMM with α = 1, and PBP-
ADMM.

hold when solving the linear equations with large degree
nodes. As a result, the F1 score as the overall reconstruction
accuracy for the PBP-ADMM method increases first, then
decreases, and finally reaches a constant value.

Figure 1 illustrates the high accuracy of our BCD-ADMM
method. The next question is how does the BCD (or BCD-
ADMM) method compare with the global (or global ADMM)
method in terms of the accuracy? Representative results are
shown in Fig. 2, where the differences between A1(t ) (the re-
constructed adjacency matrix from the BCD or BCD-ADMM
method) and A2 (the reconstructed matrix from the global or

FIG. 2. Performance comparison between the BCD (or BCD-
ADMM) and global (or global ADMM) methods. Shown are the
differences between the adjacency matrix A1(t ) reconstructed from
the BCD (α = 1) or BCD-ADMM (α = 1) method using t iterations
and the reconstructed matrix A2 from the global or global ADMM
method versus the iteration time t , respectively. (a) Performance
comparison of reconstructing a resistance network with current trans-
portation dynamics (see Appendix A 3) between the BCD and global
methods, where the network is fully connected (dense network) with
n = 200 nodes and the link weights follow a uniform distribution
in [1.0,3.0]. The parameter setting is the length of the time series
M = 240, ξi ∼ N (0, σ 2), and β = 0.(b) Performance comparison of
reconstructing an Erdös-Rényi (ER) random network [51] of size
n = 200 and average degree 〈k〉 = 14 (sparse network) with coupled
nonlinear oscillatory dynamics between the BCD-ADMM and global
ADMM methods.

FIG. 3. Monotonic behavior of the accuracy of the BCD method
with time. Shown is the reconstruction error ‖A1(t ) − A‖1/n2 ver-
sus the length t of iteration, based on the time series from current
transportation dynamics, where A1(t ) is the reconstructed adjacency
matrix and A is the ground truth. The network and other parameter
values are the same as those in Fig. 2. Panels (a) and (b) are for the
noise amplitude σ = 0.01 and σ = 0.05, respectively.

global ADMM method) as a function of the iteration time are
shown. It can be seen that the differences approach zero, in-
dicating that our BCD and BCD-ADMM methods converges
to the solution of the global and global ADMM methods,
respectively, and thereby validating the theoretical analysis in
Theorem 1.

For general networks without any sparsity constraint, the
BCD method enables us to control the accuracy by the number
of iterations. In particular, comparing the computational load
of the BCD method O(tmaxn3 + n4) with that of the PBP
method O(n4), we see that an extra term of the BCD method
comes from the iteration, where the time needed to carry out
each iteration step is O(n3) but this is one order of magnitude
smaller than the computational load of the PBP method. In
fact, it can be proven (in Appendix B) that the accuracy of the
BCD method increases with time monotonically. Numerical
evidence supporting this result is shown in Fig. 3. Since the
computational loads of the BCD and PBP methods are of the
same order of magnitude, this feature of the BCD method
suggests an effective way to obtain a highly accurate recon-
struction result: Performing the PBP method first and setting
the outcome as the initial condition for the BCD method. The
final reconstruction accuracy can then be controlled by the
number of iterations of the BCD method, as the computational
load required to carry out each iteration is only O(n3).

As most real-world networks meet the sparsity condi-
tion, we study the performance of the BCD-ADMM method
in comparison with the PBP-ADMM or the global ADMM
method. Representative results are shown in Fig. 4 for a
dynamical scale-free network, where it can be seen that the
convergence speed of the BCD-ADMM method improves as
the value of α decreases but at the expense of decreased accu-
racy. It is thus useful to set α = 1/M. Figure 4 indicates that
the BCD-ADMM method gives not only higher reconstruction
accuracy than that of the PBP-ADMM method but also faster
convergence.

To further test the general advantages of the BCD-ADMM
method, we compare its performance with that of the PBP-
ADMM and global methods for different kinds of synthetic
networks and dynamical processes. Figure 5 shows the F1
score versus the length M of the time series for two types of
networks (scale-free and random) and two kinds of dynamical

034304-8



GENERAL OPTIMIZATION FRAMEWORK FOR ACCURATE … PHYSICAL REVIEW E 108, 034304 (2023)

FIG. 4. Performance comparison of BCD-ADMM,
PBP-ADMM, or global ADMM methods for sparse complex
networks. The time series data are generated from a coupled
nonlinear oscillatory dynamics, scale-free network [52] of size
n = 200 and average degree 〈k〉 = 14. (a)–(c) Reconstruction error
‖A1(t ) − A‖1/n2 versus the length t of iteration for the length of
the time series M = 25, M = 45, and M = 100, respectively. (d)–(f)
The corresponding F1 scores.

processes (coupled oscillatory and evolutionary-game dynam-
ics, the details of the dynamical network model are given
in Appendix A). It can be seen that the value of F1 in-
creases with M for all three methods, but the critical values
of M required to achieve error-free reconstruction with the
BCD-ADMM and global ADMM methods are approximately
the same but much smaller than that with the PBP-ADMM

FIG. 5. Effects of the length of the time series on recon-
struction. Presented is performance comparison of BCD-ADMM,
PBP-ADMM, and global ADMM methods for two types of com-
plex networks and two kinds of dynamical processes in terms of
the F1 score. The left and right columns are for a scale-free and a
random network, respectively, whereas the top and bottom rows are
for coupled nonlinear oscillatory and evolutionary-game dynamics,
respectively. Both networks have n = 200 nodes and average degree
〈k〉 = 14. Each data point is the result of averaging over five inde-
pendent realizations. In all cases, BCD-ADMM and global ADMM
require similar and relatively short time series to achieve zero recon-
struction error, but the PBP-ADMM methods require much longer
time series.

FIG. 6. Performance comparison of BCD-ADMM,
PBP-ADMM, and global ADMM methods for real world networks.
Shown are the F1 scores versus the length M of time series for the
three methods for (a) Zachary karate club network, (b) Dolphins
network, (c) Polbooks network, (d) US college football network.
Each data point is the result of averaging over five independent
realizations. The time series data are generated from a coupled
nonlinear oscillatory dynamics. Behaviors similar to those for
synthetic networks in Fig. 5 are observed.

methods. Since the computational load of the global ADMM
method is much higher than that of the BCD-ADMM method,
the results in Fig. 5 suggest that, among the three methods,
the BCD-ADMM method is the best in terms of accuracy
and computational load. The same conclusion can be drawn
based on the performance comparison results from four real-
world networks: The Zachary karate club network, Dolphins
network, Polbooks network, and US college football network,
as shown in Fig. 6.

V. CONCLUSIONS

Reconstructing complex networks from data is a challeng-
ing inverse problem in network science. Various methods
have been proposed to deal with reconstruction problems
arising from different applications, but a common mathe-
matical framework is lacking. Here, we view the problem
of network reconstruction as one that solves multiple linear
equations and exploit the symmetry in the network to develop
a generally applicable, accurate, and efficient solution method
based on the principle of BCD (block coordinate descent).
Table I summarizes the main results in comparison with the
previous PBP (point-by-point) and global methods. For sparse
networks, the performance of all three types of methods can
be further enhanced through ADMM (alternating direction
method of multipliers). Our mathematical analysis and nu-
merical tests indicate that, among the three types of methods,
our BCD-based method has the best performance in terms
of accuracy and computational load. In particular, the PBP
or PBP-ADMM method [3,13] has low computational cost
but the accuracy is also low. The global or global-ADMM
method [38] has high accuracy but the computational cost is
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TABLE I. Comparison of accuracy and efficiency of different algorithms.

Time complexity Accuracy Convergence speed

Without PBP O(n4) Low
sparsity constraint Global O(n6) High

BCD O(tmaxn3 + n4) Same as global

With PBP-ADMM O(tmaxn3 + n4) Low Fast
sparsity constraint Global-ADMM O(tmaxn4 + n6) High

BCD-ADMM Same as
O(tmaxn3 + n4)(α = 1) global-ADMM Slow

Higher than
BCD-ADMM PBP-ADMM Close to PBP-ADMM
(α = 1/M) O(tmaxn3 + n4) and close to

global-ADMM

overwhelming, making it infeasible for large networks. Fig-
ure 7(a) shows that global methods become computationally
infeasible when the network size reaches 400. Our articulated
BCD or BCD-ADMM method has the advantages of the PBP
and global methods but overcomes their shortcomings. In
fact, computationally, our BCD or BCD-ADMM method is as
accurate as the global method, but the efficiency is far higher
than that of the global method. Figure 7(b) presents the results
of reconstructing the Power network [53], and the network
has 1723 nodes and 4117 edges. The results in Fig. 7(b) in-
dicate that the GLO-ADMM method has become completely
infeasible owing to its huge time complexity. However, the
BCD-ADMM method achieves accurate reconstruction when
the length of time-series data M = 25, whereas the PBP-
ADMM algorithm needs M = 50 to achieve the same level of
accuracy. For complex networks with symmetry, among the
three types of methods, our BCD-based one stands out as a
viable choice for solving the reconstruction problem because
the method fully exploits the advantages brought upon by the
symmetric properties. As described in the introduction, our
framework cannot be applied to the situation where the matrix
variables that need to be solved to represent the network

FIG. 7. (a) Runtime comparison of BCD-ADMM, PBP-ADMM,
and global ADMM methods. Shown is the runtime versus the
network size n. The time series data are generated from an
evolutionary-game dynamics on a scale-free network with average
degree 〈k〉 = 14. The length of the time series is set to M = 0.4n,
and the runtime is limited to 5 × 105 seconds. (b) Performance com-
parison BCD-ADMM and PBP-ADMM methods for Power network
size n = 1723. The time series data are generated from a current
transportation dynamics.

structure are not symmetric even if the network structure is
symmetric. Some symmetric information may be useful, for
example, ai, j = a j,i = 0. How to use this potential symmetric
information to expand our framework is worth investigating.
In addition, solving a large number of linear equations is a uni-
versal problem arising from many different fields in science
and engineering, and we expect our method to have broader
applications beyond network reconstruction.
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APPENDIX A: NETWORK RECONSTRUCTION WITH
DIFFERENT TYPES OF DYNAMICAL PROCESSES

1. Coupled nonlinear oscillatory dynamics

A complex network of n nodes with coupled nonlinear
oscillatory dynamics is described by [1]

ẋi = f i(xi ) +
n∑

j=1

ai, jgi, j (xi, x j ), (A1)

where xi = [x(1)
i , x(2)

i , . . . , x(D)
i ]T ∈ RD is the state vector of

the ith node, and the functions f i: R
D → RD and gi, j : R

D ×
RD → RD govern the intrinsic and interaction dynamics of
node i, respectively, ai, j is an element of the adjacency matrix
A of an undirected network: ai, j = a j,i = 1 if there is an edge
connecting nodes i and j, and ai, j = a j,i = 0 otherwise. The
network reconstruction task entails obtaining solutions of the
adjacency matrix A.
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For the dth component of the state vector at node i, the
dynamical equation is

ẋ(d )
i (τm) = f (d )

i (xi(τm)) +
n∑

j=1

ai, jg
(d )
i, j (xi(τm),x j (τm)).

(A2)

By sampling the state vector at a certain time and at the nearby
time, one can set τm = (tm−1 + tm)/2 to obtain the estimates of
the state variable and its derivative at time τm:

x(d )
i (τm) = x(d )

i (tm−1) + x(d )
i (tm)

2
, (A3)

ẋ(d )
i (τm) = x(d )

i (tm) − x(d )
i (tm−1)

tm − (tm−1)
. (A4)

If there are M such times, we have the following set of linear
equations:

ẋ(d )
i,m = f (d )

i,m +
N∑

j=1

ai, jg
(d )
i, j,m (m = 1, 2, . . . , M ), (A5)

which can be conveniently written in the matrix form:

C i · Ai = yi, (A6)

where

Ai ≡ [ai,1, ai,2, . . . , ai,n]T ,

yi ≡ [
0, ẋ(d )

i,1 − f (d )
i,1 , ẋ(d )

i,2 − f (d )
i,2 , . . . , ẋ(d )

i,m − f (d )
i,m

]T
, (A7)

C i≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 1 0 · · · 0

g(d )
i,1,1 · · · g(d )

i,i−1,1 0 g(d )
i,i+1,1 · · · g(d )

i,N,1

g(d )
i,1,2 · · · g(d )

i,i−1,2 0 g(d )
i,i+1,2 · · · g(d )

i,N,2

...
. . .

...
. . .

...
. . .

...

g(d )
i,1,M · · · g(d )

i,i−1,M 0 g(d )
i,i+1,M · · · g(d )

i,N,M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(A8)

In our numerical examples, we use the following chaotic
Rössler system as the individual nodal dynamical process:

ẋi = −yi − zi + ∑n
j=1 ai, j f (xi, x j ),

ẏi = xi + aiyi,

żi = bi + zi(xi − ci ),

(A9)

where ai = 0.15, bi = 0.2, ci = 10, and f (xi, x j ) = xi − x j .

2. Evolutionary-game dynamics

Many complex systems in biology, social sciences, and
economics can be modeled by evolutionary-game dynamics.
In a typical evolutionary game, at any time one agent can
choose one of two strategies: Cooperation (C) or defection
(D), which can be represented by the vectors S(C) = [1, 0]T

and S(D) = [0, 1]T, respectively. The payoffs of the two play-
ers in a game are determined by their strategies and the payoff
matrix of the specific game. In our study, we use the snowdrift

game with the 2 × 2 payoff matrix

P =
(

1 1 − b
1 + b 0

)
,

where the parameter b (0 < b < 1) characterizes the tempta-
tion to defect. (We set b = 0.7 in our numerical experiments.)

At each time step, all agents play the game with their
neighbors and gain payoffs. The payoff of agent i at time step
t is [13]

Pi(t ) =
n∑

j=1

ai, jST
i (t ) · P · Sj (t ). (A10)

After obtaining the payoff, each agent updates its strategy
(i.e., C or D) at the next round to try to maximize its payoff
based on some updating rule. We use the Fermi rule for strat-
egy updating, where node i adopts the strategy of neighbor j
with the probability

η[Si(t + 1) ← Sj (t )] = 1

1 + exp{[Pi(t ) − Pj (t )]/κ} , (A11)

where κ = 0.1 characterizes the irrationality of agents.
After M rounds of the snowdrift game, the strategy and

payoff of each agent are collected. This leads to a set of M
linear equations:

Pi(tm) =
n∑

j=1

ai, jST
i (tm) · P · Sj (tm) (m = 1, 2, . . . , M ),

(A12)

which can be expressed in the matrix form C i · Ai = yi with

Ai = [ai,1, ai,2, . . . , ai,n]T,

yi = [0, Pi(t1), Pi(t2), . . . , Pi(tM )]T ,

C i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 · · · 0

Li,1,1 · · · Li,i−1,1 0 Li,i+1,1 · · · Li,N,1

Li,1,2 · · · Li,i−1,2 0 Li,i+1,2 · · · Li,N,2

...
. . .

...
...

...
. . .

...

Li,1,M · · · Li,i−1,M 0 Li,i+1,M · · · Li,N,M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(A13)

where Li, j,m = ST
i (tm) · P · Sj (tm).

3. Current transportation dynamics

We consider a network of resistors on which current trans-
portation dynamics occur. The resistance between nodes i and
j is ri, j , and ri, j = +∞ if nodes i and j are not directly
connected. For node i, if the resistances of the links connected
to it and the relevant voltages are known, the current at i can
be calculated according to Kirchhoff’s law [16] as

n∑
j=1

ai, j

ri, j
(Vi − Vj ) = Ii. (A14)

For alternating current, the voltage of node i at time t is

Vi(t ) = V̄ sin [(ω + 	ωi )t], (A15)
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where V̄ is the peak of voltage, ω = 103 is the frequency, and
	ωi ∈ [0, 20] is the perturbation.

Collecting the current and voltage of each node at M time
steps leads to the following set of linear equations:

n∑
j=1

ai, j

ri, j
[Vi(tm) − Vj (tm)] = Ii(tm) (m = 1, 2, . . . , M ), (A16)

which can be expressed in the standard matrix form C i · Ai =
yi with

Ai =
[

ai,1

ri,1
,

ai,2

ri,2
, . . . ,

ai,n

ri,n

]T

,

yi = [0, Ii(t1), Ii(t2), . . . , Ii(tM )]T ,

C i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 · · · 0

Li,1,1 · · · Li,i−1,1 0 Li,i+1,1 · · · Li,N,1

Li,1,2 · · · Li,i−1,2 0 Li,i+1,2 · · · Li,N,2

...
. . .

...
...

...
. . .

...

Li,1,M · · · Li,i−1,M 0 Li,i+1,M · · · Li,N,M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(A17)

where Li, j,m = Vi(tm) − Vj (tm). To better mimic a real situ-
ation, we assume that the recorded data are corrupted by
Gaussian white noise: Vi(tm)+ξi

(V ) and Ii(tm)+ξi
(I ), where

ξi
(V ) and ξi

(I ) are Gaussian random processes of zero mean
and variance σ 2.

APPENDIX B: CONVERGENCE PROOF OF BLOCK
COORDINATE DESCENT METHOD

Our BCD or BCD-ADMM method is designed to solve the
following two optimization problems:

min
∑

i

‖C i · Ai − yi‖2
2 + β

2
‖A‖2

2 (B1)

and

(A)k+1 = arg min
A

Lρ (A, (Z )k, (V )k ), (B2)

which can be expressed as the following optimization prob-
lem:

min f (Â), (B3)

where the vector Â=[a1,1, . . . , a1,n, a2,2, . . . , a2,n, . . . , an−1,n,

an,n]T , and the problem is a convex optimization
problem. Setting the initial values for some variables,

i.e., Â
0∗
0 = [0, . . . , 0, 0, . . . , 0, . . . , 0, 0]T . Calculating the

values of a1,1, . . . , a1,n in Eq. (B3) by fixing the values of

a j,2, a j,3, . . . , a j,n to the value in Â
0∗
0 for j = 2, 3, . . . , n, the

optimization problem becomes

min f ([a1,1, . . . , a1,n, 0, . . . , 0, . . . , 0, 0]T ), (B4)

whose solution can be denoted as [a∗
1,1, . . . , a∗

1,n]T ,

and the solution of Â at this time is Â
1∗
1 =

[a∗
1,1, . . . , a∗

1,n, 0, . . . , 0, . . . , 0, 0]T , which satisfies

f
(
Â

1∗
1

)
� f

(
Â

0∗
0

)
.

In the same way, a2,1 = a1,2, a2,2, . . . , a2,n for Eq. (B3) can

be solved by using the solution Â
1∗
1 in the previous step

to fix other variable values, and the result of Â is Â
1∗
2 =

[a∗
1,1, a∗

2,1, a∗
1,3, . . . , a∗

1,n, a∗
2,2, . . . , a∗

2,n, 0, . . . , 0, . . . , 0, 0]T .

By iteration, we can obtain Â
1∗
1 , Â

1∗
2 , . . . , Â

1∗
n , which satisfies

f
(
Â

1∗
n

)
� · · · � f

(
Â

1∗
2

)
� f

(
Â

1∗
1

)
� f

(
Â

0∗
0

)
.

So far, the first iteration round is over and a better solution
Â

1∗
n is obtained compared with the initial solution Â

0∗
0 . Sim-

ilarly, a better solution Â
2∗
n can be obtained next round. We

can stop the iteration process when ‖Â
k+1∗
n − Â

k∗
n ‖2

2 � ε (e.g.,
ε = 0.001).

Note that Eqs. (B1) and (B2) represent a convex optimiza-
tion problem and the solutions obtained by the BCD and
BCD-ADMM methods are optimal and consistent with those
of the global and global ADMM methods, respectively.
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