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Predicting amplitude death with machine learning
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In nonlinear dynamics, a parameter drift can lead to a sudden and complete cessation of the oscillations of
the state variables—the phenomenon of amplitude death. The underlying bifurcation is one at which the system
settles into a steady state from chaotic or regular oscillations. As the normal functioning of many physical,
biological, and physiological systems hinges on oscillations, amplitude death is undesired. To predict amplitude
death in advance of its occurrence based solely on oscillatory time series collected while the system still functions
normally is a challenge problem. We exploit machine learning to meet this challenge. In particular, we develop
the scheme of “parameter-aware” reservoir computing, where training is conducted for a small number of
bifurcation parameter values in the oscillatory regime to enable prediction upon a parameter drift into the regime
of amplitude death. We demonstrate successful prediction of amplitude death for three prototypical dynamical
systems in which the transition to death is preceded by either chaotic or regular oscillations. Because of the
completely data-driven nature of the prediction framework, potential applications to real-world systems can be
anticipated.
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I. INTRODUCTION

In nonlinear dynamical systems, amplitude death is a
phenomenon in which the oscillatory behaviors of the state
variables halt suddenly and completely [1,2]. A typical route
to amplitude death is the drift of a system parameter through
a critical point at which a bifurcation from oscillations to
a steady state occurs. From the point of view of system
functioning, amplitude death is often associated with a catas-
trophic type of behaviors. For example, in biomedicine,
normal physiological conditions are associated with oscilla-
tions, while the system’s settling into a steady state is often
viewed as the onset of pathological conditions or is associated
with death. Because of the relevance of the phenomenon of
amplitude death to physical, chemical, biological, and phys-
iological systems [3–7], it has been studied extensively for
three decades. Earlier it was found that a parameter mis-
match among a network of coupled oscillators can lead to
amplitude death [8,9], and the study was extended to var-
ious network settings [10–13]. It was also found that the
phenomenon can arise in dynamical systems with time de-
layed coupling [14–24]. Alternative mechanisms leading to
amplitude death include conjugate coupling [25–28], dynam-
ical (time-varying) coupling [29–31], mean-field interaction
[32–34], and nonlinear coupling [35].

As amplitude death is undesired in real-world systems, it
is of interest and importance to be able to predict its occur-
rence while the underlying system is in the regime of normal
functioning. In the real world, the system equations are most
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likely unknown, so it is imperative to formulate the prediction
problem as one that is based solely on data or time series.
These considerations have motivated the present work. In par-
ticular, we ask the following question: suppose the system is in
a “normal” regime with oscillations and there is a slow param-
eter drift due, e.g., to environmental changes—can amplitude
death be predicted in advance of its possible occurrence? The
problem is extremely challenging because of the requirement
to predict the catastrophic behavior based on the presently
accessible information, which indicates that the system should
and would be completely normal by all measures. In fact,
if one measures the dynamical variables of the system, the
resulting time series are “healthy” in the sense that they all ex-
hibit oscillations, giving no traceable sign that a catastrophic
event such as amplitude death would occur upon some amount
of parameter drift or a perturbation. To our knowledge, in the
literature the only available method is one based on sparse
optimization such as compressive sensing [36,37] where, if
the mathematical structure of the system equations is such
that they contain only a small number of terms belonging to a
power or a Fourier series, the coefficients of these terms can be
determined from time series data through sparse optimization.
Here we assume that the governing equations of the system
do not have such a simple mathematical structure, rendering
inapplicable any of the existing optimization methods. Our
solution is to exploit machine learning to develop a model-
free, fully data-based paradigm to predict amplitude death.

For applications of machine learning in model-free pre-
diction of nonlinear dynamical systems, reservoir computing,
a class of recurrent neural networks [38–41], has stood out
as an effective paradigm and has received growing atten-
tion in recent years [42–58]. Briefly, a reservoir-computing
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machine is a nonlinear dynamical network which, when
properly trained with time series data from the target sys-
tem, becomes effectively a high-dimensional representation
of the original system. Starting from the same initial con-
dition, temporal synchronization can be maintained between
the reservoir machine and the target system [57], enabling
prediction. It is important to note that, in the current literature
on model-free prediction of chaotic systems with reservoir
computing [42–58], training and prediction occur at the same
set of parameter values of the target system. However, to pre-
dict amplitude death caused by a parameter drift, training and
prediction will need to be done at different parameter values.
As an essential requirement, it is necessary for the machine
to keep track of the variations in the bifurcation parameter,
which can be accommodated by designating a specific input
channel to the machine. A viable design is to connect this in-
put parameter channel to every node in the reservoir network,
which has recently been investigated for predicting transient
chaos [59]. Here we exploit this idea to predict amplitude
death.

Figure 1(a) shows our modified reservoir-computing struc-
ture with an additional input parameter channel, and Fig. 1(b)
explains the basic working of this machine-learning scheme to
predict amplitude death. In particular, let p be the bifurcation
parameter of the target system. As p varies, a critical point
arises: pc, where the system exhibits oscillations for p < pc

and the system settles into a steady state (the regime of am-
plitude death) for p > pc. Training of the reservoir machine
is done based on time series taken from a small number of
parameter values in the oscillation regime, as indicated by the
three vertical dashed blue lines at p1 < p2 < p3 (p3 < pc) in
Fig. 1(b). For each of the three parameter values, sufficient
training is required in the sense that the machine is able to
predict correctly and accurately the oscillatory behavior at
the same parameter value for a reasonable amount of time.
Suppose that, currently, the system functioning is normal, and
it operates at the parameter value p0 < pc, and suppose a
parameter drift �p > 0 occurs. In the prediction phase, we
input the new parameter value p0 + �p into the reservoir
machine through the parameter channel. The prediction is
deemed successful if the machine generates oscillations for
p0 + �p < pc but exhibits amplitude death for p0 + �p >

pc. We demonstrate successful prediction using three proto-
typical systems of coupled nonlinear oscillators. The broad
implication is that the so-articulated reservoir machine can
be used to predict the characteristic changes in the system
behavior as a result of a parameter drift.

II. BASICS OF RESERVOIR COMPUTING WITH AN
INPUT PARAMETER CHANNEL

As shown in Fig. 1(a), a reservoir-computing machine
has three components: (1) an input layer that converts an
M-dimensional input signal into an N-dimensional signal
through an N × M input-weighted matrix Win, (2) a reservoir
network (recurrent hidden layer) with N nodes characterized
by Wr , an N × N weighted matrix, and (3) an output layer that
maps the N-dimensional vector characterizing the dynamical
state of the reservoir network into an L-dimensional signal
through the L × N output matrix Wout. In a typical application

FIG. 1. Modified reservoir-computing scheme and illustration
of model-free prediction of amplitude death. (a) Structure of the
modified reservoir-computing scheme with an additional parameter
channel. The reservoir machine has three layers: the input, hidden,
and output layers. Input data vector ũ(t ) consists of the value of
the bifurcation parameter and the associated measured time series
from the dynamical variables of the target system, r(t ) denotes
the dynamical state of the complex network in the hidden layer,
and v(t ) denotes the output data vector representing the prediction
result. (b) Training of the reservoir-computing machine is done in
the pretransition regime for a small number of bifurcation parameter
values (as indicated by the three vertical dashed blue lines), where
the system generates oscillatory time series. The critical transition to
amplitude death occurs at pc. The target system currently operates at
p0. Prediction is done for p = p0 + �p, where �p > 0 is a param-
eter drift. Depending on whether the value of p0 + �p is before or
after the transition, a properly trained machine shall be able to predict
either an oscillatory behavior or amplitude death, respectively.

in nonlinear dynamics, the input and output signals are
low-dimensional, while the reservoir state is high-
dimensional, i.e., L ∼ M � N . In this paper, we set
L = M − 1 as the bifurcation parameter p is one dimensional.
The output matrix Wout is determined by the training process,
while the input-weighted matrix Win and the reservoir matrix
Wr are initially randomly drawn and then fixed.

In the training phase, the M-dimensional vector ũ(t ) con-
sisting of the (M − 1)-dimensional time series data u(t ) and
the one-dimensional parameter channel is fed into the reser-
voir as Win · ũ(t ). The time series data are mapped into the
reservoir such that the (M − 1) dimensions are evenly divided
among the nodes of the neural network: data from each dimen-
sion are input to N/(M − 1) nodes. However, the parameter
channel is connected to each and every node in the network.
The input data through the parameter channel is (p − pb)kp,
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where pb and kp are two hyperparameters. Under this cou-
pling configuration, the elements of the input matrix Win are
chosen randomly from a uniform distribution in the interval
[−σ, σ ]. The reservoir is a large, sparse, and random network
with average degree 〈k〉, which is described by the matrix
Wr , whose values are randomly chosen from the uniform
distribution (0,1). For a given value of the spectral radius,
the element values of Wr are rescaled such that its largest
eigenvalue is ρ. The state of each reservoir node at time t
is r(t ) = [r1(t ), r2(t ), . . . , rN (t )]T , and the initial state is set
to be r(0) = 0. The reservoir dynamics are described by the
following mapping function:

r(t + dt ) = (1 − α)r(t ) + α tanh[Wr · r(t ) + Win · ũ(t )],
(1)

where α ∈ (0, 1] is the leakage rate, a hyperparameter. To map
the reservoir state to the output layer, it is conventional [49] to
define a new vector r̃ with the same odd row elements as those
of r but with the even row elements as the squared values of
the corresponding even row elements of r.

The reservoir-computing machine is trained independently
for multiple values of the bifurcation parameter. After training
with data from one bifurcation parameter value, we reset the
time and the initial states to zero, and repeat the training with
data from another parameter value. After training is done with
the available data from all bifurcation parameter values, we
have a vector of multiple input data and multiple recordings of
the reservoir state vector r(t) as well. To find the output matrix
through optimization and to express it explicitly, we introduce
a target data matrix. This matrix consists of all the desired
output of the reservoir during training, i.e., with the input data
moved one time step forward, as the desired function of the
reservoir machine is to predict the state of the target system
at the next time step. In particular, let Nt be the number of
training time steps for each training value of the bifurcation
parameter. Since we train the reservoir machine using time
series obtained from m values of the bifurcation parameter,
the total number of training time steps is mNt . The available
data points are stacked in the sequence of these parameter
values into a single, L × mNt matrix. In this paper, we use
m = 3. For each input time series, we evolve the state of the
reservoir network for Nτ � Nt time steps and disregard these
“transient” states from the calculation of the output matrix,
so the dimension of the effective target data matrix, denoted
as Ũ , is L × 3(Nt − Nτ ). Likewise, with all the effective input
data, the normalized reservoir state matrix, denoted as R̃, has
the dimension N × 3(Nt − Nτ ). The output matrix Wout can
be calculated using the regression scheme that minimizes the
following loss function:

L =
∑

t

‖U (t ) − WoutR̃(t )‖ + β‖Wout‖2, (2)

where β is a small positive regulation constant to prevent
overfitting by imposing penalty on large values of the fitting
parameters.

The regularized regression can be described as

Wout = U · R̃T · (R̃ · R̃T + βI )−1, (3)

where I is an N × N identity matrix.

In the prediction phase, the input data vector u(t ) is
replaced by the output vector v(t ), so the whole reservoir-
computing machine becomes a closed-loop, self-evolving
dynamical system that maps v(t ) to v(t + dt ) according to
the following rules:

ṽ(t ) = [v(t ); (p − pb)kp],

r(t + dt ) = (1 − α)r(t ) + α tanh [Wr · r(t ) + Win · ṽ(t )],

v(t + dt ) = Wout · r̃(t + dt ), (4)

We use the Bayesian optimization method [54] to determine
the optimal values of the hyperparameters of the reservoir-
computing machine, which are 〈k〉, σ , ρ, α, β, pb, and kp.
In particular, for each value of the bifurcation parameter, we
ensure that training is completed so that the machine is ca-
pable of predicting the state evolution of the target dynamical
system for several Lyapunov times, as characterized by below-
threshold root-mean-squared errors (RMSE) during the time
period. Among the three sets of errors from the three values of
the bifurcation parameter, we choose the largest RMSE as the
criterion for determining the optimal hyperparameter values.
After the values of the hyperparameters have been fixed, we
train the reservoir machine once again using all the input data
to finalize the output matrix Wout. The machine so trained
is now ready for predicting the system behavior for values
of the bifurcation parameter that are different from the three
values used for training. Especially, we input the bifurcation
parameter value of interest into the parameter channel, and use
any of the three available data sets to restart or “warm up” the
reservoir network.

Note that, as described, a basic requirement is that the
reservoir-computing machine be well trained at each of the
three selected bifurcation parameter values so that it can pos-
sibly be used to predict the system behavior at other parameter
values that the machine has not been exposed to. The training
data thus consist of the time series from the three parameter
values only. When predicting the system dynamics for other
parameter values, a small segment of any of the three time
series is used as the initial condition to restart or “warm up”
the machine. Since no time series from other parameter values
are assumed to be available, the performance of short-term
prediction at these parameter values cannot be assessed.

It is also noteworthy that the training parameter values
p are chosen based on the empirical criterion that they are
not too far away from the transition point and are reasonably
spaced, and the corresponding time series should be oscilla-
tory. Simulations reveal that the reservoir-computing machine
is tolerant to relatively small variations in the training param-
eter values.

III. RESULTS

We demonstrate the ability of our “parameter-aware”
reservoir-computing scheme to predict amplitude death in
three representative systems: coupled Rössler and Lorenz,
coupled Lorenz, and coupled Stuart-Landau oscillators. Prior
to bifurcating to amplitude death, the system exhibits either
periodic or chaotic oscillations. Training is done in the oscil-
latory parameter regime preceding the bifurcation.
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A. Coupled Rössler and Lorenz oscillators

The six-dimensional system of coupled Rössler and Lorenz
oscillators is described by [16]

ẋ1 = −x2 − x3,

ẋ2 = x1 + ax2 + ε(y2 − x2),

ẋ3 = b + x3(x1 − c),

ẏ1 = μ(y2 − y1),

ẏ2 = −y1y3 − y2 + ry1 + ε(x2 − y2),

ẏ3 = y1y2 − dy3, (5)

where the parameters are a = b = 0.1, c = 18, μ = 10, r =
28, and d = 8/3, and ε is the coupling strength. The Rössler
or the Lorenz oscillator, when isolated, is in an oscillatory
state. When they are coupled, amplitude death can occur, as
exemplified by the bifurcation diagram in Fig. 2(a). The dia-
gram seems to indicate that, as ε increases through a critical
point εc ≈ 0.426, a sudden transition from chaotic oscillations
to amplitude death occurs. Figure 2(b) shows a time series of
sustained chaotic oscillations for ε below but not too close
to “εc” (ε = 0.34). For ε values above but not too close to
“εc,” the asymptotic state of the system is a stable equilibrium
point corresponding to amplitude death, whose occurrence is
preceded by transient chaos, as shown in Fig. 2(c) for ε = 0.5.

The fixed points associated with amplitude death in the
reservoir prediction agree well with the ones in the real sys-
tem. For the coupled Rössler-Lorenz system, the fixed points
change only slightly with the coupling parameter. Taking ε =
0.50 as an example, the original system has two fixed points:

(x1, x2, x3, y1, y2, y3)

= (−4.205,−0.0045, 0.0045, 8.4063, 8.4063, 26.4997)

and (x1, x2, x3, y1, y2, y3) = (4.2003, −0.0073, 0.0073,

−8.4064,−8.4064, 26.5004). The corresponding machine-
predicted ones are (x1, x2, x3, y1, y2, y3) = (−4.2041,

−0.0065, 0.0045, 8.4038, 8.4037, 26.4977) and (x1, x2, x3,

y1, y2, y3) = (4.1974,−0.0055, 0.0072,−8.4032,−8.4033,

26.5021), which agree well with the ground truth.
We use a number of initial conditions to generate the bifur-

cation diagram in Fig. 2(a). For some values of ε, the system
has bistability in that there are two coexisting attractors as-
sociated with oscillation and amplitude death, respectively.
The reason that the transition exemplified in Fig. 2(a) ap-
pears rather abrupt is that the system moves into the basin
of the amplitude-death attractor as ε changes. In fact, the
transition is a gradual process in the sense of multistability.
In particular, there exists an interval of ε values about “εc,”
where the coupled system possesses two coexisting attractors:
a chaotic attractor and a stable steady-state attractor. Denote
this interval as [εc1, εc2], where εc1 < “εc” < εc2. For ε < εc1,
chaotic oscillations are the only possible state of the system,
i.e., almost every initial condition will generate a trajectory
that lands on the chaotic attractor. Likewise, for ε > εc2, the
only attractor in the system is the stable steady state resulting
in amplitude death. For εc1 < ε < εc2, if we choose a large
number of random initial conditions, a fraction of them will
lead to the chaotic attractor while the remaining to ampli-
tude death. As the value of ε increases from εc1, the fraction

FIG. 2. Scenario of transition to amplitude death. For the coupled
Rössler-Lorenz system, (a) a bifurcation diagram with the coupling
parameter ε from a number of initial conditions, with simulation
time t = 105 and integration time step dt = 0.01, (b) chaotic os-
cillations for ε = 0.34, and (c) transient chaos and amplitude death
for ε = 0.50. (d) Transition to amplitude death revealed by taking
an ensemble of random initial conditions, as characterized by RAD,
the ratio of the fraction of initial conditions that result in ampli-
tude death. As explained in the text, for an infinite trajectory, as
ε increases from εc1, RAD increases from zero to a small value
and then suddenly to one at εc2. For numerical trajectories of a
finite length, the transition would appear gradual, but it becomes
increasingly sharp as the trajectory length is increased. Here 1000
randomly initial conditions are chosen from the phase-space region
{(−10, 10), (−10, 10), (0, 1), (−20, 20), (−20, 20), (0, 50)}.

of initial conditions leading to amplitude death, denoted as
RAD, gradually increases towards a value (denoted as R∗

AD,
where R∗

AD < 1), when ε reaches εc2. As ε increases through
εc2, RAD increases abruptly from R∗

AD to one. At the same
time, as ε increases from εc1 to εc2, the fraction of initial
conditions approaching the chaotic attractor will gradually
decrease from one to the value (1 − R∗

AD) and then suddenly to
zero at εc2.

The dynamical mechanism responsible for the scenario of
emergence of amplitude death, as described in the preced-
ing paragraph, has been fairly well understood in nonlinear
dynamics [60], which can be attributed to a saddle-node bi-
furcation at εc1 and a crisis [61] at εc2. In particular, the
saddle-node bifurcation creates a stable steady-state attractor
at εc1. At εc1, the basin volume of the new steady-state at-
tractor (relative to that of the chaotic attractor) is zero. As ε
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FIG. 3. Prediction of amplitude death in the coupled Rössler-Lorenz system. The training of the reservoir-computing machine is done for
three values of the coupling parameter: ε = 0.32, 0.33, and 0.34, all in the regime of chaotic oscillations. Prediction can be made beyond
the parameter interval for training through tuning of the input parameter channel to the reservoir network. (a, b) True and predicted chaotic
time series x1(t ) and y1(t ) from Eq. (5), for validating the correctness and quality of training. The machine is able to predict the time series
exactly for about six Lyapunov times beyond which the prediction is still meaningful in the sense that the predicted and true time series are
statistically indistinguishable. (c, d) Predicted sustained chaotic time series x1(t ) and y1(t ) for ε = 0.36. (e, f) Predicted transient chaos and
amplitude death for ε = 0.5. (g) The predicted ratio RAD versus ε in the regime of transition to amplitude death from 10 random realizations of
the free parameters of the machine. The predicted results agree with those from direct simulations of the original system Eq. (5). (h) Transition
profile for three different values of the trajectory length, demonstrating that the transition becomes sharper with longer trajectory length.
Other parameter values of the reservoir system are N = 1200, 〈k〉 = 20, σ = 0.1, ρ = 0.8833, α = 0.312, β = 1.4303 × 10−5, pb = 0.5899,
kp = 0.1925, M = 7, L = 6, Nt = 80 000, Nτ = 50, and dt = 0.01.

increases through εc1, its basin grows, together with the basin
boundary. For εc1 < ε < εc2, there are thus two coexisting
basins. At εc2, the chaotic attractor collides with the basin
boundary and is destroyed—a crisis [61]. For ε > εc2, the
only basin of attraction in the system is the one of the stable
steady-state attractor, so almost every initial condition leads to
amplitude death. The sudden increase of RAD from R∗

AD to one
holds for infinitely long trajectories. For finite numerical tra-
jectories, the increase would be gradual. As the length of the
trajectories increases, the transition would appear increasingly
sharp, as exemplified in Fig. 2(d).

Will the reservoir-computing machine be able to learn
the essential dynamics of the coupled Rössler-Lorenz sys-
tem through training in the regime of chaotic oscillations
and then to predict the occurrence of amplitude death? To
obtain an answer, we train the machine at three values of
the coupling parameter: ε = 0.32, 0.33, and 0.34—all in the
regime where the system exhibits chaotic oscillations, as indi-

cated by the three vertical dashed lines in Fig. 2(a). For each
chosen ε value, we use time series of length t = 800 (which
corresponds to approximately 700 Lyapunov times) to train
the machine. A typical prediction result is demonstrated by
the time evolution of two dynamical variables, as shown in
Figs. 3(a) and 3(b) for ε = 0.34, where the machine is capable
of replicating the evolution of the dynamical variables for
about six Lyapunov times (t ≈ 7.5), after which the prediction
still remains meaningful in the sense that the machine gener-
ates time series that are statistically indistinguishable from the
real time series.

We can now tune the parameter to values beyond the range
of training and make predictions. Figures 3(c) and 3(d) show,
for ε = 0.36, the predicted time series of chaotic oscillations,
which indicate correctly that the system is still in the oscilla-
tory regime. Figures 3(e) and 3(f) show, for ε = 0.50, that the
machine predicts correctly a transient chaotic behavior and the
subsequent amplitude death.
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The reservoir-computing system contains two types of pa-
rameters: hyperparameters and free parameters such as the
weighted elements of the input matrix Win, the topology
and elements of the reservoir network matrix Wres. Once
the hyperparameter values have been determined and fixed,
the prediction performance is robust against variations in the
free parameters. Figure 3(g) shows the predicted RAD versus
the coupling parameter ε for 10 random realizations of the
reservoir-computing system, for t = 103. The predicted RAD

versus ε curves are clustered together and agree with the
ground truth. For a fixed realization, as the trajectory length
increases, the transition becomes sharper, as illustrated in
Fig. 3(h) for t = 103, t = 3 × 103, and t = 104.

For the coupled Rössler-Lorenz system, the transition from
oscillatory dynamics to amplitude death is mediated by bista-
bility: there exists a parameter interval [εc1, εc2] in which the
system possesses two coexisting attractors: a chaotic attractor
(oscillations) and a stable steady-state attractor (amplitude
death). Numerically, the manifestation is that, in the bistability
interval, the curve of RAD versus ε is independent of the
trajectory length. The estimated values of the end points of
the interval are εc1 ≈ 0.36 and εc2 ≈ 0.40.

B. Coupled Lorenz oscillators with a time delay

We consider the following system of time-delay coupled
chaotic Lorenz oscillators:

ẋ1 = −μ(x1 − x2),

ẋ2 = −x1x3 − x2 + rx1 + ε[y2(t − τ ) − x2(t )],

ẋ3 = x1x2 − dx3,

ẏ1 = −μ(y1 − y2),

ẏ2 = −y1y3 − y2 + ry1 + ε[x2(t − τ ) − y2(t )],

ẏ3 = y1y2 − dy3, (6)

where μ = 10, r = 28, and d = 8/3 are the parameter values
of the classical Lorenz oscillator, ε is the coupling parameter,
and τ is the time delay. When uncoupled, each Lorenz os-
cillator exhibits sustained chaotic oscillations. When coupled,
amplitude death can occur in a range of ε values. Figure 4(a)
shows a typical bifurcation diagram of the coupled system:
the local maximum values of the dynamical variable x1(t ) ver-
sus ε for τ = 0.15, which indicates that amplitude death can
occur for ε � 0.3. Figures 4(b) and 4(c) show, respectively,
the time series from the sustained chaotic oscillating state for
ε = 0.23 and transient chaos followed by amplitude death for
ε = 0.35. The ratio RAD versus ε obtained directly from the
original system is shown in Fig. 4(d). Because of the transient
dynamics, the probability for a short trajectory to land on the
stable steady-state attractor is small, leading to a slow increase
of RAD with ε. As the length of the trajectories increases,
there is a higher probability for a trajectory to approach the
steady-state attractor, making RAD to switch from zero to one
in a more abrupt fashion.

We train the reservoir-computing machine at three values
of the coupling parameter: ε = 0.21, 0.22, and 0.23—all in
the regime of chaotic oscillations, as indicated by the three
vertical dashed lines in Fig. 4(a). Figure 5(a) shows a pre-

FIG. 4. Transition to amplitude death in the system of a pair
of time-delay coupled Lorenz chaotic oscillators. (a) Bifurcation
diagram for simulation time t = 5 × 104 with dt = 0.01. (b) Time
series of sustained chaotic oscillation for ε = 0.23. (c) Transient
chaos and amplitude death for ε = 0.35. (d) The ratio of the
amplitude-death state, RAD, versus ε, for a number of different tra-
jectory lengths. For each value of ε, the ratio is calculated from
1000 trajectories with initial conditions randomly chosen from the
phase-space region −20 � (x1, y1) � 20, −20 � (x2, y2) � 20, and
0 � (x3, y3) � 50. For all the cases, the time delay is fixed at τ =
0.15.

dicted time series x1(t ) in comparison with the true time series
for ε = 0.23. The machine is able to predict the state evolution
approximately exactly for about five Lyapunov times (t ≈ 5).
While the prediction deviates from the true state evolution
for t > 5, the statistical characteristics of the predicted and
true trajectories are indistinguishable. Similar behaviors are
obtained with the other two values of the training parameter.
These results thus serve to validate the training process. Fig-
ure 5(b) shows a predicted time series for ε = 0.25, which
indicates that the system is still in the regime of chaotic oscil-
lations. When the value of the input parameter channel to the
reservoir system is tuned to ε = 0.50, the machine correctly
predicts that the system will settle into the amplitude-
death state after a chaotic transient, as shown in Fig. 5(c).
Figure 5(d) shows the predicted ratio RAD versus ε for 10
random realizations of the reservoir-computing system for
t = 103. The predicted transition curves are clustered and
consistent with the true curve for this trajectory length. For the
coupled Lorenz-Lorenz system, the transition from oscillatory
dynamics to amplitude death is “abrupt” without any bista-
bility, where the dependence of RAD on ε approaches a step
function as the length of the trajectories increases, as shown
in Fig. 4(d).
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FIG. 5. Predicting amplitude death in the system of a pair of
time-delay coupled chaotic Lorenz oscillators. (a) True and predicted
chaotic time series x1(t ) from Eq. (6), for validating the training.
The machine is able to predict the time series exactly for about
five Lyapunov times, beyond which the prediction remains mean-
ingful in the statistical sense. (b) Predicted sustained chaotic time
series for ε = 0.25. (c) Predicted transient chaos and amplitude
death for ε = 0.50. (d) The predicted transition curve (RAD versus
ε) from ten random realizations of the machine. The results agree
with those from direct simulations of the original system Eq. (6).
The time delay is τ = 0.15. The values of other parameters of the
reservoir-computing system are N = 1200, 〈k〉 = 20, σ = 0.1639,
ρ = 0.5057, α = 0.6057, β = 4.7487 × 10−5, pb = 0.0061, kp =
0.4956, M = 7, L = 6, Nt = 80 000, Nτ = 50, and dt = 0.01.

C. System of coupled Stuart-Landau oscillators

The system is described by

ż1 = (1 + iω1 − |z1|2)z1 + ε(z2 − z1),

ż2 = (1 + iω2 − |z2|2)z2 + ε(z1 − z2), (7)

where zi = xi + iyi (i = 1, 2) are complex variables, and ω1

and ω2 are parameters. Without coupling, i.e., ε = 0, both
oscillators have an unstable fixed point at z∗

1,2 = 0. A previous
study [9] revealed that amplitude death occurs for ε > 1 and
�ω > 2

√
2ε − 1, where �ω ≡ |ω1 − ω2| represents the mis-

match between the two oscillators. Depending on the amount
of mismatch, the system dynamics can be quite different.
Figure 6(a) shows a bifurcation diagram of the dynamical
variable x1. It can be seen that the system is in an oscillatory
state for ε ∈ (0, 1), and amplitude death occurs for ε > 1. Fig-
ures 6(b) and 6(c) show an oscillatory time series for ε = 0.99
and amplitude death (with a short transient) for ε = 1.02,
respectively.

We train the reservoir-computing machine at parameter
values ε = 0.85, 0.9, and 0.95, as indicated by the three ver-
tical dashed lines in Fig. 6(a). Figures 7(a) and 7(b) show an
example of the predicted time series x1(t ) and the difference

FIG. 6. Oscillations and amplitude death in the system of cou-
pled Stuart-Landau oscillators. (a) A bifurcation diagram with the
coupling parameter ε. The system is oscillatory for 0 < ε < 1, and
amplitude death occurs for ε > 1. (b) An oscillatory time series
for ε = 0.99. (c) Amplitude death preceded by a short transient for
ε = 1.02. Other parameter values are ω1 = 2.0 and ω2 = 7.0.

between the predicted and real time series, respectively. The
machine predicts correctly that the system is in an oscillatory
state for ε < 1, as exemplified in Fig. 7(c) for ε = 0.99. For
ε > 1, the machine predicts successfully amplitude death, as
demonstrated in Fig. 7(d) for ε = 1.02. Figure 7(e) shows a
machine-predicted bifurcation diagram, which agrees with the
real diagram in Fig. 6(a). Figure 7(f) shows a distribution of
the predicted transition point from 1000 random realizations
of the reservoir machine, where all predictions are close to the
true transition point ε∗ = 1.

IV. DISCUSSION

In biological and physiological contexts, oscillations are
essential to maintaining the normal functions of the system,
whereas complete cessation of oscillations is associated with
severe pathological conditions or even death. In terms of
nonlinear dynamics, the occurrence of this amplitude-death
phenomenon is the result of a bifurcation to a stable steady
state as induced by parameter drifting. It is of interest to
forecast amplitude death prior to its actual occurrence when
the system is still in a normal oscillation state. Specifically,
the prediction problem can be formulated as follows. Suppose
a control or bifurcation parameter has been specified and the
system is currently in the parameter regime in which the
dynamical variables exhibit normal and “healthy” oscillations,
where oscillatory time series from a number of parameter
values in this regime have been measured. Suppose the bi-
furcation parameter begins to drift towards a regime that the
system has never been in, i.e., no information is available
about the system dynamics in the new parameter territory.
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FIG. 7. Predicting amplitude death in the system of coupled
Stuart-Landau oscillators. (a) Predicted and real time series for ε =
0.95. (b) The difference between the predicted and real time series for
ε = 0.95. (c) Predicted state of oscillation for ε = 0.99. (d) Predicted
amplitude death preceded by a transient for ε = 1.02. (e) Predicted
bifurcation diagram. (f) The distribution of the predicted transition
point to amplitude death from 1000 random realizations of reservoir
machine and initial conditions. The parameter values of the machine
are N = 600, 〈k〉 = 8, σ = 2.0, ρ = 0.1893, α = 1.0, β = 10−4,
pb = 0.0, kp = 0.5223, M = 5, L = 4, Nt = 16 000, Nτ = 50, and
dt = 0.05.

For a given amount of parameter change, how do we predict
with confidence that amplitude death would occur? If the
system equations are known, this prediction problem is trivial,
as it can be solved by a simple computational bifurcation
analysis. The problem becomes challenging, in fact extremely
challenging, when there is no knowledge about the system
equations and the only available information is the oscillatory
time series collected when the system is in the healthy regime.

We have developed a machine-learning approach to solv-
ing the problem of data-based prediction of amplitude death.
In particular, exploiting the conventional reservoir-computing
machine for predicting the state evolution of chaotic systems

with a modification to make the machine to be “aware” of
the values of the bifurcation parameter of the target system,
we have established that amplitude death can be reliably
predicted. The structural modification is the addition of a pa-
rameter channel through which the machine gains the ability
that is essential for predicting the future state of the system:
the ability to distinguish the dynamical states associated with
different values of bifurcation parameter. We have demon-
strated that a proper leaning scheme enables one to fully
instill this ability into the machine: training the machine with
multiple sets of oscillatory time series data, each from a dif-
ferent value of the bifurcation parameter. We have illustrated
our general principle of machine-learning-based prediction
through three prototypical dynamical systems that represent
the paradigmatic systems to study amplitude death. The three
systems studied range from the “dynamically” simple cou-
pled Stuart-Landau system to the relatively more complex
coupled Lorenz-Lorenz system with a time delay. In all the
systems, prior to the occurrence of amplitude death, there are
oscillations: either chaotic or regular. Insofar as the reservoir-
computing machine has been adequately trained through our
learning scheme, any possible future occurrence of amplitude
death can be successfully forecasted. In fact, in all three cases,
our study reveals that even when the training parameter values
are not close to the transition point to amplitude death, the
reservoir-computing machine is able to predict the critical
transition.

Finally, we note that there is a recent work on explaining
the success of reservoir-computing forecaster of chaotic sys-
tems from a mathematical point of view [62], where linear
activation functions for the artificial neurons in the reservoir
network are assumed to make the analysis based on vector
autoregressive averages possible. For general nonlinear acti-
vation functions as in Eq. (1), a mathematical understanding
of the inner working of reservoir computing is not available at
the present.

The codes associated with this work are available at
Ref. [63].
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