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The inverse problem of finding the optimal network structure for a specific type of dynamical process stands
out as one of the most challenging problems in network science. Focusing on the susceptible-infected-susceptible
type of dynamics on annealed networks whose structures are fully characterized by the degree distribution, we
develop an analytic framework to solve the inverse problem. We find that, for relatively low or high infection
rates, the optimal degree distribution is unique, which consists of no more than two distinct nodal degrees. For
intermediate infection rates, the optimal degree distribution is multitudinous and can have a broader support. We
also find that, in general, the heterogeneity of the optimal networks decreases with the infection rate. A surprising
phenomenon is the existence of a specific value of the infection rate for which any degree distribution would be
optimal in generating maximum spreading prevalence. The analytic framework and the findings provide insights
into the interplay between network structure and dynamical processes with practical implications.
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I. INTRODUCTION

In the study of dynamics on complex networks, most pre-
vious efforts were focused on the forward problem: How
does the network structure affect the dynamical processes
on the network? The approaches undertaken to address this
question have been standard and relatively straightforward:
One implements the dynamical process of interest on a given
network structure and then studies how alterations in the net-
work structure affect the dynamics. The dynamical inverse
problem is much harder: finding a global network structure
that optimizes a given type of dynamical processes. Despite
the extensive and intensive efforts in the past that have resulted
in an essential understanding of the interplay between dynam-
ical processes and network structure, previous studies of the
inverse problem were sporadic and limited to a perturbation
type of analysis, generating solutions that are at most locally
optimal only [1,2]. The purpose of this paper is to present and
demonstrate an analytic framework to address the dynamical
inverse problem.

To be concrete, we will focus on spreading dynamics on
networks for which a large body of literature has been gen-
erated in the past on the forward problem, i.e., how network
topology affects the characteristics of the spreading, such as
the outbreak threshold and prevalence [3,4]. For example,
under the annealed assumption that all nodes with the same
degree are statistically equivalent, it was found [5] that the epi-
demic threshold of the susceptible-infected-susceptible (SIS)
process is given by 〈k〉/〈k2〉, where 〈k〉 and 〈k2〉 are the first
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and second moments of the degree distribution, respectively.
In situations where the second moment diverges, the thresh-
old value is essentially zero, meaning that the presence of
a few hub nodes can greatly facilitate the occurrence of an
epidemic outbreak. An understanding of the interplay between
the network structure and the spreading dynamics is essential
to articulating control strategies. For example, the important
role played by the hub nodes suggests a mitigation strategy:
Vaccinating these nodes can block or even stop the spread of
the disease [6,7]. Likewise, if the goal is to promote informa-
tion spreading, then choosing the hub nodes as the initial seeds
can be effective [8,9].

The inverse problem is motivated by the application scenar-
ios in which one strives to optimize the network structure to
achieve desired or improved performance [10]. Optimization
and invention have been applied to problems, such as virus
marketing [11], social robots detection [12], containment of
false news spreading [13], and polarization reduction in social
networks [14]. For spreading dynamics on networks, the few
existing studies are focused on applying small perturbations to
the network structure to modulate the dynamical process [1,2].
From the point of view of optimization since the perturbations
are local, the resulting solution is locally optimal at best.

We address the following questions: Does a globally op-
timal network exist and if yes, can it be found to maximize
the prevalence of the spreading dynamics? Such a network
is necessarily extremum. For general types of spreading dy-
namics, to analytically solve this inverse problem is currently
not feasible. However, we find that the SIS type of spread-
ing dynamics does permit an analytic solution. In particular,
the annealed approximation stipulates that the network struc-
ture can be fully captured or characterized by its degree
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distribution. The problem of finding the optimal networks can
then be formulated as one to find the optimal degree distri-
bution that maximizes the prevalence of the SIS spreading
dynamics, which can be analytically solved by exploiting the
heterogeneous mean-field (HMF) theory [3]. Notwithstanding
the necessity of imposing the annealed approximation to en-
able analytic solutions, the essential physical ingredients of
the SIS dynamics are retained.

Our main results are the following. Taking a variational
approach to solving the HMF equation, we obtain a necessary
condition for the optimal degree distribution. The condition
defines a set of candidate optimal degree distributions, and we
show that a degree distribution is globally optimal if and only
if it belongs to the set. However, if the set is empty, which can
occur for relatively low and high infection rates, the necessary
condition stipulates that a local extremum distribution must
concentrate on no more than two distinct nodal degree values
thereby substantially narrowing the search for the optimal
network. Searching through all possible distributions under
the constraint leads to the optimal degree distribution that
can be proved to be unique. For intermediate infection rates,
multiple optimal degree distributions with a broader support
exist, which lead to identical spreading prevalence. In addi-
tion, our theory predicts the existence of a particular value
of the infection rate for which every degree distribution is
optimal. A general trend is that the degree heterogeneity of
the optimal distribution decreases with the infection rate.

Our paper represents a first step toward finding a global
optimal network structure for spreading dynamics. From a
theoretical point of view, developing a method to find such ex-
tremum networks represents a feat that would provide deeper
insights into the interplay between network topology and
spreading dynamics. From a practical perspective, the solu-
tion can be exploited to design networks that are capable of
spreading information or transporting material substances in
the most efficient way possible.

In Sec. II, we introduce the HMF theory for the SIS dy-
namics and set up the basic framework for the optimization
problem. In Sec. III, we employ a variational method to derive
the necessary condition for a degree distribution to be an
extremum among all feasible distributions. Solutions of the
optimal degree distribution are presented in Sec. IV, and its
properties are discussed in Sec. V. The paper is concluded in
Sec. VI with a discussion.

II. PROBLEM FORMULATION AND SKETCH OF MAJOR
MATHEMATICAL STEPS

In the SIS model, each node can be either in the sus-
ceptible or in the infected state, and we assume the nodal
state evolves continuously with time. During the spreading
process, a susceptible node is infected by its neighbors with
the rate λ, whereas an infected node recovers at the rate γ .
To study the equilibrium properties of the dynamical process,
it is convenient to set γ = 1 so that λ is the sole dynamical
parameter.

In the HMF theory, all the nodes with the same degree
are statistically equivalent [3]. Consider a vector of nodal
degrees k ≡ [k1, k2, . . . , kn]T where the elements are arranged
in a descending order: k1 > k2 > · · · > kn. The degree dis-

tribution is fully specified by a probability vector defined as
p ≡ [p1, p2, . . . , pn]T , where pi � 0 is the probability that a
randomly chosen node has degree ki. Let xi(t ) be the proba-
bility that a node with degree ki is infected at time t . Given the
probability vector p, the HMF equation is

dxi(t )

dt
= −xi(t ) + λki[1 − xi(t )]� (1)

for i ∈ {1, . . . , n}, where

� = 1

〈k〉
n∑

j=1

p jk jx j (t ). (2)

In Ref. [15], it was proved that the HMF equation has a
unique global stable equilibrium point x∗. In addition, for λ <

〈k〉/〈k2〉, we have x∗
i = 0 for all i ∈ {1, . . . , n}, whereas for

λ > 〈k〉/〈k2〉, we have 0 < x∗
i < 1 for all i ∈ {1, . . . , n}. The

spreading prevalence in the equilibrium state is

ψ (p) =
n∑

i=1

pix
∗
i , (3)

where, to simplify the notations, we have omitted the de-
pendence of ψ (p) on λ. Let P be the family of all degree
distributions with a fixed average degree defined on k. That
is, with a prespecified constant z > 0, for any p ∈ P , we have∑n

i=1 piki = z. Our goal is to find po ∈ P that maximizes
ψ (p),

po = argmin
p∈P

ψ (p). (4)

The optimization problem is nontrivial only when the value
of λ is larger than the epidemic threshold, at least, for one
p ∈ P . The Bhatia-Davis inequality stipulates that the second
moment of p is maximized when p concentrates on the end
points k1 and kn. In this case, the second moment is 〈k2〉 =
zk1 + zkn − k1kn. The optimization problem is nontrivial only
when the following condition is met:

λ > λ1 ≡ z

zk1 + zkn − k1kn
. (5)

In this case, if there is a unique solution p such that λ >

z/〈k2〉, it gives the optimal degree distribution po.
Our goal is to analytically find the solutions for the op-

timization problem defined in Eq. (4). As the mathematical
derivations involved are lengthy, it may be useful to sketch
the basic idea, tools used, and the results, which we organize
as the following three major steps.

(1) Mathematically, Eq. (4) defines a variational problem
for the HMF equations in Eq. (1), which can be stud-
ied through the standard calculus-of-variation techniques. In
Sec. III A, we adopt a variational approach for the HMF
equations in Eq. (1) and derive the necessary condition for
a degree distribution to be optimal. In particular, we impose
a perturbation to the degree distribution as p′ = p + αp̄ and
derive a formula that predicts ψ̄ (p, p′), the part of the incre-
mental spreading prevalence which is linear in α. For p to be
a candidate maximum, ψ̄ (p, p′) must be nonpositive for any
choice of p̄, and this leads to the necessary condition for the
local minima.
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(2) The next task is to study the necessary condition re-
sulting from the variational analysis. In Sec. III B, through
a sequence of algebraic arguments, we show that for any p
satisfying the necessary condition, it is only possible to have
either: (i) ψ̄ (p, p′) = 0 or (ii) ψ̄ (p, p′) < 0 for all feasible
perturbations. This means that it is impossible to find a certain
p such that ψ̄ (p, p′) = 0 and ψ̄ (p, p′′) < 0 for p′ �= p′′. Fur-
thermore, in Sec. III B, we show that the condition ψ̄ (p, p′) =
0 can be reduced to a linear equation in p [the first equa-
tion in (25)] which, together with the probability constraint∑n

i=1 pi = 1 and the average degree constraint
∑n

i=1 piki = z,
defines a set of candidate optimal degree distributions Po. In
Sec. III C, by analyzing the three linear equations, we show
that if Po is nonempty, then any p is a global maximum if
and only if p ∈ Po. Concurrently, if Po is empty, the optimal
degree distribution with ψ̄ (p, p′) < 0 will concentrate on no
more than two distinct nodal degrees.

(3) Finally, in Sec. IV A, we derive the condition when the
set Po is nonempty by analyzing the three linear equations
defining the set [Eq. (25)]. In particular, Po is nonempty for
λ ∈ [λ2, λ3] (see Sec. IV A for explicit definitions of λ2 and
λ3). For λ < λ2 or λ > λ3 and Po indeed empty, we find the
optimal degree distributions by solving the HMF equations
explicitly (Sec. IV B).

III. NECESSARY CONDITION FOR LOCAL EXTREMA
AND CONSEQUENCES

In this section, we first study the optimization problem
defined in Eq. (4) using several techniques from the calculus
of variation. The calculation provides a necessary condition
for finding the local maxima. We then analyze the neces-
sary condition in detail to find the global optimal degree
distributions.

A. Variational method

We study the variation problem in Eq. (4) using the stan-
dard techniques from the calculus of variations. Briefly, we
apply a perturbation to the degree distribution p in Eq. (1) and
calculate the linear response for the spreading prevalence. A
local maximum necessarily has nonpositive linear responses
for any feasible perturbation.

For a fixed λ > 〈k〉/〈k2〉, let x∗ be the corresponding glob-
ally stable equilibrium point of the HMF equation. We impose
a small variation on pi,

p′
i = pi + α p̄i, (6)

where p̄ specifies the direction of the variation and α > 0 con-
trols its magnitude. For the perturbed degree distribution to be
feasible, i.e., p′ ∈ P , the following conditions are necessary:

n∑
i=1

p̄i = 0 and
n∑

i=1

p̄iki = 0. (7)

In addition, the perturbed degree distribution p′ must satisfy
the probability constraints 0 � p′

i � 1.
Let x′(t, α) be the trajectory of the perturbed system. The

time evolution of x′(t, α) is described by the HMF equation
with p replaced by p′ and xi(t ) in Eq. (1) by x′

i (t, α). As shown
in Appendix A, x∗ is a continuously differentiable function of

p for λ > z/〈k2〉, enabling the following expansion of x′(t, α)
about x∗

i :

x′
i (t, α) = x∗

i + αx̄i(t ) + o(α), (8)

where x̄i(t ) is the response to the perturbation which is linear
in α. Taking the derivative with respect to α at α = 0, we
obtain ∂x′

i (t, α)/∂α|α=0 = x̄i(t ). The time derivative of x̄i(t )
is then given by

dx̄i(t )

dt
= ∂

∂α

∣∣∣∣
α=0

dxi(t, α)

dt
, (9)

which, after some algebraic manipulations, can be rewritten
as

d x̄(t )

dt
= J x̄(t ) + ξ, (10)

where J is the n × n Jacobian matrix that does not depend on
p̄ and ξ is a vector of length n that depends on p̄. The elements
of J and ξ are given by

Ji j = −δi, j (1 + λki�
∗) + λ

z
ki(1 − x∗

i )k j p j, (11)

and

ξi = λ

z
ki(1 − x∗

i )
n∑

j=1

k j p̄ jx
∗
j , (12)

respectively. In Eq. (11), δi, j is the Kronecker δ, and �∗ is
obtained by substituting x(t ) = x∗ into Eq. (2).

Equation (10) defines a linear system with the solution,

x̄(t ) = eJ t x̄(0) + (eJ t − I )J −1ξ, (13)

where eJ t is the matrix exponential of J t . In Appendix B, we
show that the eigenvalues of J have negative real parts. In the
long time limit, we then have

x̄∗ = lim
t→∞ x̄(t ) = −J −1ξ . (14)

With the perturbed degree distribution and Eq. (8), we can
express the spreading prevalence as

ψ (p′) = ψ (p) + αψ̄ (p, p′) + o(α), (15)

where ψ̄ (p, p′) is the part of incremental spreading prevalence
that is linear in α,

ψ̄ (p, p′) =
n∑

i=1

( p̄ix
∗
i + pix̄

∗
i ). (16)

Substituting Eq. (14) into Eq. (16), we have (after some alge-
braic manipulations)

ψ̄ (p, p′) =
n∑

i=1

χi p̄i, (17)

where χi is given by

χi = x∗
i

(
1 + λki�

∗ ∑n
j=1 p jk j (1 − x∗

j )2∑n
j=1 p jk j (x∗

j )2

)
. (18)

The detailed derivation of Eq. (18) is presented in Ap-
pendix C. The necessary condition for the degree distribution
p to be a local maximum is if and only if the inequality
ψ̄ (p, p′) � 0 holds for all feasible perturbations.
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B. Consequences of the necessary condition

Equations (17) and (18) allow us to significantly narrow
the search range for the optimal degree distribution through
the process of elimination. In the following, we analyze the
necessary condition by proving that it is only possible to have
either: (i) ψ̄ (p, p′) = 0 or (ii) ψ̄ (p, p′) < 0 for all feasible
perturbations. That is, it is impossible to find p such that
ψ̄ (p, p′) = 0 and ψ̄ (p, p′′) < 0 for p′ �= p′′. We then show
that ψ̄ (p, p′) = 0 can be reduced to an equation that is linear
in p, based on which the spreading prevalence for any p sat-
isfying ψ̄ (p, p′) = 0 can be directly obtained without solving
the HMF equations. The results in this section are obtained
through algebraic manipulations of the equation ψ̄ (p, p′) = 0.

The starting point of our analysis is to determine when
the linear variation ψ̄ (p, p′) vanishes. A feasible perturba-
tion p̄ must satisfy the constraints in (7), so p̄ must have,
at least, three nonzero elements. Pick any m � 3 points
{ki1 , ki2 , . . . kim} from k and consider a perturbation p̄ whose
elements are nonzero only on these points. The linear variation
ψ̄ (p, p′) vanishes only if Z (m)p̄ = 0, where Z (m) is a 3 × m
matrix,

Z (m) =
⎛
⎝ 1 1 · · · 1

ki1 ki2 · · · kim
χi1 χi2 · · · χim

⎞
⎠. (19)

The first two rows in Z (m) correspond to the constraints for
p̄ in (7), whereas the last row is the result of the defini-
tion of ψ̄ (p, p′) in Eq. (17). To gain insights, we temporally
disregard the probability constraint p′ ∈ [0 1]n (which will
be included in the analysis later). Under this condition, any
p̄ that makes the linear variation ψ̄ (p, p′) vanish belongs
to the null space of Z (m). By the rank-nullity theorem, we
have nullity(Z (m) ) = m − rank(Z (m) ). The dimension of the
space for all feasible perturbations, i.e., the nullity of the
submatrix consisting of the first two rows of Z (m), is m − 2.
As a result, the linear variation vanishes for all directions of
perturbation if nullity(Z (m) ) = m − 2, which further implies
the condition rank(Z (m) ) = 2. We, thus, have that the linear
variation vanishes if and only if the third row of Z (m) is a
linear combination of the first two rows.

Setting the right-hand side of Eq. (1) to zero, we obtain
the equilibrium solution as x∗

i = λki�
∗/(1 + λki�

∗). From
the definition of χi in Eq. (18), we have

χi = λki

1 + λki�∗

(
1 + λ�∗ki

∑n
j=1 p jk j (1 − x∗

j )2∑n
j=1 p jk j (x∗

j )2

)
. (20)

If the following holds∑n
j=1 p jk j (1 − x∗

j )2∑n
j=1 p jk j (x∗

j )2
= 1, (21)

then we have χi = λki. In this case, the third row of
Z (m) is exactly the second row multiplying by λ and we
have rank(Z (m) ) = 2. Moreover, if Eq. (21) holds, then
rank(Z (m) ) = 2 holds for any choice of perturbation with
m � 3. In other words, the linear variation, thus, vanishes for
all directions of perturbation.

In the above analysis, we have not required p + αp̄ ∈
[0 1]n. A direction of perturbation p̄ would be infeasible

if an element of p has pi = 0 or pi = 1. Nevertheless, as
Eq. (21) guarantees Z (m)p̄ = 0 for any m, the linear variation
ψ̄ (p, p′) vanishes in any direction of perturbation, feasible or
infeasible. In fact, in the proof of x∗ being a continuously
differentiable function of p (Appendix A), it is not neces-
sary to require pi �= 0 or pi �= 1 for any i ∈ {1, . . . , n}. This
means that the perturbation in an infeasible direction can still
be well defined, although it is physically irrelevant. Conse-
quently, Eq. (21) provides the sufficient condition for a local
extremum.

The analysis so far gives that a local maximum of ψ (p)
either has: (i) ψ̄ (p, p′) = 0 in any direction of perturbation,
or (ii) ψ̄ (p, p′) < 0 for all feasible perturbations. It is not
possible to find a local maximum such that the linear variation
vanishes in some directions of perturbation and negative in
others. Note that case (i) only provides a necessary condition
for a local extremum, and we need to further determine if it is
a maximum or a minimum.

To proceed, we continue to analyze the local extrema with
ψ̄ (p, p′) = 0 from Eq. (21) which, for x∗

i > 0, can be rewrit-
ten as

n∑
j=1

p jk j = 2
n∑

j=1

p jk jx
∗
j . (22)

The left-hand side equals z whereas the right side equals 2z�∗,
implying �∗ = 1/2. Since, at equilibrium, we have

x∗
i = λki�

∗

1 + λki�∗ = λki

2 + λki
, (23)

from the definition of �∗, we obtain the following relation for
a local extremum:

z�∗ =
n∑

i=1

piki
λki

2 + λki
= z

2
. (24)

Together with the probability and the average degree con-
straints, a local extremum with ψ̄ (p, p′) = 0 can be found in
the set Po where any p ∈ Po satisfies

n∑
i=1

pi
λk2

i

2 + λki
= z

2
,

n∑
i=1

piki = z,

n∑
i=1

pi = 1, pi ∈ [0, 1] ∀ i ∈ {1, . . . , n}. (25)

The spreading prevalence for p ∈ Po can be directly obtained
from the definition of Po without solving the HMF equations.
In particular, subtracting the second equation in Eq. (25) by
the first equation on both sides, we have

n∑
i=1

pi
2ki

2 + λki
= 2

λ

n∑
i=1

pixi = 2

λ
ψ (p) = z

2
, (26)

which implies ψ (p) = λz/4 for p ∈ Po. That is, for any p ∈
Po, the resulting spreading prevalence is the same.

For p ∈ Po, conversely we have ψ̄ (p, p′) = 0 for all feasi-
ble directions. To see this, consider the definition of �∗,

z�∗ =
n∑

i=1

piki
λki�

∗

1 + λki�∗ . (27)
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If the right-hand side is viewed as a function of �∗, then it
increases with �∗. For �∗ = 0, the right-hand side equals
zero, and for �∗ → ∞ it converges to z. Consequently, for
a fixed p, there is a unique �∗ such that the right-hand side
equals z/2. Since p ∈ Po, from the first equation in Eq. (25),
we have �∗ = 1/2, and then Eq. (21) holds. Similarly, for
p /∈ Po, we have �∗ �= 1/2. The conclusion is that for p ∈
P, ψ̄ (p, p′) = 0 holds for all feasible directions if and only if
p ∈ Po.

C. Necessary condition for the global optimal solution

Suppose Po is nonempty, the question is as follows: Are
the degree distributions local maxima or a global maximum?
As the set Po is defined through simple linear equations,
we can prove that any p ∈ Po is indeed a global maximum
via algebraic manipulations. Concretely, in the following, we
prove that if p /∈ Po, then ψ (p) < λz/4. When Po is empty,
we show that the support of the optimal degree distribution
has no more than two distinct nodal degrees.

For any p /∈ Po, this is trivially true if �∗ = 0 and we as-
sume �∗ > 0. Suppose there exists p /∈ Po but ψ (p) � λz/4,
then from the definition of ψ (p), we have

1

λ�∗ ψ (p) =
n∑

i=1

pi
ki

1 + λki�∗ � z

4�∗ . (28)

Subtracting
∑n

i=1 piki = z from the inequality on both sides,
we have

n∑
i=1

piki
λki�

∗

1 + λki�∗ = z�∗ � z − z

4�∗ . (29)

The inequality implies (2�∗ − 1)2 � 0. An equality holds
only when �∗ = 1/2, but this contradicts with �∗ �= 1/2 for
p /∈ Po from the discussions below Eq. (27).

The analysis so far reveals that, when Po is nonempty, any
p is a global maximum if and only if it belongs to Po. It
remains to address the following issues. (i) For which values
of λ is the set Po nonempty? (ii) If Po is empty, how do
we find the local maxima with ψ̄ (p, p′) < 0 for all feasible
perturbations. We will solve (ii) partly for the rest of this
section and provide full answers to (i) and (ii) in the next
section.

Suppose Po is empty. Consider any p ∈ P and define the
support of p as

supp(p) = {ki: pi > 0}. Suppose supp(p) has more than
two distinct nodal degrees, we can pick any m � 3 points
{ki1 , ki2 , . . . kim} ⊂ supp(p) from the support of p and consider
a perturbation p̄ whose elements are nonzero only at these
points. For any p̄ which is nonzero only on the support of p,
we can always choose α sufficiently small such that

p + αp̄ ∈ [0 1]n, p − αp̄ ∈ [0 1]n. (30)

The perturbations αp̄ and −αp̄ are, thus, both feasible for
sufficiently small α. As Po is empty, there always exists p̄
such that Z (m)p̄ �= 0. From Eq. (17), we have

ψ̄ (p, p + αp̄) = −ψ̄ (p, p − αp̄). (31)

This indicates that if Po is empty, then any p whose support
has more than two distinct degrees cannot be a local maximum

and the optimal po must concentrate on no more than two
distinct nodal degrees.

IV. FINDING THE OPTIMAL DEGREE DISTRIBUTIONS

The results in Sec. III indicate that, to find the optimal
distributions, it is only necessary to determine whether set Po

is nonempty. If it is empty, the task is to search through all de-
gree distributions whose support consists of one or two nodal
degrees. In fact, in the latter case, the HMF equation can be
solved analytically to yield the optimal degree distributions.

A. Conditions for Po to be nonempty

As Po is a closed convex set, by the Krein-Milman the-
orem, it is the convex hull of all its extremum points (i.e.,
p ∈ Po that does not lie in the open line segment joining
any two other points in Po). To check if Po is nonempty is
equivalent to examining if all its extremum points exist. In
the following, we first show that the support of the extremum
points of Po has no more than three distinct nodal degrees. In
this case, the value of p is uniquely determined by choice of
the support. As a result, we can solve p in terms of the support
and λ explicitly. With a fixed chosen support and the λ value
so determined, the corresponding p is physical for p ∈ [0, 1]n.
By checking all the points that are supported on no more than
three degrees, we can derive the condition for λ under which
Po is nonempty.

Suppose there exists p ∈ Po whose support has more
than three degrees. Pick any m � 4 points {ki1 , ki2 , . . . kim} ⊂
supp(p) and consider a perturbation p̄ whose elements are
nonzero only on these points. Define

Y (m) =

⎛
⎜⎜⎜⎝

1 1 · · · 1

ki1 ki2 · · · kim

λk2
i1

2+λki1

λk2
i2

2+λki2
· · · λk2

im
2+λkim

⎞
⎟⎟⎟⎠. (32)

A feasible direction of perturbation p̄, which keeps p ±
αp̄ staying inside Po for sufficiently small values of α,
must satisfy the condition Y (m)p̄ = 0. The nullity of Y (m) is
nullity(Y (m) ) = m − 3. Thus, for m > 3, the space of feasible
perturbations is nonempty. Moreover, we can always choose
α1 > 0 and α2 > 0 such that the support of p + α1p̄ and
p − α2p̄ has m − 1 distinct nodal degrees. In this way, p lies
on the open line segment that joins p + α1p̄ and p − α2p̄.
This means that, if the support of p ∈ Po has more than three
distinct nodal degrees, it will not be an extremum point of Po.

To determine if Po is nonempty, it, thus, suffices to check if
there exists p ∈ Po whose support has no more than than three
distinct nodal degrees. Consider any ki1 > ki2 > ki3 , the values
of pi1 , pi2 , and pi3 are uniquely determined by Eq. (25), which
are

pi1 = −
(
ki1λ + 2

)
g
(
ki2 , ki3

)
8λ

(
ki1 − ki2

)(
ki1 − ki3

) ,

pi2 = +
(
ki2λ + 2

)
g
(
ki1 , ki3

)
8λ

(
ki1 − ki2

)(
ki2 − ki3

) ,

pi3 = −
(
ki3λ + 2

)
g
(
ki1 , ki2

)
8λ

(
ki1 − ki3

)(
ki2 − ki3

) , (33)
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where

g(ka, kb) = (λ2z − 4λ)kakb + 2λz(ka + kb) − 4z. (34)

The degree distribution is physically meaningful insofar as
pi1 , pi2 , pi3 ∈ [0 1]. Since pi1 + pi2 + pi3 = 1, it is sufficient to
guarantee pi1 , pi2 , and pi3 to be nonnegative, i.e., to guarantee

g
(
ki2 , ki3

)
� 0, g

(
ki1 , ki2

)
� 0, g

(
ki1 , ki3

)
� 0. (35)

In Appendix D, we analyze the three inequalities in detail.
Here we summarize the procedure and results. We study
under what conditions the three inequalities in (35) hold con-
secutively. Particularly, we first derive the condition for the
existence of (ki1 , ki3 ) such that g(ki1 , ki3 ) � 0 holds. Then,
under this condition, we check if there exists ki2 such that
the other two inequalities in (35) hold. Consider the in-
equality g(ki1 , ki3 ) � 0. The possible values of the two nodal
degrees are ki1 ∈ {k1, k2, . . . , z+} and ki3 ∈ {z−, . . . , kn−1, kn},
where z+ = mini{ki � z} and z− = maxi{ki � z}. As g(ka, kb)
is quadratic in λ, we can show that g(ka, kb) � 0 if λ � λ(ka,kb)

but g(ka, kb) < 0 otherwise, where

λ(ka,kb) = 2

z
− 1

ka
− 1

kb
+

√(
1

ka
+ 1

kb
− 2

z

)2

+ 4

kakb
. (36)

As λ(ka,kb) is a decreasing function of ka for ka � z+ and
an increasing function of kb for kb � z−, we can show that
there exists (ki1 , ki3 ) such that g(ki1 , ki3 ) � 0 holds insofar as
λ � λ2, where λ2 = λ(k1,kn ). Furthermore, when this condition
holds, we can show that there exists ki2 such that the other two
inequalities in (35) hold if and only if λ � λ3 = λ(z+,z− ).

Overall, the values of λ are divided by λ1, λ2, and λ3 into
four regions, where λ1 is defined in Eq. (5). The four regions
are described as follows.

(i) For λ � λ1, the optimization problem is trivial, i.e., no
degree distribution can trigger an epidemic outbreak.

(ii) For λ1 < λ < λ2, set Po is empty, thus, the global
maximum can only be found among all p supported on one
or two nodal degrees.

(iii) For λ2 � λ � λ3, set Po is nonempty and any p ∈ Po

will lead to equal spreading prevalence λz/4. In Appendix D,
we show that, for λ = λ2, set Po consists of a unique degree
distribution supported on {k1, kn}, whereas for λ = λ3, set Po

has a unique degree distribution supported on {z+, z−}. For
λ2 < λ < λ3, there are infinitely many global maxima that
constitute a plateau of equal spreading prevalence.

(iv) For λ > λ3, set Po again becomes empty, and the
global maxima can only be supported on one or two nodal
degrees.

B. Analytic solutions of HMF equations on one or two degrees

Having determined the conditions under which Po is
nonempty, we are now in a position to find the optimal de-
gree distributions that are supported on one or two degrees.
In this case, the HMF equations consist of only one or two
different equations so the equilibrium solution can be solved
explicitly. We can then directly optimize the solution to obtain
the optimal degree distribution on one or two nodal degrees.

Consider the situation where p is supported on one or two
different nodal degrees. Let k1 � ki1 � z+ and z− � ki2 � kn

be any two nodal degrees from k so that pi1 and pi2 are
uniquely determined by

pi1 + pi2 = 1, pi1 ki1 + pi2 ki2 = z, (37)

which leads to the solutions of pi1 and pi2 in terms of ki1 , ki2 ,
and z as

pi1 = z − ki2

ki1 − ki2

, pi2 = ki1 − z

ki1 − ki2

. (38)

When z is an integer and either ki1 or ki2 equals z, it reduces to
the case where p is supported on one nodal degree. With the
values of pi1 and pi2 , the HFM equation can be solved analyt-
ically (Appendix E). After some algebraic manipulations, we
obtain the spreading prevalence as

ψ (p) = 1 − u− 1

λz
(u2 + v2)+ u

λz

√
λz(λz − 4 + 4u) + 4v2,

(39)

where

u = 1

2

(
z

ki1

+ z

ki2

)
, v = 1

2

(
z

ki1

− z

ki2

)
. (40)

The degrees ki1 and ki2 are then uniquely determined by the
values of u and v.

We can now carry out optimization among all degree dis-
tributions that are supported on one or two nodal degrees. The
goal is to find the optimal degree values ki1 and ki2 such that
ψ (p) given by Eq. (39) is maximized. Our approach is to treat
ki1 and ki2 as continuous variables to obtain the maxima of
ψ (p), which can finally be used to find the actual optimal
values of ki1 and ki2 as integers.

From Eq. (38), we see that pi1 and pi2 are uniquely deter-
mined by the choice of ki1 and ki2 which, in turn, are uniquely
determined by the values of u and v defined in Eq. (40).
The equivalent problem is to optimize ψ (p) by u and v. It
is convenient to rewrite ψ (p) as ψ (u, v). Taking the partial
derivatives of ψ (u, v), we obtain

∂ψ (u, v)

∂u
=

(
1

λz

√
λz(λz − 4 + 4u) + 4v2 − 1

)

×
(

1 − 2u√
λz(λz − 4 + 4u) + 4v2

)
, (41)

∂ψ (u, v)

∂v
= 2v

λz

(
2u√

λz(λz − 4 + 4u) + 4v2
− 1

)
. (42)

The two partial derivatives vanish simultaneously only for

2u =
√

λz(λz − 4 + 4u) + 4v2, (43)

which defines a curve on the u-v plane where every point
on it is a critical point of ψ (u, v). Substituting Eq. (43) into
Eq. (39), we obtain the spreading prevalence along the curve
as

ψ (p) = λz

4
, (44)

which is exactly the spreading prevalence for those p ∈ Po,
given that Po is nonempty.

Substituting the definition of u and v in Eq. (40) into
Eq. (43), we can express the curve in terms of ki1 and ki1 as

012302-6



OPTIMAL NETWORKS FOR DYNAMICAL SPREADING PHYSICAL REVIEW E 103, 012302 (2021)

g(ki1 , ki2 ) = 0, where

g(ka, kb) = (λ2z − 4λ)kakb + 2λz(ka + kb) − 4z. (45)

This function is also exactly the same as Eq. (34), the one
that emerges when we analyze the extremum points of Po.
Not all points (ka, kb) along the optimal curve in Eq. (43)
are physically meaningful. Especially, for a point on the ka-kb

plane to be meaningful, it must be an integer point that lies in
the region,

R = {(ka, kb): k1 � ka � z+, z− � kb � kn}. (46)

From the discussions below Eq. (34), the curve g(ka, kb) =
0 passes an integer point (ka, kb) when λ = λ(ka,kb), where
λ(ka,kb) is defined in Eq. (36). When this happens, the degree
distribution supported on {ka, kb} belongs to set Po. In fact,
if we let (ki1 , ki3 ) = (ka, kb) and substitute g(ki1 , ki3 ) = 0 into
Eq. (33), we then have pi2 = 0 and

pi1 = z − ki3

ki1 − ki3

, pi3 = ki1 − z

ki1 − ki3

. (47)

This recovers exactly the same degree distribution defined
in Eq. (38). For λ < λ2 or λ > λ3, set Po is empty, and no
integer point in region R can lie on the curve g(ka, kb) = 0. In
this case, it is necessary to further analyze the optimal degree
distribution.

For convenience, we write ψ (p) as ψ (ki1 , ki2 ) and have

∂ψ
(
ki1 , ki2

)
∂ki1

= − z

2k2
i1

(
∂ψ (u, v)

∂u
+ ∂ψ (u, v)

∂v

)
. (48)

Substituting Eqs. (41) and (42) into Eq. (48), we get

∂ψ
(
ki1 , ki2

)
∂ki1

=
(

1 − 2u√
λz(λz − 4 + 4u) + 4v2

)
z

2k2
i1

×
(

2v

λz
+1− 1

λz

√
λz(λz − 4 + 4u) + 4v2

)
.

(49)

Since u − v = z/ki2 > 1, we have√
λz(λz−4+4u)+4v2 >

√
λz(λz+4v)+4v2 > 2v + λz.

(50)
The last line in Eq. (49) is, thus, negative. For√

λz(λz − 4 + 4u) + 4v2 − 2u > 0, (51)

ψ (ki1 , ki2 ) is a decreasing function of ki2 ; otherwise it is an
increasing function of ki1 . Similarly, the partial derivative of
ψ (ki1 , ki2 ) with respect to ki2 is

∂ψ
(
ki1 , ki2

)
∂ki2

=
(

1 − 2u√
λz(λz − 4 + 4u) + 4v2

)
z

2k2
i2

×
(
−2v

λz
+1− 1

λz

√
λz(λz−4 + 4u)+4v2

)
,

(52)

where the term in the last line is positive. Thus, if Eq. (51)
holds, ψ (ki1 , ki2 ) is an increasing function of ki2 , otherwise it
is a decreasing function of ki2 .

Recall that g(ka, kb) in Eq. (34) is equivalent to the relation
in Eq. (43). The inequality in Eq. (51) can then be written in
terms of ki1 and ki2 as

g
(
ki1 , ki2

)
> 0. (53)

From the discussions in Appendix D, for any (ka, kb) ∈ R,
we have g(ka, kb) < 0 if λ < λ2 and g(ka, kb) > 0 if λ > λ3.
These results lead to the optimal degree distributions in each
of the parameter regions of λ.

For λ1 < λ < λ2, we have g(ka, kb) < 0 for any (ka, kb) ∈
R. Consequently, ψ (ki1 , ki2 ) is an increasing function of ki1 and
a decreasing function of ki2 . In this case, the optimal degree
distribution is supported on ka = k1 and kb = kn. Moreover,
the spreading prevalence of the optimal degree distribution is
strictly less than λz/4.

For λ2 � λ � λ3, the degree distribution p is a global
maximum if and only if p ∈ Po. Since Po is a connected set,
all the global maxima constitute a plateau of degree distri-
butions with equal spreading prevalence. For λ = λ2, the set
Po consists of a unique degree distribution, which is exactly
the optimal one for λ < λ2. For λ = λ3, the set Po also has
one unique degree distribution, and we will see that it is the
optimal one for λ > λ3.

For λ > λ3, we have g(ka, kb) > 0 for any (ka, kb) ∈ R.
As a result, ψ (ki1 , ki2 ) is a decreasing function of ki1 and an
increasing function of ki2 . In this case, the optimal degree
distribution is supported on ki1 = z+ and ki2 = z−.

V. CHARACTERISTICS OF OPTIMAL DEGREE
DISTRIBUTIONS

For relatively low infection rates (λ1 < λ � λ2), the op-
timal degree distribution is supported on the maximal and
minima possible degrees {k1, kn}. For high infection rates
(λ � λ3), the optimal degree distribution is supported on the
two nodal degrees {z+, z−} that are nearest to the average
degree z. Therefore, we need to study how the support of the
optimal degree distributions behaves for intermediate infec-
tion rates in the range [λ2, λ3]. Let Pe ⊂ Po be the set of all
extremum points of Po, where Pe is a finite set. As Po is the
convex hull of all its extremum points, for any p ∈ Po, it is a
convex combination of the extremum points,

p =
∑

pe∈Pe

c(pe)pe, (54)

where c(pe) � 0 and
∑

pe∈Pe c(pe) = 1. The broadest support
(i.e., the support with the largest number of distinct nodal
degrees) of p ∈ Po, thus, is⋃

pe∈Pe

supp(pe). (55)

Any degree distribution with c(pe) > 0 for all pe ∈ Pe will
have the broadest possible support.

Consider the case where λ is slightly above λ2 and (k1, kn)
is a unique point such that g(k1, kn) > 0. From the discus-
sions at the end of Appendix D, we have that, by choosing
ki1 = k1, ki3 = kn, and ki2 to be any allowed degree with
k1 > ki2 > k3, the triple (ki1 , ki2 , ki3 ) will define a physical
degree distribution from Eq. (33). As the middle degree ki2
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1 2 3

0
2/n

1

FIG. 1. Normalized cardinality of the broadest support for p ∈
Po versus λ. The vertical gray dashed lines mark the locations
of λ1, λ2, and λ3 that divide the values of λ into different re-
gions. For λ � λ2 or λ � λ3, the normalized cardinality is 2/n,
whereas it is one for λ2 < λ < λ3. For λ2 < λ < λ3, the cardi-
nality of the broadest possible support is obtained by testing all
the extremum points numerically. The values of other parameters
are k1 = 30, kn = 1, and z = 15.5. The values of λi for i ∈ {1–3}
are λ1 ≈ 0.0344, λ2 ≈ 0.0709, and λ3 ≈ 0.1290. The support of the
degree distribution can take on any integer value between k1 and kn,
i.e., k = [30, 29, . . . , 1]T and n = 30.

is arbitrary, the broadest support in this case consists of all
the allowed degrees in k, i.e., the cardinality of the broadest
support increases abruptly from 2 to n at λ = λ2. Similarly, it
can be seen that, when λ is slightly below λ3 and (z+, z−) is
the unique point such that g(z+, g−) < 0, the broadest support
also consists of all the possible nodal degrees. Figure 1 shows
the normalized cardinality of the broadest possible support
versus λ. We see that, for λ2 < λ < λ3, the broadest support
indeed consists of all the distinct degrees allowed in k, indi-
cating that, except for relatively low or high values of λ, the
support of the optimal degree distribution can be quite broad.

In general, the degree heterogeneity of a network, de-
fined as H = 〈k2〉/〈k〉2, can have significant impacts on the
spreading dynamics. A natural question is, what is the degree
heterogeneity of the optimal degree distribution? Since the
average degree is fixed (〈k〉 = z), the degree heterogeneity
determines the outbreak threshold. For sufficiently small val-
ues of λ where there is a unique network that can trigger an
epidemic outbreak, the optimal network structure is one with
the largest degree heterogeneity.

Consider the general problem of finding maxima and min-
ima of H among all degree distributions. The extrema of
H can be found by maximizing or minimizing the second
moment 〈k2〉 of the degree distribution. The Bhatia-Davis
inequality stipulates that the second moment of p is maxi-
mized when it is concentrated at the end points k1 and kn.
To minimize the second moment, we note that the definition
〈k2〉 = ∑n

i=1 pik2
i has a similar form to Eq. (17) with χi re-

FIG. 2. Bounds of degree heterogeneity of the optimal degree
distributions versus the infection rate. The vertical gray dashed lines
mark the locations of λ1, λ2, and λ3 that divide λ into different
regions. The blue solid trace represents the bounds of the degree
heterogeneity H . For λ � λ2 or λ � λ3, the lower and upper bounds
coincide. For λ2 < λ < λ3, the degree heterogeneity can take on any
value in the shaded region. Other parameter values are k1 = 30, kn =
1, and z = 15.5. The values of λi for i ∈ {1–3} and n are the same as
those in Fig. 1.

placed by k2
i . Following the reasoning in Sec. III B, we see

that the minimum of H is supported on two nodal degrees.
Through a direct comparison of all distributions supported on
two degrees, we find that H is minimized when p concentrates
on {z+, z−}. We see that the optimal degree distributions for
λ � λ2 and λ � λ3 are exactly the ones that maximize and
minimize the degree heterogeneity, respectively.

For a fixed λ value in the intermediate region (λ2 < λ <

λ3), the values of H for different degree distributions in Po

are not necessarily identical. From Eq. (54), we see that, if p
is a convex combination of the extremum points, its second
moment can be obtained by the same convex combination of
the second moment of the extremum points. Consequently,
the degree heterogeneity of p ∈ Po is bounded by that of the
extremum points. Figure 2 shows the bounds of the degree
heterogeneity H of the optimal degree distributions versus λ.
The general phenomenon is that the optimal network is more
heterogeneous for small infection rates but less so for large
rates, as the upper and lower bound of H decreases with λ.
However, the degree heterogeneity does not decrease with λ

in a strict sense but only trendwise. In fact, if we draw a line
segment joining the two degree distributions that reach the
upper and lower bounds, then H varies continuously on this
line segment, i.e., the degree heterogeneity can take on any
value between the lower and upper bounds.

Our analysis of the characteristics of the optimal degree
distributions reveals a phenomenon: The existence of a par-
ticular value of the infection rate for which every degree
distribution is optimal. From the definition of Po, any p ∈ Po

must satisfy the first equation in Eq. (25), whose left-hand side
is an increasing function of λ that converges to zero or z for
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2 ( 2 + 3 )/2 3

0

1/4

FIG. 3. Spreading prevalence divided by λz versus λ for three
different degree distributions. The values of the spreading prevalence
are obtained by solving the HMF equations numerically. The vertical
gray dashed lines mark the locations of λ2, (λ2 + λ3)/2, and λ3

where the three degree distributions are optimal. The horizontal black
dashed line correspond to ψ (p)/λz = 1/4. Other parameter values
are k1 = 30, kn = 1, and z = 15.5. The values of λi for i ∈ {1–3}
and n are the same as those in Fig. 1.

λ → 0 or λ → ∞, respectively. As a result, for any p ∈ P ,
there always exists a unique λ value such that p ∈ Po. Only
two degree distributions are optimal under multiple values of
λ, which are the two supported on either {k1, kn} or {z+, z−}
as they are optimal when Po is empty. In Sec. III B, we have
shown that for any p /∈ Po, its spreading prevalence is strictly
less than λz/4. This suggests the following phenomenon: For
any degree distributions, its spreading prevalence as a function
of λ will touch the line ψ (p) = λz/4 only at one value of
λ and under this value of λ the degree distribution is among
the optimal degree distributions. For all other values of λ, its
spreading prevalence will strictly be below the line ψ (p) =
λz/4.

To illustrate the phenomenon, we consider three degree
distributions that are optimal at λ = λ2, λ = (λ2 + λ3)/2,
and λ = λ3, respectively. For λ = λ2 or λ = λ3, the optimal
degree distribution is unique. For λ = (λ2 + λ3)/2, we ran-
domly pick a degree distribution from Po by a uniformly
random convex combination of the extremum points. We plot
ψ (p)/λz versus λ for three degree distributions as shown in
Fig. 3. It can be seen that the value of ψ (p)/λz reaches 1/4 at
the predicted value of λ and is below 1/4 for any other values
of λ.

VI. DISCUSSION

Given a dynamical process of interest, identifying the ex-
tremum network provides deeper insights into the interplay
between network structure and dynamics. From the perspec-
tive of applications, searching for a global dynamics-specific
optimal network can be valuable in areas, such as information

diffusion, transportation, and behavior promotion. The issue,
however, belongs to the category of dynamics-based inverse
problems that are generally challenging and extremely diffi-
cult to solve. We have taken an initial step in this direction.
Specifically, by limiting the study to SIS type of spreading
dynamics and imposing the annealed approximation, we have
obtained analytic solutions to the inverse problem. Our solu-
tions unveil a phenomenon with implications: A fundamental
characteristic of the optimal network, its degree heterogeneity,
depends on the infection rate. In particular, strong degree
heterogeneity facilitates the spreading but only for small in-
fection rates. For relatively large infection rates, the optimal
structure tends to choose the networks that are less heteroge-
neous. This means that, when designing an optimal network,
e.g., for information spreading, the ease with which informa-
tion can diffuse among the nodes must be taken into account.
Our analysis has also revealed the existence of a particular
value of the infection rate for which every degree distribution
is globally optimal.

The annealed approximation that serves the base of our
analysis is applicable to networks that are describable by the
uncorrelated configuration model. It remains to be an open
problem to find the optimal quenched networks for SIS dy-
namics. In Ref. [16], the authors introduced a technique to
bridge the annealed and quenched limit of the SIS model. The
technique can provide a starting point to extend our analytic
approach to quenched networks. The variational analysis in
the current paper can be extended to SIS-type dynamics on
quenched weighted networks to derive a necessary condi-
tion for local optimum. In the variational calculus, we have
to perform a network structural perturbation to the mean-
field equation; therefore, we emphasize a necessary element
that makes the variational calculations viable: The spreading
prevalence is a continuous function of the perturbations, at
least, locally around the network being perturbed. The varia-
tional analysis will result in a necessary condition for local
optimum. However, it is not clear yet what we can derive
from the necessary condition without annealed approxima-
tions. To generalize the theory to settings under less stringent
simplifications is at present an open topic worth investigat-
ing. Another assumption in the present paper is that only the
number of edges is held fixed, and it is useful to study the
optimal networks under more realistic restrictions. Moreover,
it is of general interest to seek optimal solutions of network
structures for different types of dynamical processes. Our
paper represents a step forward in this direction.

ACKNOWLEDGMENTS

L.P. would like to acknowledge support from the Na-
tional Natural Science Foundation of China under Grant No.
62006122. W.W. would like to acknowledge support from the
National Natural Science Foundation of China under Grant
No. 61903266, Sichuan Science and Technology Program
Grant No. 2020YJ0048, China Postdoctoral Science Special
Foundation Grant No. 2019T120829, and the Fundamen-
tal Research Funds for the central Universities Grant No.
YJ201830. L.T. would like to acknowledge support from The
Major Program of the National Natural Science Foundation
of China under Grant No. 71690242 and the National Key

012302-9



PAN, WANG, TIAN, AND LAI PHYSICAL REVIEW E 103, 012302 (2021)

Research and Development Program of China under Grant
No. 2020YFA0608601. Y.-C.L. would like to acknowledge
support from the Vannevar Bush Faculty Fellowship program
sponsored by the Basic Research Office of the Assistant Sec-
retary of Defense for Research and Engineering and funded
by the Office of Naval Research through Grant No. N00014-
16-1-2828.

APPENDIX A: PROOF THAT x∗ IS A CONTINUOUSLY
DIFFERENTIABLE FUNCTION OF p ABOVE THE

OUTBREAK THRESHOLD

Setting the right-hand side of Eq. (1) to zero for an equilib-
rium, we get

x∗
i = λki�

∗

1 + λki�∗ , (A1)

where �∗ is obtained by substituting x(t ) = x∗ into Eq. (2).
Define a function

f (p, x): (p, x) → Rn as

fi(p, x) = xi − λki
∑n

l=1 plklxl

z + λki
∑n

l=1 plklxl
, (A2)

we have f (p, x∗) = 0. Note that f (p, x) is a continuously
differentiable function of p and x. We now show that, from
the relation f (p, x∗) = 0, the stable equilibrium point x∗ can
be written as a continuously differentiable function of p for
λ > z/〈k2〉 by applying the implicit function theorem.

The derivative of fi(p, x) with respect to x j is

∂ fi(p, x)

∂x j
= δi, j − λzkik j p j(

z + λki
∑n

l=1 plkl xl
)2 , (A3)

where δi, j is the Kronecker δ. The Jacobian matrix of f (p, x)
to x can be written as I − rsT , where I is the n × n identity
matrix and r and s are n × 1 vectors with elements,

ri = λzki(
z + λki

∑n
l=1 plkl xl

)2 , si = ki pi. (A4)

Let b be an eigenvector of the matrix rsT with eigenvalue ω.
From the eigenvalue equation, we have

n∑
j=1

ris jb j = ωbi. (A5)

Multiplying both sides by si and summing over i, we have

n∑
i=1

risi

n∑
j=1

s jb j = ω

n∑
i=1

sibi. (A6)

As a result, the only possible eigenvalues of matrix rsT are
ω = 0 or ω = ∑n

i=1 risi.
For λ > z/〈k2〉, all elements of x∗ are positive. At x = x∗,

we have
n∑

i=1

risi =
n∑

i=1

λzpik2
i(

z + λki
∑n

l=1 plkl x∗
l

)2

= 1

z

n∑
i=1

λpik
2
i (1 − x∗

i )2

= 1

z�∗

n∑
i=1

pikix
∗
i (1 − x∗

i )

= 1 − 1

z�∗

n∑
i=1

piki(x
∗
i )2 < 1, (A7)

where the second and third equalities can be verified by
substituting them into Eq. (A1) and x∗

i = λki(1 − x∗
i )�∗,

respectively.
Taken together, the eigenvalues of the matrix rsT are less

than one for λ > z/〈k2〉, so the eigenvalues of the Jacobian
matrix I − rsT are less than zero, which further implies that
the Jacobian matrix is invertible. By the implicit function
theorem, x∗ is a continuously differentiable function of p.

APPENDIX B: EIGENVALUES OF THE JACOBIAN
MATRIX

Denote the right side of Eq. (1) by

hi = −xi(t ) + λki[1 − xi(t )]�. (B1)

The Jacobian matrix for h = (h1, . . . , hn)T at x = x∗ is
exactly J : ∇h = J . As x∗ is the unique global stable equi-
librium point [15], the eigenvalues of J must have negative
real parts.

APPENDIX C: DETAILED DERIVATION OF χ

Define two vectors μ and ν of length n whose elements are

μi = λ

z
ki(1 − x∗

i ), νi = ki pi. (C1)

Furthermore, define a n × n diagonal matrix D with the
elements,

Dii = −1 − λki�
∗. (C2)

By the Sherman-Morrison formula, we have

J −1 = (D + μνT )−1 = D−1 − D−1μνTD−1

1 + νTD−1μ
. (C3)

Substituting Eq. (14) into Eq. (16), we get Eq. (17) with χi

given by

χi = x∗
i − kix

∗
i pTJ −1μ. (C4)

Inserting Eq. (C3) into Eq. (C4) leads to

χi = x∗
i + λkixi

∑n
j=1 p jk j (1 − x∗

j )(1 + λk j�
∗)−1

z − λ
∑n

j=1 p jk2
j (1 − x∗

j )(1 + λk j�∗)−1
. (C5)

At the equilibrium point, we have

−x∗
i + λki(1 − x∗

i )�∗ = 0, (C6)

which leads to

(1 + λk j�
∗)−1 = (1 − x∗

i ). (C7)

Substituting the above two equations into Eq. (C5), we obtain

χi = x∗
i

(
1 + λki�

∗ ∑n
j=1 p jk j (1 − x∗

j )2∑n
j=1 p jk j (x∗

j )2

)
, (C8)

which is Eq. (18).
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APPENDIX D: CONDITIONS FOR Po TO BE NONEMPTY

We test the validity of the three inequalities in (35) in a
sequential manner: First we study the condition for λ when
there exist ki1 and ki3 such that g(ki1 , ki3 ) � 0 holds, we then
test under the derived condition if there exists ki2 such that the
other two inequalities hold.

As a preparation, we prove a result that will be used re-
peatedly in the rest of this Appendix. In particular, we show
that for Po to be nonempty, it is necessary to have λz � 2
from Eq. (26). Note that Eq. (26) is the average of the func-
tion f (ka) = 2ka/(2 + λka) under the degree distribution p.
This function has a negative second-order derivative f ′′(ka) =
−8λ/(2 + λka)3, so f (ka) is concave. By Jensen’s inequality,
we have

n∑
i=1

pi
2ki

2 + λki
� 2z

2 + λz
. (D1)

Since the left side equals z/2 from Eq. (26), it is necessary to
have 2z/(2 + λz) � z/2, which implies λz � 2. The equality
in Eq. (D1) holds only when z is an integer and is one of the
allowed degrees in k and, in addition, p concentrates on z. In
this case we have λz = 2, so Po has a unique element p that
concentrates on z.

We consider the case of λz < 2. The analysis begins with
the setting of the existence of (ki1 , ki3 ) such that g(ki1 , ki3 ) �
0 holds. Defining z+ = mini{ki � z} and z− = maxi{ki � z},
we have ki1 ∈ {k1, k2, . . . , z+} and ki3 ∈ {z−, . . . , kn−1, kn}.
The function g(ka, kb) is quadratic in λ, and the equation
g(ka, kb) = 0 has two roots: one positive and and one negative.
The positive one is

λ(ka,kb) = 2

z
− 1

ka
− 1

kb
+

√(
1

ka
+ 1

kb
− 2

z

)2

+ 4

kakb
.

(D2)
As a result, for 0 < λ < λ(ka,kb), we have g(ka, kb) < 0,
whereas g(ka, kb) � 0 for λ � λ(ka,kb). If λ(ka,kb) is regarded
as a function of ka and kb, through the derivatives, we have
that λ(ka,kb) is a decreasing function of ka for ka > z and an in-
creasing function of kb for kb < z. Consequently, the value of
λ(ka,kb) reaches its minimum at (k1, kn). There exists, at least,
one (ki1 , ki3 ) such that g(ki1 , ki3 ) � 0 insofar as λ � λ(k1,kn ).

Having determined the condition under which there exists
(ki1 , ki3 ) such that g(ki1 , ki3 ) � 0 holds, we can obtain the
conditions under which there exists ki2 such that g(ki1 , ki2 ) � 0
and g(ki2 , ki3 ) � 0. When the curve g(ka, kb) = 0 passes an in-
teger point that can be chosen as (ki1 , ki3 ), we have g(ki1 , ki3 ) =
0. From Eq. (33), we have pi2 = 0 and

pi1 = z − ki3

ki1 − ki3

, pi3 = ki1 − z

ki1 − ki3

. (D3)

We see that pi1 and pi3 are independent of the choice of ki2 and
p is supported on one or two nodal degrees.

Now consider the case of g(ki1 , ki3 ) > 0. For fixed (ki1 , ki3 ),
the inequalities g(ki1 , ki2 ) � 0 and g(ki2 , ki3 ) � 0 can be rear-
ranged as

[(4λ − λ2z)ki1 − 2λz]ki2 � 2λzki1 − 4z,

[(4λ − λ2z)ki3 − 2λz]ki2 � 2λzki3 − 4z. (D4)

As ki1 � z and λz < 2, we have

(4λ − λ2z)ki1 − 2λz > 0. (D5)

From g(ki1 , ki3 ) � 0 we have[
(4λ − λ2z)ki3 − 2λz

]
ki1 � 2λzki3 − 4z. (D6)

Because λz < 2 and ki3 � z, the right-hand side of the above
inequality is negative. We, thus, have

(4λ − λ2z)ki3 − 2λz < 0. (D7)

With the above results, Eq. (D4) implies that there exist feasi-
ble values of ki2 insofar as

2λzki1 − 4z

(4λ − λ2z)ki1 − 2λz
� 2λzki3 − 4z

(4λ − λ2z)ki3 − 2λz
, (D8)

and there is, at least, one integer between the two sides of the
inequality.

Defining a function of λ and ka as

f (λ, ka) = 2λzka − 4z

(4λ − λ2z)ka − 2λz
, (D9)

we have that the left and right sides of Eq. (D8) are equal to
f (λ, ki1 ) and f (λ, ki3 ), respectively. The derivative of f (ka)
with respect to ka is

∂ f (λ, ka)

∂ka
= 8λz(2 − λz)

[(4λ − λ2z)ka − 2λz]2
. (D10)

Consequently, f (λ, ka) is an increasing function of ka for λz <

2 and the function is nonsingular, so f (λ, ki1 ) is bounded from
above as

f (λ, ki1 ) < lim
ka→∞

f (ka) = 2z

4 − λz
< z, (D11)

whereas f (λ, ki3 ) is bounded from below as

f (λ, ki3 ) > lim
ka→0

f (ka) = 2

λ
> z. (D12)

We, thus, have that the inequality f (λ, ki1 ) < f (λ, ki3 ) holds
for λz < 2. It remains to determine if there is an integer
between f (λ, ki1 ) and f (λ, ki3 ). In this regard, if z is an integer
and is one of the degrees allowed, the situation is relatively
simple, and we pick ki2 = z.

We analyze the case where z is not an integer. Note that
the left-hand side of Eq. (D8) is strictly less than the right-
hand side and f (λ, ka) is an increasing function of ka. The
gap between the two sides of Eq. (D8) is then maximized
for (ki1 , ki3 ) = (z+, z−). Suppose there are no integer points
between f (λ, z+) and f (λ, z−). It implies that there are no
integer points between f (λ, ki1 ) and f (λ, ki3 ) for any other
choice of (ki1 , ki3 ). For λ = λ(z+,z− ), the curve g(ka, kb) = 0
passes the point (ka, kb) = (z+, z−) and set Po is nonempty
based on Eq. (D3) as we can take (ki1 , ki3 ) = (z+, z−). In the
next, we show that if λ > λ(z+,z− ), set Po will be empty as
there are no integer points between f (λ, z+) and f (λ, z−).
However, for λ < λ(z+,z− ), Po is guaranteed to be nonempty.

To show that Po is empty for λ > λ(z+,z− ), we note that the
derivative of f (λ, ka) with respect to λ is

∂ f (λ, ka)

∂λ
= 2z2(λka − 2)2 + 16z(ka − z)

[(4λ − λ2z)ka − 2λz]2
. (D13)
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For ka � z and λz < 2, the derivative is positive, so f (λ, ka)
is an increasing function of λ. Now we show that if

(4λ − λ2z)ka − 2λz < 0, (D14)

then f (λ, ka) is a decreasing function of λ. Note that ki3 satis-
fies the above inequality for g(ki1 , ki3 ) > 0 [cf., the discussions
above Eq. (D8)]. Taking the derivative with respect to ka for
the numerator of the right-hand side of Eq. (D13), we get

4λz2(λka − 2) + 16z > 16z − 8λz2 > 0, (D15)

where the second inequality is the result of applying λz < 2.
The numerator on the right side of Eq. (D13) itself is an
increasing function of ka. In addition, Eq. (D14) implies

ka <
2z

4 − λz
. (D16)

When ka equals the right side of this inequality, the numerator
of the right side of Eq. (D13) becomes

16λz3(λz − 2)

(4 − λz)2
< 0, (D17)

so f (λ, ka) is a decreasing function of λ when Eq. (D14)
holds. For λ = λ(z+,z− ), we have f (λ, z+) = z− and
f (λ, z−) = z+. For λ > λ(z+,z− ), the left side of Eq. (D8)
increases from z− whereas the right side decreases from z+.
As a result, the gap between the two sides becomes smaller,
and there cannot be any integer point in between.

We now show that, for λ(k1,kn ) < λ < λ(z+,z− ), set Po is
guaranteed to be nonempty. In this region of λ, we have
g(k1, kn) > 0 and g(z+, z−) < 0. Consider the point (ka, kb) =
(z+, kn). For g(z+, kn) = 0, according to Eq. (D3), set Po

is nonempty. The other two possibilities: g(z+, kn) > 0 and
g(z+, kn) < 0, can be treated separately. Suppose g(z+, kn) >

0, we can pick ki1 = z+, ki2 = z−, and ki3 = kn. In this case,
g(ki1 , ki2 ) < 0 and g(ki1 , ki3 ) > 0 hold by definition. It can then
be shown that these two inequalities imply g(ki2 , ki3 ) < 0. In
particular, note that

g
(
ki2 , ki3

) − g
(
ki1 , ki2

) = (
ki1 − ki3

)
[(4λ − λ2z)ki2 − 2λz].

(D18)
As g(ki1 , ki2 ) < 0, we have

[(4λ − λ2z)ki2 − 2λz]ki1 < 2λzki2 − 4z. (D19)

Since ki2 = z− � z and λz < 2, the right side is nega-
tive, and we have [(4λ − λ2z)ki2 − 2λz] < 0. This implies
g(ki2 , ki3 ) < g(ki1 , ki2 ) < 0. For the other case of g(z+, kn) <

0, we pick ki1 = k1, ki2 = z+, and ki3 = kn, so g(ki2 , ki3 ) < 0
and g(ki1 , ki3 ) > 0 hold by definition. From λz < 2 and ki2 =
z+ � z, we have [(4λ − λ2z)ki2 − 2λz] > 0. It can, thus, be
concluded from Eq. (D18) that 0 > g(ki2 , ki3 ) > g(ki1 , ki2 ).

The above proof procedure can be applied to the case of
picking (ki1 , ki2 , ki3 ) for λ(k1,kn ) < λ < λ(z+,z− ). Suppose there
are four degrees ka > kb > z > kc > kd with g(ka, kd ) < 0
and g(kb, kc) > 0. If the point (kb, kd ) has g(kb, kd ) > 0, we
have that (ki1 , ki2 , ki3 ) = (kb, kc, kd ) defines a physical degree

distribution from Eq. (33). Similarly, if g(ka, kc) < 0, we can
choose (ki1 , ki2 , ki3 ) = (ka, kb, kc).

The results of this Appendix can be summarized as fol-
lows. Let λ2 = λ(k1,kn ) and λ3 = λ(z+,z− ). For λ1 < λ < λ2,
set Po is empty, and we can only find the local maxima
among all degree distributions that are supported on one or
two nodal degrees. For λ2 � λ � λ3, set Po is nonempty,
and it is necessary to further analyze if there are other local
maxima supported on one or two nodal degrees and if the
degree distributions in Po are maxima and global maxima.
For λ > λ3, set Po again becomes empty.

APPENDIX E: SOLUTION OF THE HMF EQUATION
FOR DEGREE DISTRIBUTION SUPPORTED ON TWO

NODAL DEGREES

The equilibrium point x∗ is given by the solution of

λki1

(
1 − x∗

i1

)
�∗ = x∗

i1 , λki2

(
1 − x∗

i2

)
�∗ = x∗

i2 . (E1)

Multiplying the two equations in Eq. (E1) by pi1 and pi2 ,
respectively, and summing them, we obtain

ψ (p) = λz�∗ − λz(�∗)2. (E2)

To obtain ψ (p), it suffices to find the value of �∗.
Equation (E1) gives

x∗
i1 = λki1�

∗

1 + λki1�
∗ , x∗

i2 = λki2�
∗

1 + λki2�
∗ . (E3)

From the definition of �∗, we have

z�∗ = pi1 ki1 x∗
i1 + pi2 ki2 x∗

i1 . (E4)

Substituting Eq. (E3) and the values pi1 and pi2 in Eq. (38)
into Eq. (E4), we obtain the following quadratic equation for
�∗:

β2(�∗)2 + β1�
∗ + β0 = 0, (E5)

with the coefficients,

β2 = λ2zki1 ki2 ,

β1 = λz
(
ki1 + ki2 − λki1 ki2

)
,

β0 = z − λzki1 − λzki2 + λki1 ki2 . (E6)

Noting that the second moment of the degree distribution is

〈k2〉 = pi1 k2
i1 + pi2 k2

i2 = z
(
ki1 + ki2

) − ki1 ki2 , (E7)

We have β0 = z − λ〈k2〉 < 0 as λ is above the epidemic
outbreak threshold z/〈k2〉. Since β2 > 0, the only physical
solution (with 0 < �∗ < 1) of Eq. (E5) is

�∗ =
−β1 +

√
β2

1 − 4β2β0

2β2
. (E8)

Substituting Eq. (E8) into Eq. (E2), we obtain the value of
ψ (p) as given by Eq. (39).
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