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In spite of the vast literature on spreading dynamics on complex networks, the role of local synergy, i.e.,
the interaction of elements that when combined produce a total effect greater than the sum of the individual
elements, has been studied but only for irreversible spreading dynamics. Reversible spreading dynamics are
ubiquitous but their interplay with synergy has remained unknown. To fill this knowledge gap, we articulate a
model to incorporate local synergistic effect into the classical susceptible-infected-susceptible process, in which
the probability for a susceptible node to become infected through an infected neighbor is enhanced when the
neighborhood of the latter contains a number of infected nodes. We derive master equations incorporating the
synergistic effect, with predictions that agree well with the numerical results. A striking finding is that when a
parameter characterizing the strength of the synergy reinforcement effect is above a critical value, the steady-state
density of the infected nodes versus the basic transmission rate exhibits an explosively increasing behavior and
a hysteresis loop emerges. In fact, increasing the synergy strength can promote the spreading and reduce the
invasion and persistence thresholds of the hysteresis loop. A physical understanding of the synergy promoting
explosive spreading and the associated hysteresis behavior can be obtained through a mean-field analysis.

DOI: 10.1103/PhysRevE.95.042320

I. INTRODUCTION

Disease or information spreading, a fundamental class of
dynamical processes on complex networks [1–4], has been
studied extensively in the past fifteen years [5–24]. Spreading
dynamics can be classified into two types: irreversible and
reversible. In an irreversible process, once an individual
becomes infected, it cannot recover or return to the susceptible
state, or, once an infected node recovers, it is immune
to the same virus. Mathematically, irreversible spreading
processes can be described by the susceptible-infected (SI), the
susceptible-infected-recovered (SIR) [6], or the susceptible-
exposed-infected-recovered (SEIR) model [10]. In contrast,
in a reversible process, any node can be infected repeatedly
in time, going through a cycle of susceptible and infected
states. For example, in the infection process of tuberculosis
and gonorrhea, an individual recovering from such a disease
can be infected again with the same disease anytime. Mathe-
matically, reversible spreading processes can be described by
the susceptible-infected-susceptible (SIS) [5], the susceptible-
infected-recovered-susceptible (SIRS) [25], or the susceptible-
exposed-recovered-susceptible (SEIS) model [26]. One
obvious result for both irreversible and reversible processes
described by the classical SIR and SIS models, respectively,
is that the fraction of infected nodes increases with the
transmission rate continuously [4].

Recently, the reversible spreading dynamics is attracting
much attention, especially in predicting the accurate theo-
retical epidemic thresholds. For the classical SIS model, a
pioneering result was obtained through the heterogeneous
mean-field (HMF) theory, which predicts a vanishing epidemic
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threshold in scale-free networks with the power-law exponent
γ � 3 in the thermodynamic limit [5]. An improvement
over HMF was given by the quenched mean-field (QMF)
theory [27] considering the full network structure information,
which gives the same result as the HMF theory for γ < 5/2
and predicts a vanishing threshold when γ > 5/2 in the
thermodynamic limit. The threshold prediction of the QMF
method is less convincing as the endemic state is caused by
the local hub activation [28,29]. To elaborate the origin of this
vanishing threshold, an analytical approach that captures the
interplay between the lifetime of an infected hub and the time
needed to infect a susceptible hub in the network was
developed in Ref [30]. It provides strong analytical and
numerical arguments that the threshold will vanish in any
network with a degree distribution decaying slower than
exponentially. Both the classical SIS model and the SIRS
model were shown to have the same epidemic threshold
predicted by the standard mean-field theories [25]. However,
the effect of warning immunity exists in the SIRS model, which
leads to collective activation with a finite threshold in scale-free
networks for power-law exponent γ > 3, at odds with the QMF
and qualitatively described by the HMF theory [31].

In this paper, we investigate the effect of synergy on the
reversible spreading dynamics on complex networks. Synergy
describes the situation where the interaction of elements that
produce a total effect greater than the sum of individual
elements when combined, i.e., the phenomenon commonly
known as “one plus one is greater than two.” Intuitively,
synergy should have a significant effect on the spreading
dynamics. For example, in rumor or information spreading
over a social network, a number of connected individuals
possessing a piece of information make it more believable
than just a single individual. Indeed, concrete evidence existed
in both biological and social systems where the number of in-
fected neighbors of a pair of infected-susceptible nodes would
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enhance the transmission rate between them [32–35], such as
fungal infection in soil-borne plant pathogens [34,35] where
the probability for an infected node to affect its susceptible
neighbors depends upon the number of other infected nodes
connected to the infected node. In social systems, the syner-
gistic effect was deemed important in phenomena such as the
spread of adoption of healthy behavior [36,37], microblogging
retweeting [38], opinion spreading and propagation [2,39], and
animal invasion [40,41].

While the classic SIR and SIS models ignore the synergistic
effect by assuming that the transmission of infection between
a pair of infected-susceptible nodes is independent of the
states of their neighbors, there were previous efforts to study
the impact of synergy on irreversible spreading dynamics
and its interplay with the network topology. In particular,
threshold models [32,33,42] were developed, which take into
account neighbors’ synergistic effects on behavior spreading
by assuming that a node adopts a behavior only when the
number of its adopted neighbors is equal to or exceeds a certain
adoption threshold. One result was that, for each node in the
network with a fixed adoption threshold, the final adoption size
tends to grow continuously and then decreases discontinuously
when the mean degree of the network is increased. The SIR
model was also generalized to modify the transmission rate
between a pair of infected and susceptible nodes according to
the synergistic effect [43–45], with the finding that it can affect
the fraction of the epidemic outbreak, duration, and foraging
strategy of spreaders. These existing works were exclusively
for irreversible spreading dynamics. A systematic study to
understand the impact of the synergistic effects on reversible
spreading dynamics on complex networks is needed.

The goal of this paper is to investigate, analytically and
numerically, the impacts of synergy on reversible spreading
dynamics on complex networks. We first generalize the classic
SIS model to quantify the effect of the number of infected
neighbors connected to an infected node on the transmission
rate between it and its susceptible neighbors. To characterize
the impact on the steady state of the spreading dynamics, we
consider the local nodal environment and derive the master
equations (MEs) [46,47]. To gain a physical understanding,
we assume that, statistically, nodes with the same degree
have the same dynamical characteristics, so the mean-field
approximation can be applied. Let α be a parameter char-
acterizing the strength of the synergistic effect. For random
regular networks (RRNs), we find that for α � αc, where αc is
a critical value, a hysteresis loop [14,48] appears in which the
steady-state infected density, denoted by ρ(∞), increases with
the transmission rate β but typically exhibits an explosively
increasing behavior, in contrast to the typical continuous
transition observed in the classic SIS models [5]. For α < αc,
the hysteresis loop disappears and ρ(∞) increases with β

continuously. The phenomena of explosive spreading and
hysteresis loop are general in that they also occur for complex
networks of different topologies. Such as for synergistic
irreversible spreading on SF networks, the hysteresis loop
survives on networks of different power-law exponents in the
thermodynamical limit.

Our paper is organized as follows. We describe the network
model and the reversible spreading model in Sec. II, and the
master equations and the mean-field approximation are used

FIG. 1. Illustration of synergistic SIS spreading process on
complex networks. (a) Initially (at t = 0), node 2 is the seed and
the remaining nodes are susceptible. Since there are no infected
neighbors connected to node 2, it transmits the disease to one of
its susceptible neighbors with probability p(0,α) = β. (b) Node 3 is
infected by node 2, which has not recovered. In this case, both nodes
2 and 3 have an infected neighbor and, at the next time step, they
will infect one of their susceptible neighbors with a larger probability
p(1,α) � (1 + α)β due to the synergistic effect.

to analyze the spreading dynamics in Sec. III. The numerical
verifications including the theory and the simulations are
shown in Sec. IV. We briefly summarize our conclusions and
prospects in Sec. V.

II. MODEL

Network model. The networks in our study are generated
from the uncorrelated configuration model [6] with degree
distribution P (k), where the degree-degree correlations can be
neglected for large and sparse networks. Nodes in the network
correspond to individuals or hosts responsible for spread-
ing, with edges representing the interactions between nodal
pairs.

Model of reversible spreading dynamics. We generalize
the classic SIS model to incorporate the synergistic effect into
the reversible spreading dynamics—we name it the synergistic
SIS spreading model. At any time, each node can only be in
one of two states: susceptible (S) or infected (I). An infected
node can transmit the disease to its susceptible neighbors. The
synergistic mechanism models the role of infected neighbors
connected to a transmitter (i.e., an infected node) in enhancing
the transmission probability. The synergistic SIS spreading
process is illustrated schematically in Fig. 1. The synergistic
reversible spread process is different from the core contact
process in Ref. [49], in which a susceptible node is infected
when at least k different infected neighbors of the node
select the node for the infection, since the transmission
rate between an infected node and a susceptible neighbor
in the synergistic reversible spreading process changes with
the number of infected neighbors connected to this infected
node continuously. Besides, our model differs from the
recent one in Ref. [50], which treated the synergistic effect
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of ignorant individuals attached to a receiver (in ignorant
state).

Initially, a fraction ρ0 of nodes is chosen as seeds (infected
nodes) at random, while the remaining nodes are in the
susceptible state. At time step t , each infected node transmits
the disease to its susceptible neighbors with rate

p(m,α) = 1 − (1 − β)1+αm, (1)

where m and α, respectively, represent the number of the
infected neighbors connected to the infected node and
the strength of the synergistic effect, and β is the basic
transmission rate in this paper. We use the synchronous
updating method to simulate the spreading processes [27].
Thus, a susceptible node is infected by one of its infected
neighbors with transmission probability p(m,α)�t in each
time step. In the same time step, all infected nodes recover to
the susceptible state with recovery probability μ�t , where μ

represents the recovery rate. Time is increased by �t = 1, and
the dynamical process terminates when the system enters into
the steady state (i.e., there is no infected node in the network
or the number of infected nodes changes little with time).
Equation (1) indicates that the larger the value of α or m,
the higher the rate p(m,α) that an infected node will transmit
the disease to its susceptible neighbor. Our model reduces
to the classic SIS model for α = 0. For α > 0 (α < 0), the
synergistic effects are constructive (destructive) where the
infected neighbors favor (hamper) transmission of the disease
to the receivers. In our study, we consider only the constructive
synergistic effect, where the infected neighbors of an infected
node cooperate with it to spread the disease. In addition, we set
α � 1 so that the synergistic ability of any infected neighbor
of the infected node is less than that of itself. This assumption
is based on consideration of real situations such as fungal
infection in soil-borne plant pathogens where the probability
for a susceptible node infected by a direct infected neighbor
is always greater than that from an indirect infected neighbor
[34,35].

III. THEORY

We consider large and sparse networks with negligible
degree-degree correlation. To develop the theory method and
for the analysis, we assume the fraction of S (I ) state nodes is
changed continuously with time. We first establish the master
equations to describe the synergistic SIS spreading process
quantitatively. We then provide an intuitive understanding
of the role of synergy in the spreading dynamics through a
mean-field analysis.

A. Master equations

In general, the transmission rate p(m,α) between a pair
of infected-susceptible nodes in the synergistic SIS spreading
process is determined by the following three factors: (i) the
basic transmission rate β between the pair of nodes, i.e., the
rate in the absence of any synergistic effect; (ii) the number of
infected neighbors connected to the infected node; and (iii) the
strength α of the synergistic effect. As there exists the strong
dynamical correlation among the states of the neighboring
nodes leading to the synergistic effect, the approach of master

equations [46,47] can be applied. For convenience, we denote
Sk,m (Ik,m) as the k-degree susceptible (infected) node with m

infected neighbors and use sk,m(t) and ik,m(t) to express the
fractions of Sk,m and Ik,m nodes at time t , respectively. The
degree distribution and the average degree of the network are
Pk and 〈k〉 = ∑

k′ k′Pk′ , respectively. The fraction of infected
nodes with degree k at time t is given by

ρk(t) =
k∑

m=0

ik,m(t) = 1 −
k∑

m=0

sk,m(t),

and the total fraction of the infected nodes is ρ(t) = 〈ρk(t)〉 ≡∑
k Pkρk(t).
To derive the master equations, it is necessary to obtain

the probability for Sk,m to be infected. Initially, Sk,m has m

infected neighbors so the probability for one of its infected
neighbors to have degree k′ is k′Pk′/〈k〉. This degree k′ infected
neighbor of Sk,m may have zero, one, two, or up to k′ − 1
infected neighbors. The chance for the degree k′ infected node
to have n infected neighbors is ik′,n(t)/ik′(t), let ϑk′(t)dt be
the probability that this degree k′ infected neighbor of Sk,m

transmits the disease to Sk,m, therein, dt is an infinitesimally
small time interval. Then the rate ϑk′(t) can be written as

ϑk′(t) =
k′−1∑

n=0

ik′,n(t)

ik′(t)
p(n,α).

Let πk,m(t)dt be the probability that the Sk,m node is being
infected during the time interval [t,t + dt]. Since the Sk,m node
has m infected neighbors, the rate πk,m(t) can be written as

πk,m(t) = m
∑

k′

k′Pk′

〈k〉 ϑk′(t). (2)

There are three scenarios that can lead to an increase in sk,m(t):
(i) recovery of Ik,m with rate μ; (ii) infection of a susceptible
neighbor of Sk,m−1; and (iii) recovery of an infected neighbor of
Sk,m+1. The second (third) scenario corresponds to the situation
where an S-S (S-I) edge changes into an S-I (S-S) edge, where
an S-S edge connects two susceptible nodes, an S-I edge links
a susceptible and an infected nodes, and so on. Denote βs(t)
as the rate that an S-S edge changes to S-I at time t . Then
βs(t)dt is the probability that an S-S edge changes into S-I in
the time interval [t,t + dt]. To calculate βs(t), we can count
the number of S-S edges [i.e.,

∑
Pk

∑k
m=0(k − m)sk,m(t)] in

the network at time t , and then count the number of edges,
which switches from being S-S edges to S-I edges [i.e.,∑

Pk

∑k
m=0(k − m)sk,m(t)πk,m(t)dt] in this time interval.

We can approximate the probability βs(t)dt as the ratio of
edges that switches from being S-S to S-I in the time interval
[t,t + dt]. The rate βs can thus be approximated as

βs(t) =
∑

Pk

∑k
m=0(k − m)πk,m(t)sk,m(t)

∑
Pk

∑k
m=0(k − m)sk,m(t)

. (3)

Since the probability for the recovery of an infected node does
not depend on its neighbors, the probability that an S-I edge
changes to S-S is μdt . Similarly, there are three cases leading
to a decrease in sk,m(t): Sk,m being infected with probability
πk,m(t)dt; infection of a susceptible neighbor of Sk,m with
probability βs(t)dt ; and recovery of an infected neighbor of
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Sk,m with probability μdt . We then obtain the time evolution
equation of sk,m(t) as

d

dt
sk,m(t) = μik,m(t) + βs(t)(k − m + 1)sk,m−1(t)

+μ(m + 1)sk,m+1(t)

− [πk,m(t) + βs(t)(k − m) + μm]sk,m(t).

(4)

Analogously, we can derive the time evolution equation of
ik,m(t):

d

dt
ik,m(t) = πk,m(t)sk,m(t) + βi(t)(k − m + 1)ik,m−1(t)

+μ(m + 1)ik,m+1(t)

− [μ + βi(t)(k − m) + μm]ik,m(t), (5)

where βi(t) is the rate at which the edge S-I switches to
I-I in the network at time t . The calculation method of
βi(t) is the same as the computation of βs(t). First, we
count the number of S-I edges in the network at time t, i.e.,∑

Pk

∑k
m=0 msk,m(t), then we count the number of edges that

switch from being S-I edges to I-I edges in the time interval
[t,t + dt], i.e.,

∑
Pk

∑k
m=0 msk,m(t)πk,m(t)dt . Then the ratio

between the latter and the former is the probability that an
S-I edge changes into I-I edge. Additionally, βi(t) can be
approximately calculated as

βi(t) =
∑

Pk

∑k
m=0 mπk,m(t)sk,m(t)

∑
Pk

∑k
m=0 msk,m(t)

. (6)

If the initially infected nodes are distributed uniformly on the
network, the initial conditions of Eqs. (2)–(6) are

sk,m(0) = [1 − ρ(0)]Bk,m[ρ(0)] and

ik,m(0) = ρ(0)Bk,m[ρ(0)],

where Bk,m(p) = (
k

m

)
pm(1 − p)k−m. Numerically solving

Eqs. (2)–(6), we obtain the quantities ik,m and sk,m at any
time t . The quantity ρ(∞) can be calculated as ρ(∞) =∑

k Pk

∑m=k
m=0 ik,m(∞), and we have s(∞) = 1 − ρ(∞).

B. Mean-field approximation

To gain physical insights into the role of synergistic effects
in spreading dynamics, we develop a mean-field analysis.
In particular, we assume that nodes with the same degree
exhibit approximately identical dynamical behaviors. The time
evolution of the fraction of the degree k infected nodes is then
given by

d

dt
ρk(t) = [1 − ρk(t)]k

∑

k′

k′Pk′ρk′

〈k〉

×
k′−1∑

m=0

Bk′−1,m(w)p(m,α) − μρk(t), (7)

where w = ∑
kPkρk/〈k〉 is the probability that one end of a

randomly chosen edge is infected, ρ(t) = ∑
Pkρk(t), and the

fraction of susceptible nodes at time t is s(t) = 1 − ρ(t). The

steady state of synergistic SIS process in Eq. (7) corresponds
to the condition d

dt
ρk(t) = 0. For degree k we have

ρk(∞) = [1 − ρk(∞)]k

μ

×
∑

k′

k′Pk′ρk′(∞)

〈k〉
k′−1∑

m=0

Bk′−1,m(w)p(m,α), (8)

which can be solved analytically for RRNs by approximating
1 − (1 − β)(1+αm) as β(1 + αm) for small β. We get

ρ(∞) = −αβk(k − 1)

μ
ρ(∞)3 + [αβk(k − 1) − βk]

μ
ρ(∞)2

+ βk

μ
ρ(∞), (9)

for t → ∞. Solving Eq. (9), we get the infected density ρ(∞).
The epidemic threshold is a critical parameter value above

which a global epidemic occurs but below which there is no
epidemic. Similar to the analysis of the classic SIS spreading
dynamics, we can obtain the critical condition from the
nontrivial solution of Eq. (9). In particular, the function

g[ρ(∞),β,μ,α] = −αβk(k − 1)

u
ρ(∞)3

+ [αβk(k − 1) − βk]

μ
ρ(∞)2

+ βk

μ
ρ(∞) − ρ(∞), (10)

becomes tangent to the horizontal axis at ρc(∞), which is
the critical infected density in the limit t → ∞. The critical
condition is given by

dg[ρ(∞),β,μ,α]

dρ(∞)
|ρc(∞) = 0. (11)

Furthermore, the basic critical transmission rate can be
calculated as:

βc = μ

	
, (12)

where

	 = k[1 − 2(1 − (k − 1)α)ρc(∞) − 3(k − 1)αρc(∞)2].

Numerically solving Eqs. (9) and (12), we get the critical
transmission rate βc. For α = 0, our synergistic SIS spreading
model reduces to the classic SIS spreading model, and Eq. (9)
has a trivial solution ρ(∞) = 0. For α = 0, Eq. (9) has only
one nontrivial solution. We thus see that ρ(∞) increases
with β continuously. As shown in Fig. 2(a), the function
g[ρ(∞),β,μ,α] is tangent to the horizontal axis at ρ(∞) = 0.
Combining Eqs. (9) and (12), we obtain the continuous critical
transmission rate βc = μ/k for α = 0.

For α > 0 so synergistic effects exist, ρ(∞) = 0 is a trivial
solution since Eq. (9) is a cubic equation for the variable ρ(∞)
without any constant term. As shown in Fig. 2(b), for a fixed
α > 0 (e.g., α = 0.9), the number of solutions of Eq. (9) is
dependent upon β, and there exists a critical value of β at which
Eq. (9) has three roots (fixed points), indicating the occurrence
of a saddle-node bifurcation [51,52]. The bifurcation analysis
of Eq. (9) reveals the physically meaningful stable solution of
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FIG. 2. Illustration of graphical solution of Eq. (10). For random
regular networks with k = 10, (a) continuously increasing behavior
of ρ(∞) with β for α = 0, (b) explosive change in ρ(∞) for α = 0.9.
The blue dashed line is tangent to the horizontal axis at ρ(∞) = 0 (i.e.,
the blue circle) in (a). The red circle and green square, respectively,
represent the points of tangency for the red dotted line and green solid
line in (b). The recovery rate is μ = 0.1.

ρ(∞) will suddenly increase to an alternate outcome. In this
case, an explosive growth pattern of ρ(∞) with β emerges.
Also, whether the unstable state stabilizes to an outbreak state
[ρ(∞) > 0] or an extinct state [ρ(∞) = 0] depends on the
initial fraction of the infected seeds. As a result, a hysteresis
loop emerges [14,48]. To distinguish the two thresholds of
the hysteresis loop, we denote βinv as the invasion threshold
corresponding to the trivial solution [ρ(∞) = 0] of Eq. (9),
associated with which the disease starts with a small initial
fraction of the infected seeds, and let βper be the persistence
threshold corresponding to the nontrivial solution [ρc(∞) > 0]
of Eq. (9), at which the disease starts with a higher initial
fraction of the infected seeds [14,48]. Substituting the trivial
solution [ρ(∞) = 0] into Eq. (12), we obtain the invasion
threshold as

βinv = μ

k
. (13)

Note that the classic SIS spreading process has the same
invasion threshold. We can also solve Eqs. (9) and (12)
simultaneously to get the persistence threshold βper with
ρc(∞) > 0.

We now present an explicit example to understand the
relationship between ρ(∞) and β. As shown in Fig. 2(b)
for α = 0.9, numerically solving Eqs. (9) and (12) gives
the function g[ρ(∞),β,γ,α], which becomes tangent to
the horizontal axis for βinv = 0.01 or βper ≈ 0.0039. From
Fig. 2(b), we see that Eq. (9) has three fixed points when
β is in the range of (βinv,βper ). As a result, the steady-state
infection density depends on ρ0. If the disease starts with

a small initial fraction of infected seeds, the root with the
smallest value [ρ(∞) = 0] of Eq. (9) corresponds to the steady
state. However, if the disease starts with a large initial fraction
of infected seeds, the root with the largest value is the infected
density in the steady state. When β is smaller than βper or
larger than βinv , the initial fraction of infected seeds has no
effect on the steady state.

Next, to determine the critical value of infected neighbors’
synergy effects αc, across which the dependence of ρ(∞)
on β changes from being continuous (discontinuous) to
discontinuous (continuous), we can numerically solve Eqs. (9)
and (11) together with the condition [53]

d2g[ρ(∞),β,μ,α]

dρ2(∞)
|ρc(∞) = 0, (14)

we obtain

αc = 1

k − 1 − 3(k − 1)ρc(∞)
. (15)

Combining Eqs. (9), (11), and (15), we get αc = 1/(k − 1),
which is dependent only on the degree of the RRNs.

IV. NUMERICAL VERIFICATION

We perform extensive simulations of synergistic SIS
spreading processes on RRNs of size N = 104 and degree k =
10. The synchronous updating spreading process is carried out
as follows. At the beginning, ρ0 fraction of nodes are randomly
selected as the initial infected nodes (i.e., seeds), and all other
nodes are susceptible. In each time step, each susceptible
node i becomes infected with probability

∑
j∈N(i) p(mj,α),

where N (i) is the of infected neighbors of node i and mj

is the number of infected neighbors of infected node j . In
the same time, all infected nodes recover with probability μ.
Time increases by �t = 1. To avoid the finite-size systems to
enter into the absorbing state, we set tmax = 104, where the
dynamical process terminates when there is no infected node
in the network or the dynamical process iterates 104 steps.
Finally, we average the number of infected nodes in the time
step [9900,10000] as the steady density of infected nodes in
this realization.

To calculate the pertinent statistical averages we use 30
network realizations and at least 103 independent dynamical
realizations for each parameter setting. To be concrete, we
set the recovery rate as μ = 0.1 in all simulations, since
more simulation results show that the results of synchronous
updating method are very close to the asynchronous updating
method when the recover rate and the time step of the
synchronous updating method are set as μ = 0.1 and �t =
1 [54,55] (also see the comparison in the Appendix). To
obtain the numerical thresholds βinv and βper , we adopt the
susceptibility measure [56]:

χ = N
〈ρ(∞)2〉 − 〈ρ(∞)〉2

〈ρ(∞)〉 , (16)

where ρ(∞) is the steady-state density of infected nodes. In
general, χ exhibits a maximum value at βinv and βper when
the initial fraction of the infected seeds is relatively small
and large, respectively. We define βs

inv (βs
per ) as the numerical

predictions of invasive (persist) threshold.
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FIG. 3. Steady-state infected density ρ(∞) and susceptibility
measure χ on random regular networks. (a) The density ρ(∞)
versus β for α = 0.9, where the red squares and black circles
are simulation results with initial infected density ρ0 = 0.9 and
ρ0 = 0.01, respectively. The red solid and black dashed lines are
the results of master equations Eqs. (3)–(6) with the same respective
initial seed fractions. The red dotted and black dotted dashed lines
are results from the mean-field approximation [Eq. (11)] with the
same respective initial seed fractions. The quantities βs

inv and βs
per

are, respectively, the simulated invasion and persistence thresholds
determined via the susceptibility measure. (b) Susceptibility measure
χ versus β with the same parameters as in (a). To discern the
extremely small value of χ for ρ0 = 0.9, we plot the dotted line
in (b) ten times larger than the original values. The inset in (a) shows
the width of the hysteresis loop versus α. The inset in (b) shows
the thresholds (i.e., βs

inv and βs
per ) versus size N of random regular

network when α = 0.9. Other parameters are μ = 0.1 and k = 10.

Figure 3(a) shows ρ(∞) versus β for α = 0.9, where the
surprising phenomenon of explosive spreading, i.e., ρ(∞)
exhibits an explosive increase as β passes through a critical
point, can be seen, as predicted [Eqs. (2)–(6), and Eq. (9)].
In fact, there exists a range in β: [βinv , βper ] in which the
steady state depends on the value of ρ0. In particular, the two
different steady states correspond to the spreader-free state
[ρ(∞) = 0] for an initially small fraction of infected seeds
and the endemic state [ρ(∞) > 0] with initially larger fraction
of infected nodes, respectively. The coexistence of endemic
and spreader-free states, in the form of a hysteresis loop
with explosive transitions between the states, is predicted by
both theoretical approaches (i.e., the master equations and the
mean-field theory), and is observed numerically. Figure 3(b)
shows the susceptibility measure χ versus β for the two
cases of ρ0 = 0.01 and ρ0 = 0.9. We see that the numerical
thresholds βs

inv and βs
per determined through χ match well with

the predictions from the master equations, but the mean-field
approximation gives only the value of βs

per correctly. Letting
�β be the difference between βs

inv and βs
per (the width of the

hysteresis loop), we find that �β increases with α, as shown in

the inset of Fig. 3(a), indicating that βs
inv decreases faster than

βs
per as α is increased. From the inset of Fig. 3(b), we know,

with the increase of network size N , βper keeps unchanged and
βinv increases. The hysteresis loop becomes more visible and
the simulation results are more close to the prediction results
of the master equations. Thus, the hysteresis loop will survive
in the thermodynamical limit.

To explain why the mean-field approximation can not accu-
rately predict βs

inv , and to give a qualitative explanation for the
explosively increasing behavior of ρ(∞) with β, we consider
the case where the spreading process starts from a small
fraction of infected seeds. Initially, for an infected seed [e.g.,
node 2 in Fig. 1(a)], all its neighbors are in the susceptible state.
Thus, there is no synergistic effect when this infected node
attempts to infect its susceptible neighbors. Also, the mean
number of susceptible neighbors being infected by this infected
node (without infected neighbors’ synergy effect) before it
recovers is R0 = k

∑∞
t=1[(1 − μ)(1 − p(0,α))]t−1p(0,α) [54].

Therein, [(1 − μ)(1 − p(0,α))]t−1 is the probability that this
infected node had not infected one of its susceptible neighbors
and it had not recovered in t − 1 time steps, and p(0,α) is the
probability that this infected node infects one of its susceptible
neighbor in the time step t .

Once the infected node (Ik,0) has infected one of its
susceptible neighbors [e.g., node 3 in Fig. 1(a)] successfully,
the originally infected node becomes Ik,1, leading to a
synergistic effect. In this case, compared with the case that the
infected node is without infected neighbors’ synergy effect,
the mean number of susceptible neighbors being infected by
this infected node before it recovers is increased by

�1 = (k − 1)
∞∑

t=2

[(1 − μ)(1 − p(0,α))]t−2

×p(0,α)(1 − μ)[p(1,α) − p(0,α)], (17)

where the part
∑∞

t=2[(1 − μ)(1 − p(0,α))]t−2 means up to
time step t − 2, the original infected node had not infected
a susceptible neighbor and had not recovered, and p(0,α)(1 −
μ) means at the (t − 1)st time step this infected node infects
a susceptible neighbor and does not recover. The increased
transmission probability per edge is [p(1,α) − p(0,α)] and
(k − 1) means there are k − 1 susceptible neighbors left to
be infected. Actually, once this infected node becomes Ik,2

(with two infected neighbors), compared the Ik,1 node, the
mean number of susceptible neighbors being infected by this
infected node before it recovers will be increased by �2. As we
assume in the initial stage of the process, �n (n > 1) is very
tiny. If the average number of nodes infected by an infected
node R≈R0 + �1 is larger than 1, an epidemic may occur [4].
The average number of susceptible neighbors being infected by
an infected node can be approximately calculated as R0 + �1.
Additionally, letting R0 + �1 = 1, we can obtain the critical
invasion threshold as

β ′
inv = μ

k + (k − 1)(1 − μ)α + μ − 1
. (18)

As shown in Fig. 4(a), the value of β ′
inv agrees well with the

simulation invasion threshold βs
inv . For the case of small initial

infected density, the mean-field approximation fails to capture
the dynamical correlation between the infected node and its
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FIG. 4. Illustration the regime of explosive spreading. (a) Circles
indicate the numerical predictions of invasive threshold βs

inv in α. The
solid line shows the transmission rate β in Eq. (18). (b) The fraction
im of infected nodes for different numbers of infected neighbors (m =
0,1,3,5) versus time t when the transmission rate is slightly larger
than βs

inv . (b) shows im versus t for α = 0.9 and β = 0.0064 (βs
inv =

0.0062), where the inset shows the same plot for the classic SIS
spreading dynamics for β = 0.0114 (βc = 0.0112). Other parameters
are ρ0 = 0.01, μ = 0.1, and k = 10.

infected neighbors, which ignores that the synergy effect and
leading to the derived invasion threshold is the same as the
threshold in the classical SIS model.

To gain further insights into the cascading phenomenon and
the explosive increase of ρ(∞) with β for α > αc, we calculate
the fraction im of infected nodes with m (m = 0,1, . . . ,k)
infected neighbors versus time for β slightly larger than βinv

(for α = 0.9) and βc (for α = 0). For α < αc (e.g., α = 0),
the synergistic SIS spreading is reduced to the classic SIS
dynamics. As shown in the inset of Fig. 4(b), for β � βc (e.g.,
β = 0.0114 and βc = 0.0112), im increases with t slowly and
tends to a constant for large time. However, for α = 0.9, if
β � βs

inv (e.g., β = 0.0064 and βs
inv = 0.0062), im increases

fast initially, reaches a peak at some small value of m (e.g.,
m = 0,1), and then decreases rapidly [see Fig. 4(b)]. Due to the
synergistic effect, even only one end of the I-I edge transmits
the disease to its susceptible neighbors, the Ik,1 node becomes
Ik,2, which has a larger transmission rate than that from the
original Ik,1 node. As the spreading process continues, more
susceptible nodes in the neighborhood of the infected node are
infected so the Ik,2 nodes become Ik,3, Ik,3 becomes Ik,4, and so
on. For larger m values (e.g., m = 3,5), im increases later and
faster in reaching the peak, leading to a cascading process that
results in explosive spreading. These provide an explanation
for the continuously and relatively slowly increasing behavior
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FIG. 5. Steady-state infected density ρ(∞) and region of hys-
teresis in the parameter plane (β, α). (a), (b) For synergistic SIS
spreading dynamics on random regular networks, color-coded values
of ρ(∞) in the parameter plane (β,α) for ρ0 = 0.01 and ρ0 = 0.9,
respectively. The numerically obtained invasion threshold βs

inv and
persistence threshold βs

per (white circles) in (a) and (b), respectively,
are determined by the susceptible measure χ , and the corresponding
theoretical values (red sold line) are from Eqs. (9) and (12). The
persistence threshold predicted by the mean-field theory matches well
with that from simulations, but there is disagreement for the invasion
threshold, as shown in (a), (b), where I and II denote the parameter
regions where the disease becomes extinct and an outbreak occurs,
respectively. In (c), the color-coded values represent the difference
between the values of ρ(∞) in (b) and (a). There are four regions: in
region I there is no hysteresis loop (α < αc); in region III there is a
hysteresis behavior; and regions II and IV specify the borders of the
hysteresis loop. Other parameters are μ = 0.1 and k = 10.

of ρ(∞) for α < αc and, more importantly, the explosively
increasing behavior of ρ(∞) with β for α > αc.

From the above analysis, it can be obtained that both β

and α markedly affect ρ(∞) and phase transition. Thus, ρ(∞)
and the phase transition on parameter plane (β,α) are further
investigated in Fig. 5. Obviously, ρ(∞) increases with β and
α, and the thresholds (i.e., βinv and βper ) decreases with α [See
Figs. 5(a) and 5(b)]. A heuristic explanation for these results
is that, due to the synergistic effect, there is an increase in
the infection probability p(m,α) between the infected nodes
and their susceptible neighbors, thereby reducing the epidemic
threshold (e.g., βinv and βper ). Since the initial fraction of
infected seeds impacts only the steady state associated with
the region of the hysteresis loop, we can determine this region
by computing the difference between the values of every point
(β, α) in Figs. 5(b) and 5(a). As shown in Fig. 5(c), there are
four regions. Only when α is larger than a critical value αc

[obtained from Eqs. (9), (11), and (15)] will the final density
ρ(∞) increase with β explosively (regions II, III, and IV) and

042320-7



LIU, WANG, TANG, ZHOU, AND LAI PHYSICAL REVIEW E 95, 042320 (2017)

0.000 0.005 0.010 0.015
0.0

0.2

0.4

0.6

0.8

1.0

β

ρ(
∞

)

 

 

ER ρ0 = 0.01
ER ρ0 = 0.9
SF ρ0 = 0.01
SF ρ0 = 0.9

α = 0.9
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parameters are N = 104 and 〈k〉 = 10.

a hysteresis loop appears (region III). Otherwise there is no
hysteresis (region I). In region II, the disease becomes extinct,
but there is an outbreak in region IV.

While we focus our study on RRNs for the reason that
an understanding of explosive spreading can be obtained,
the phenomenon can arise in general complex networks. To
demonstrate this, we simulate synergistic spreading dynamics
on Erdös-Rényi (ER) random and scale-free (SF) networks
of size N = 104 first. Figure 6 shows, for ER networks, an
explosive increase in the steady-state infection density and
a hysteresis loop with the parameter β. We also investigate
the spreading dynamics on scale-free (SF) networks [6] con-
structed according to the standard configuration model [57].
The degree distribution is P (k) = 	k−γ , where γ is degree
exponent and the coefficient is 	 = 1/

∑kmax
kmin

k−γ with the
minimum degree kmin = 3, maximum degree kmax∼N1/(γ−1),
and γ = 3.0. The phenomena of explosive spreading and
hysteresis loop are presented, as shown in Fig. 6. The
theoretical predictions by master equations method match well
with simulations.

We also implement the spreading processes on SF networks
with different network sizes and different degree exponents,
shown in Fig. 7. We find both the size of network and the
power-law exponent will alter the invasion threshold and the
persistence threshold. However, both of them will not impact
the emergence of hysteresis loop, which means there exists a
region of β, the steady-state infected density ρ(∞) depends
on the initial fraction of infected nodes. Further analysis also
shows that the hysteresis loop will survive on the SF networks
of different power-law exponents in the thermodynamical
limit. The effects of degree heterogeneity on the synergistic
spreading dynamics and a more accurate theoretical analysis
method need to be further investigated.

V. DISCUSSION

Synergy is a ubiquitous phenomenon in biological and
social systems, and one is naturally curious about its effect
on spreading dynamics on networks. There were previous
works on synergistic irreversible spreading dynamics, and the
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FIG. 7. The effects of degree heterogeneity and network size on
the steady infected density ρ(∞). (a) ρ(∞) versus β for ρ0 = 0.01
and (b) for ρ0 = 0.9 on the scale-free networks with degree exponent
γ = 2.1 of different network sizes. (c) ρ(∞) versus β for ρ0 = 0.01
and (d) for ρ0 = 0.9 on the scale-free networks with degree exponent
γ = 3.0 of different network sizes. The average degree is fixed as
〈k〉 = 10. The strength of synergy is α = 0.9, and the recovery rate
is μ = 0.1.

goals of this paper are to construct and analyze a generic
model for synergistic reversible spreading, where the effect
of synergy is taken into account through enhancement in the
transmission rate between an infected node and its susceptible
neighbors. There are two factors determining the synergistic
effect: the number of infected neighbors connected to the
infected node that is to transmit the disease to one of its
susceptible neighbors, and the strength of the synergistic
reinforcement effect. For RRNs, the synergistic reversible
spreading dynamics can be treated analytically by using
the approach of master equations, as well as a mean-field
approximation. Qualitatively, we find that synergy promotes
spreading. The manner by which spreading is enhanced is,
however, quite striking. In particular, if the strength is above
a critical value that is solely determined by the degree of
the network, there is an explosive outbreak of the disease
in that the steady-state infection density increases abruptly
and drastically as the basic transmission rate passes through
a critical value. Associated with the explosive behavior is a
hysteresis loop whereas, if the transmission rate is reduced
through a different threshold, the final infected population
collapses to zero. All these results have been obtained both
analytically and numerically. While the analysis is feasible for
RRNs, numerically we find that a similar explosive behavior
occurs for general complex networks with a random or a
scale-free topology. Especially, for synergistic irreversible
spreading on SF networks, it finds that both the network size
and the power-law exponent will alter the invasion threshold
and persistence threshold, but it will not impact the emergence
of hysteresis loop.

The main contributions of our work are thus the discovery of
synergy-induced explosive outbreak for reversible spreading
dynamics, and a qualitative and quantitative understanding
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with network size N = 104 and average degree 〈k〉 = 10. The
strength of synergy is α = 0.9. Therein, “async” means asynchronous
updating and “sync” means synchronous updating.

of the phenomenon. A number of questions still remain.
For example, the effects of network structural characteristics
such as degree heterogeneity [3], clustering [58–60], com-
munity [61–63], and core periphery [64–67] on synergistic
spreading dynamics need to be studied. Both an accurate theory
method and the comparison of simulation results between
the synchronous updating method and the asynchronous
updating method are required. Finally, the study needs to
be extended to more realistic networks such as multiplex
networks [20,22,23,68], or temporal networks [69–71].
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APPENDIX

We compare the simulation results of the asynchronous
updating method and synchronous updating method [55]. For
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FIG. 9. Steady infected density ρ(∞) and susceptibility measure
χ on random regular networks with different sizes. (a) The density
ρ(∞) versus β for ρ0 = 0.01 and (b) for ρ0 = 0.9. The susceptibility
measure χ versus β for (c) ρ0 = 0.01 and (d) ρ0 = 0.9. The values of
χ for N = 16 × 104 are divided by 10 in (c) and the values of χ for
N = 4 × 104 and N = 16 × 104 are multiplied by 100 in (d). Other
parameters are set as 〈k〉 = 10, α = 0.9, and μ = 0.1.

the synchronous updating method, we use different recovery
rates μ = 0.01, 0.1, and 0.2. As shown in Fig. 8, we find
the simulation results with recovery rate μ = 0.1, which we
adopted in this paper, are very close to the simulation results
of the asynchronous updating method. Both the explosive
spreading phenomenon and the hysteresis loop also exist in the
simulation results of asynchronous updating method, which
means the updating method does not affect the conclusion of
the paper qualitatively.

The finite-size analysis for random regular networks is also
shown in Fig. 9, and some results are also presented in the inset
of Fig. 3(b). It finds that the explosive spreading phenomenon
and the hysteresis loop will survive in the thermodynamical
limit.

For the asynchronous updating method: At any time t , we
calculate each node’s transition rate ηi(t). The rate for any sus-
ceptible node becoming infected is ηi(t) = ∑

j∈N(i) p(mj,α),
where N (i) is the set of infected neighbors of node i and
mj is the number of infected neighbors of infected node j .
The rate for any infected node getting recovered is ηi(t) = μ.
Summing up all of them, we obtain the total transition rate
a(t) = ∑

i ηi(t). The time at which the next transition event
occurs is t ′ = t + dt , where dt = 1/a(t). The node chosen
to change its state at time t ′ is sampled with a probability
proportional to ηi(t). That is, we generate a uniform number
r ∈ [0,1) and if

∑k−1
j=1 ηj (t)/a(t) < r <

∑k
j=1 ηj (t)/a(t), then

node k is chosen to change state. The whole process is iterated
until the system reaches a stationary state, where either an
absorbing state of all susceptible nodes arises or an endemic
equilibrium is arrived (i.e., the number of infected nodes
fluctuates stably in the long time limit).
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