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Peer pressure: Enhancement of cooperation through mutual punishment
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An open problem in evolutionary game dynamics is to understand the effect of peer pressure on cooperation
in a quantitative manner. Peer pressure can be modeled by punishment, which has been proved to be an effective
mechanism to sustain cooperation among selfish individuals. We investigate a symmetric punishment strategy,
in which an individual will punish each neighbor if their strategies are different, and vice versa. Because of
the symmetry in imposing the punishment, one might intuitively expect the strategy to have little effect on
cooperation. Utilizing the prisoner’s dilemma game as a prototypical model of interactions at the individual level,
we find, through simulation and theoretical analysis, that proper punishment, when even symmetrically imposed
on individuals, can enhance cooperation. Also, we find that the initial density of cooperators plays an important
role in the evolution of cooperation driven by mutual punishment.
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I. INTRODUCTION

Cooperation is ubiquitous in biological, social, and eco-
nomical systems [1]. Understanding and searching for mecha-
nisms that can generate and sustain cooperation among selfish
individuals remains an interesting problem. Evolutionary game
theory represents a powerful mathematical framework to
address this problem [2,3]. Previous theoretical [4–11] and
experimental [12–19] studies showed that, for evolutionary
game dynamics in spatially extended systems, punishment
is an effective approach to enforcing cooperative behavior,
where the punishment can be imposed on either cooperators
or defectors. The agents that get punished bear a fine while
the punisher pays for the cost of imposing the punishment
[20,21]. In existing studies, individuals who hold a specific
strategy (usually defection) are punished.

In realistic situations, punishment can be mutual and the
strategy typically depends on the surrounding environment,
e.g., on neighbors’ strategies. An example is “peer pressure.”
Previous psychological experiments demonstrated that an
individual tends to conglomerate (fit in) with others in terms of
behaviors or opinions [22]. Dissent often leads to punishment
either psychologically or financially, or both, as human
individuals attempt to attain social conformity modulated
by peer pressure [22–24]. To understand quantitatively the
effect of peer pressure on cooperation through developing and
analyzing an evolutionary game model is the main goal of this
paper. In particular, we propose a mechanism of punishment
in which an individual will punish neighbors who hold the
opposite strategy, regardless of whether they are cooperators
or defectors.

Differing from previous models where additional strategies
of punishment were introduced, in our model there are only
two strategies (pure cooperators and pure defectors). More
importantly, the punishment is mutual in our model, i.e., indi-
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vidual i who punishes individual j is also punished by j , so the
cost of punishment can be absorbed into the punishment fine.
Because of this symmetry at the individual or “microscopic”
level, intuitively one may expect the punishment not to have
any effect on cooperation. Surprisingly, we find that symmetric
punishment can lead to enhancement of cooperation. We
provide computational and heuristic arguments to establish
this finding.

II. MODEL

Without loss of generality, we use and modify the classic
prisoner’s dilemma game (PDG) [25] to construct a model to
gain quantitative understanding of the effect of peer pressure
on cooperation by incorporating our symmetric punishment
mechanism. In the original PDG, two players simultaneously
decide whether to cooperate or defect. They both receive
payoff R upon mutual cooperation and payoff P upon mutual
defection. If one cooperates but the other defects, the defector
gets payoff T while the cooperator gains payoff S. The payoff
rank for the PDG is T > R > P > S. As a result, in a
single round of PDG, mutual defection is the best strategy
for both players, generating the well-known social dilemma.
There are different settings of payoff parameters [26,27]. For
computational convenience [28], the parameters are often
rescaled as T = b > 1, R = 1, and P = S = 0, where b

denotes the temptation to defect.
In their pioneering work, Nowak and May included spatial

structure into the PDG [28], in which individuals play games
only with their immediate neighbors. In the spatial PDG,
cooperators can survive by forming clusters in which mutual
cooperation outweighs the loss against defectors [29–32].
In the past decade, the PDG has been extensively studied
for populations on various types of network configurations
[33–35], including regular lattices [36–39], small-world net-
works [40,41], scale-free networks [42–45], dynamic networks
[46–49], and interdependent networks [50].

Our model is constructed as follows. Player x can take
one of two strategies: cooperation or defection, which are
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described by

sx =
(

1
0

)
or

(
0
1

)
, (1)

respectively. At each time step, each individual plays the PDG
with its neighbors. An individual will punish the neighbors
that hold different strategies. The accumulated payoff of
player x can thus be expressed as

Px =
∑
y∈�x

[
sT
x Msy − α

(
1 − sT

x sy

)]
, (2)

where the sum runs over the nearest neighbor set �x of player
x, α is the punishment fine, and M is the rescaled payoff
matrix given by

M =
(

1 0
b 0

)
. (3)

Initially, the cooperation and the defection strategies are
randomly assigned to all individuals in terms of some probabil-
ities: the initial densities of cooperators and defectors are set to
be ρ0 and 1 − ρ0, respectively. The update of strategies is based
on the replicator equation [51] for well-mixed populations and
the Fermi rule [52] for structured populations.

III. RESULTS FOR WELL-MIXED POPULATIONS

In the case of well-mixed populations, i.e., a population
with no structure, where each individual plays with every other
individual, the evolutionary dynamics is determined by the
replication equation of the fraction of the cooperators ρ in the
population [51]:

dρ

dt
= ρ(1 − ρ)(Pc − Pd ), (4)

where Pc = ρ − (1 − ρ)α is the rescaled payoff of a coopera-
tor and Pd = ρb − ρα is the rescaled payoff of a defector. The
equilibria of ρ can be obtained by setting dρ/dt = 0. There
exists a mixed equilibrium

ρe = α

2α + 1 − b
, (5)

which is unstable. Provided that the initial density of coopera-
tors ρ0 is different from zero and one, the asymptotic density
of cooperators ρc = 1 if ρ0 > ρe and ρc = 0 if ρ0 < ρe.

Figure 1 shows the asymptotic density of cooperators ρc as
a function of the punishment fine α for different values of the
initial density of cooperators ρ0 when the temptation to defect
b = 1.5. From Eq. (5), we note that the mixed equilibrium
ρe definitely exceeds 0.5. As a result, for ρ0 � 0.5, ρc is
always zero regardless of the values of the temptation to defect
and the punishment fine. However, for 0.5 < ρ0 < 1, there
exists a critical value of the punishment fine (denoted by αc),
below which cooperators die out while above which defectors
become extinct. According to Eq. (5), we obtain αc as

αc = (b − 1)ρ0

2ρ0 − 1
. (6)

For example, αc = 1.5 when ρ0 = 0.6 and b = 1.5. From
Eq. (6), one can find that αc increases as the temptation to
defect b increases but it decreases as the initial density of
cooperators ρ0 increases, as shown in Fig. 2.

FIG. 1. (Color online) Asymptotic density of cooperators ρc as a
function of the punishment fine α for different values of the initial
density of cooperators ρ0. The temptation to defect b = 1.5.

IV. RESULTS FOR STRUCTURED POPULATIONS

In a structured population, each individual plays the game
only with its immediate neighbors. Without loss of generality,
we study the evolution of cooperation on a square lattice,
which is the simple and widely used spatial structure. In the
following, we use a 100 × 100 square lattice with periodic
boundary conditions. We find that the results are qualitatively
unchanged for larger system size, e.g., a 200 × 200 lattice.

In the following studies, we set the initial density of
cooperators ρ0 = 0.5 without special mention. Players asyn-
chronously update their strategies in a random sequential
order [52–54]. First, player x is randomly selected who obtains
the payoff Px according to Eq. (2). Next, player x chooses one
of its nearest neighbors at random, and the chosen neighbor y

also acquires its payoff Py by the same rule. Finally, player x

adopts the neighbor’s strategy with the probability [52]

W (sx ← sy) = 1

1 + exp[−(Py − Px)/K]
, (7)

FIG. 2. (a) The critical value of the punishment fine αc as
a function of the temptation to defect b. The initial density of
cooperators ρ0 = 0.6. (b) The dependence of αc on ρ0. The temptation
to defect b = 1.5.
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FIG. 3. (Color online) Fraction of cooperators ρc as a function
of b, the temptation to defect, for different values of the punishment
fine α.

where parameter K characterizes noise or stochastic factors to
permit irrational choices. Following previous studies [52–54],
we set the noise level to be K = 0.1. (Different choices of K ,
e.g., K = 0.01 and 1, do not affect the main results.)

The key quantity to characterize the cooperative behavior of
the system is the fraction of cooperators ρc in some steady state.
All simulations are run for 30 000 time steps to ensure that the
system reaches a steady state, and ρc is obtained by averaging
over the last 2000 time steps. Each time step consists of on
average one strategy-updating event for all players. Each data
point is obtained by averaging the fraction over 200 different
realizations.

Figure 3 shows the fraction of cooperators ρc as a function
of b, the temptation to defect, for different values of the
punishment fine α. We observe, for any given value of α, a
monotonic decrease in ρc as b is increased. In addition, we
find that ρc can never reach unity in the whole range of b when
the punishment fine is zero. However, for certain values of

FIG. 4. (Color online) Fraction of cooperators ρc as a function of
the punishment fine α for different values of b. (a, b) The results from
simulation and theoretical analysis, respectively.

FIG. 5. (Color online) Color coded map of the fraction of coop-
erators ρc in the parameter plane (α, b).

α, e.g., α = 0.5 and 0.8, cooperators can dominate the whole
system for b below some critical value.

Figure 4 shows ρc as a function of α for different values
of b. We see that, for relatively small values of b (e.g.,
b = 1.01), ρc increases with α. However, for larger values
of b (e.g., b = 1.1 or 1.2), there exists an optimal region
of α in which full cooperation (ρc = 1) is achieved. For
example, the optimal region in α is approximately [0.3,0.8]
and [0.4,0.6] for b = 1.1 and 1.2, respectively. The optimal
value of α is moderate, indicating that either minor or harsh
punishment does not promote cooperation. The dependence of
ρc on α can be qualitatively predicted analytically through a
pair-approximation analysis [52,55], the results of which are
shown in Fig. 4(b).

To quantify the ability of punishment fine α to promote
cooperation for various values of b more precisely, we compute
the behavior of ρc in the parameter plane (α, b), as shown in
Fig. 5. We see that, for b < 1.02, ρc increases to unity as α is
increased. For 1.02 < b < 1.27, there exists an optimal region

FIG. 6. (Color online) For b = 1.01, time series of the fraction
of cooperators, ρc(t), for different values of α. The inset presents the
convergence time tc vs α.

022121-3



YANG, WU, RONG, AND LAI PHYSICAL REVIEW E 91, 022121 (2015)

FIG. 7. (Color online) For b = 1.2, time series ρc(t) for different
values of α. The inset shows that the fraction of cooperators decays
exponentially for α = 0 and 1.5.

of α in which complete extinction of defectors occurs (ρc = 1).
The optimal region of α becomes narrow as b is increased. For
b > 1.27, there also exists an optimal value of α that results in
the highest possible level of cooperation for the corresponding
b values, albeit ρc < 1.

To gain insights into the mechanism of cooperation
enhancement through punishment, we examine the time
evolution of ρc for a number of combinations of the parameters
α and b. Figure 6 shows the time series ρc(t) for different
values of α and a relatively small value of b (e.g., b = 1.01).
In every case, ρc(t) decreases initially but then increases to
a constant value. A similar phenomenon was also observed
in Refs. [56,57]. For small values of α (e.g., α = 0 or 0.05),
ρc(t) cannot reach unity. For relatively large values of α (e.g.,
α = 0.15, 0.5, or 1.5), at the end, defectors are extinct and all
individuals are cooperators. We define the convergence time tc
as the number of time steps required for complete extinction
of defectors. In the inset of Fig. 6, we show tc as a function of
α and observe that tc is minimized for α ≈ 0.5.

Figure 7 shows the time series ρc(t) for different values of
α when there is strong temptation to defect (e.g., b = 1.2).
We observe that cooperators gradually die out for either small
(e.g., α = 0) or large (e.g., α = 1.5) α values. A remarkable

FIG. 8. (Color online) For a number of values of α, snapshots of
typical distributions of cooperators (blue) and defectors (red) in the
steady state. The fraction of cooperators in the equilibrium state is
set to be ρc = 0.8 for different values of α. The values of α and b are
(a) α = 0.02, b = 1.001; (b) α = 0.2, b = 1.116; and (c) α = 0.4,
b = 1.245.

phenomenon is that, asymptotically, the fraction of cooperators
decreases exponentially over time for small or large α values:
ρc(t) ∝ e−t/τ , where the value of τ depends on α, as shown in
the inset of Fig. 7. For moderate values of α (e.g., α = 0.5),
ρc(t) decreases initially and then increases to unity.

How are the cooperators and defectors distributed in the
physical space when a steady state is reached? Figure 8
shows spatial strategy distributions for different values of
the punishment fine α in the equilibrium state. By varying
the value of b, we produce the same fraction of cooperators
(ρc = 0.8) for each value of α. We see that defectors spread
homogeneously in the whole space when α is small (e.g., α =
0.02), while the same amount of defectors are more condensed
for the higher value of α (e.g., α = 0.4). Such condensation of
defectors prevents them from reaching competitive payoffs.

How does the distribution of cooperators and defectors
evolve with time? Figure 9 shows the distribution of coop-
erators and defectors at different time steps for a large value
of b (e.g., b = 1.2) and a moderate value of α (e.g., α = 0.5).
Initially, cooperators and defectors are randomly distributed
with equal probability [Fig. 9(a)]. After a few time steps,
cooperators and defectors are clustered, and the density of
cooperators is lower than that associated with the initial state
[Fig. 9(b)]. With time the cooperator clusters continue to
expand and the defector clusters shrink [Fig. 9(c)]. Finally,
the whole population is cooperators [Fig. 9(d)]. From Fig. 9,
one can also observe that interfaces separating domains of
cooperators and defectors become smooth as time evolves.

FIG. 9. (Color online) For α = 0.5 and b = 1.2, snapshots of typical distributions of cooperators (blue) and defectors (red) at different
time steps t .
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FIG. 10. (Color online) Fraction of cooperators ρc as a function
of the punishment fine α for different values of the temptation to
defect b. The initial density of cooperators ρ0 is (a) 0.2 and (b) 0.8,
respectively.

As illustrated in Refs. [58,59], noisy borders are beneficial
for defectors, while straight domain walls help cooperators to
spread.

In the above studies, we set the initial density of cooperators
ρ0 to be 0.5. Now we study how different values of ρ0 affect
the evolution of cooperation. From Fig. 10(a), one can find
that for the small value of ρ0 (e.g., ρ0 = 0.2) the cooperation
level reaches maximum at moderate punishment fine when the
temptation to defect b is fixed. However, for the large value of
ρ0 (e.g., ρ0 = 0.8), the cooperation level increases to 1 as the
punishment fine increases [Fig. 10(b)].

V. CONCLUSIONS AND DISCUSSIONS

To obtain quantitative understanding of the role of peer
pressure on cooperation, we study evolutionary game dynam-
ics and propose the natural mechanism of mutual punishment
in which an individual will punish a neighbor with a fine
if their strategies are different, and vice versa. The mutual
punishment can be interpreted as a term modifying the strength
of coordination type interaction [60]. Because of the symmetry
in imposing the punishment between the individuals, one might
expect that it would have little effect on cooperation. However,
we find a number of counterintuitive phenomena.

In a well-mixed population, if the initial density of
cooperators is no more than 0.5, cooperators die out regardless
of the values of the punishment fine and the temptation to
defect. If the initial density of cooperators exceeds 0.5, for
each value of the temptation to defect, there exists a critical
value of the punishment fine, below (above) which is the full
defection (cooperation). The critical value of the punishment
fine increases as the temptation to defect increases but it
decreases as the initial density of cooperators increases.

For structured population, our main findings are as follows.
(i) If the initial density of cooperators is small (e.g., 0.2),

there exists an optimal value of the punishment fine, leading
to the highest cooperation. Too weak or too harsh punishment
will suppress cooperation. A similar phenomenon was also
observed in Refs. [9,61].

(ii) If the initial density of cooperators is moderate (e.g.,
0.5), for weak temptation to defect, the final fraction of
cooperators increases to 1 as the punishment fine increases.
For strong temptation to defect, the cooperation level can be
maximized for moderate punishment fine.

(iii) If the initial density of cooperators is large (e.g.,
0.8), for each value of the temptation to defect, the final
fraction of cooperators increases to 1 as the punishment fine
increases.

In the present studies, we use the prisoner’s dilemma game
to understand the role of peer pressure in cooperation. It would
be interesting to explore the effect of mutual punishment
on other types of evolutionary games (e.g., the snowdrift
game and the public goods game) in future work. By our
mechanism, an individual can be punished least by taking
the local majority strategy. In fact, following the majority is an
important mechanism for the formation of public opinion [62].
As a side result, our work provides a connection between the
evolutionary games and opinion dynamics.
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