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Ring-bursting behavior en route to turbulence in narrow-gap Taylor-Couette flows
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We investigate the Taylor-Couette system where the radius ratio is close to unity. Systematically increasing
the Reynolds number, we observe a number of previously known transitions, such as one from the classical
Taylor vortex flow (TVF) to wavy vortex flow (WVF) and the transition to fully developed turbulence. Prior
to the onset of turbulence, we observe intermittent bursting patterns of localized turbulent patches, confirming
the experimentally observed pattern of very short wavelength bursts (VSWBs). A striking finding is that, for
a Reynolds number larger than that for the onset of VSWBs, a new type of intermittently bursting behavior
emerges: patterns of azimuthally closed rings of various orders. We call them ring-bursting patterns, which

surround the cylinder completely but remain localized and separated in the axial direction through nonturbulent
wavy structures. We employ a number of quantitative measures including the cross-flow energy to characterize
the ring-bursting patterns and to distinguish them from the background flow. These patterns are interesting
because they do not occur in the wide-gap Taylor-Couette flow systems. The narrow-gap regime is less studied
but certainly deserves further attention to gain deeper insights into complex flow dynamics in fluids.
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I. INTRODUCTION

Turbulence is arguably one of the most difficult problems in
science and engineering. The vast literature in this field [1] has
mostly focused on fully developed turbulence. The purpose
of this paper is to report a phenomenon of intermittency
associated with the evolution of turbulence in a prototypical
model system of shear flow: the Taylor-Couette system [2]
with the gap between the inner and outer cylinders so narrow
that flow is effectively a curved Couette flow. This type of
intermittency occurs en route to turbulence as the Reynolds
number is increased which, to our knowledge, has not been
reported previously.

The Taylor-Couette system, a flow between two concentric
rotating cylinders, has been a paradigm in the study of complex
dynamical behaviors of fluid flows, especially turbulence
[3—11]. The flow system can exhibit a large variety of ordered
and disordered behaviors in different parameter regimes. The
parameters that control the system dynamics include the values
of the rotation speed of the inner and outer cylinders, as well
as their radius ratio. Most previous studies have dealt with the
setting in which the radius ratio is below, say, about 0.95, the
so-called wide-gap regime [6]. The primary interest of this
work is in the narrow-gap case, where the radius ratio is close
to unity. We fix the radius ratio to be 0.99. While different
configurations of rotation of the inner and outer cylinders
can lead to distinct dynamical behaviors, to be concrete we
restrict our study to the case in which the outer cylinder is
stationary. In fact, regardless of whether the outer cylinder is
rotational or stationary, transition to turbulence can occur as
the Reynolds number is increased. For different system and
parameter settings, there can be distinct routes to turbulence.
For example, for systems of counter-rotating cylinders, an
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early work [3] showed that transition to turbulence can be
sudden as the Reynolds number is increased through a critical
point. For a stationary outer cylinder, the transition from
laminar flow to turbulence can occur through a sequence of
instabilities of distinct nature [10,12].

For the Taylor-Couette system of counter-rotating cylin-
ders, spatially isolated flow patterns such as localized patches
can emerge and decay through the whole fluid domain [6,13].
Depending on the parameters, the localized patches can be lam-
inar or exhibit more complex patterns such as interpenetrating
spirals [6]. In the wide-gap regime, numerical simulations [14]
revealed the existence of the Gortler vortices [15], which
are small-scale azimuthal vortices that can cause streaky
structures and form herringbone-like patterns near the wall.
Localized turbulent behaviors can arise when the Gortler
vortices concentrate and grow at the outflow boundaries of
the Taylor vortex cell [14].

For narrow-gap flows, there was experimental evi-
dence of the phenomenon of very short wavelength bursts
(VSWBs) [10]. One contribution of our work is an explicit
computational demonstration of VSWBs. Remarkably, we
uncover a class of solutions en route to turbulence. These are
localized, irregular, intermittently bursting, azimuthally closed
patterns that manifest themselves as various rings located
along the axial direction. For convenience, we refer to the
states as “ring bursts.” Depending on the parameter setting,
the number of distinct rings can vary, but their extents in the
axial direction are similar. The ring bursts can occur on some
background flow that is not necessarily regular. For example,
in a typical setting the background can be wavy vortex
flows (WVFs) with relatively high azimuthal wave numbers.
Because of the coexistence of complex flow patterns, to single
out ring bursts is challenging, a task that we accomplish by
developing an effective azimuthal wave number separation
method based on the cross-flow energy. We also find that ring
bursts are precursors to turbulence, signifying a new route to
turbulence uniquely for narrow-gap Taylor-Couette flows. To
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our knowledge, there has been no prior report of ring-bursting
patterns or similar phenomena. This is mainly due to the fact
that this narrow-gap regime is a less explored territory in the
giant landscape of turbulence research. It would be interesting
to identify precursors to turbulence in flow systems in general.

In Sec. II, we outline our numerical method and describe
a number of regular states in our narrow-gap Taylor-Couette
system. In Sec. III, we present our main results: numerical
confirmation of experimentally observed VSWBs and, more
importantly, identification and quantitative confirmation of
intermittent ring bursts as precursors to turbulence. In Sec. IV,
we present conclusions and discussions.

II. NUMERICAL METHOD AND BASIC DYNAMICAL
STATES OF NARROW-GAP TAYLOR-COUETTE FLOW

A. Numerical method

The Taylor-Couette system consists of two independently
rotating cylinders of finite length L and a fluid confined in the
annular gap between the two cylinders. We consider the setting
in which the inner cylinder of radius R; rotates at angular
speed 2 and the outer cylinder of radius R, is stationary.
The end walls enclosing the annulus in the axial direction
are stationary and the fluid in the annulus is assumed to be
Newtonian, isothermal, and incompressible with kinematic
viscosity v. Using the gap width d = R, — R; as the length
scale and the radial diffusion time d?/v as the time scale, the
nondimensionalized Navier-Stokes and continuity equations
are

du+@w-Viu=-Vp+Viu, V-u=0, (1)
where u = (u,,ug,u;) is the flow velocity field in the cylin-
drical coordinates (7,0,z), the corresponding vorticity is given
by V xu=(§,n,¢), and r is the radius of the fluid domain
in the gap (r; < r < r,). The three relevant parameters are the
Reynolds number Re = ; R;d /v, the radius ratio R;/R, =
0.99, and the aspect ratio I' = L/d = 44. The boundary
conditions on the cylindrical surfaces are of the no-slip type,
with

u(ri,0,z,t) = (0,Re,0), wu(r,,0,z,t) =(0,0,0), (2)
where the nondimensionalized inner and outer radii are r; =
R;/d and r, = R, /d, respectively. The boundary conditions
in the axial direction are u(r,6, & 0.5T",1) = (0,0,0).

We solve Eq. (1) by using the standard second-order time-
splitting method with consistent boundary conditions for the
pressure [16]. Spatial discretization is done via a Galerkin-
Fourier expansion in # and Chebyshev collocation in r and
z. The idealized boundary conditions are discontinuous at the
junctions where the stationary end walls meet the rotating
inner cylinder. In experiments there are small but finite gaps
at these junctions where the azimuthal velocity is adjusted to
zero. To achieve accuracy associated with the spectral method,
a regularization of the discontinuous boundary conditions is
implemented, which is of the form

ug(r,0, £0.5T,1) = Re{exp([r; — r]/e) + exp([r — r,]/€)},
3)
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where € is a small parameter characterizing the physical gaps.
We use € = 6 x 1073, Our numerical method was previously
developed to study the end-wall effects in the Taylor-Couette
system with co- and counter-rotating cylinders [17,18]. In the
present work we use up to n, = 50 and n, = 500 Chebyshev
modes in the radial and axial directions, respectively, and up to
ng = 100 Fourier modes in the azimuthal direction. The time
step is chosen to be 8t = 107°.

B. Qualitative description of basic dynamical states
1. Low-order instabilities

In the wide-gap Taylor-Couette system various flow pat-
terns and their bifurcation behaviors are relatively well
understood [3,6]. In our narrow-gap setting, the background
flow is a number of known low-order, nonturbulent instabilities
upon which a new type of ring bursting structures emerges.
Here we describe these low-order instabilities. To visualize
and distinguish qualitatively different flow patterns, we use
the contour plots of the azimuthal vorticity component 7.

a. Primary instability: Taylor vortex flow. Asthe Reynolds
number Re is increased, the basic state, circular Couette flow
(CCF) becomes unstable and is replaced by the classical Taylor
vortex flow (TVF) that consists of toroidally closed vortices.
TVFs with increasing numbers of vortices appear gradually
over a large range of Re, starting from a single Taylor vortex
cell generated through the mechanism of Ekman pumping near
the end walls. This initial cell can appear either near the top
or the bottom lid. In an ideal system, initial Taylor vortex cells
can occur simultaneously at both lids, but this is less likely
in realistic systems due to the inevitable imperfections in the
system. The onset of initial TVF cells was experimentally
found for Re about 358 [10]. We find, numerically, that the
onset value is about 356. As Re is increased from this value,
additional vortices appear, which enter the bulk from near the
lids until they finally fill the whole annulus for Re near 435
(experimentally the value is about 437 [10]). For example, we
observe a TVF with 22 pairs of vortices within the annulus,
with the characterizing wave number of k = 3.427, and an
additional pair of Ekman boundary layer vortices near the top
and bottom lids. Note that, since the system is finite, Ekman-
vortex regions are typically present near the boundaries of the
system. In the following we focus on the bulk region that is
free of Ekman vortices.

b. Secondary instabilities: Wavy vortex flow. Upon further
increase in Re, the TVF becomes unstable and is replaced by
a wavy vortex flow (WVF) driven by the axial shear in the
azimuthal velocity [19] due to the radial advection of high
and low azimuthal momentum close to the inner and outer
cylinder, respectively. We find that the onset of WVF occurs
for Re ~ 473 (experimentally the value is about 475 [10]).
The WVE, as shown in Fig. 1(a), is associated with relatively
high values of the azimuthal wave number m. For example, the
WVF pattern in Fig. 1(a) has azimuthal wave number m = 39,
which we call WVF39. We find that this particular WVF state is
in fact a global background flow over a wide range of Re values.

The TVF and WVF patterns occur regardless of whether
the system has a wide or a narrow gap, although the critical
values of Re for the onset of these flow patterns depend on the
system details.

053018-2



RING BURSTING BEHAVIOR EN ROUTE TO TURBULENCE ...

0.5

—lea

DA

e

FIG. 1. (Color online) Distinct flow patterns in narrow-gap
Taylor-Couette system. Contours of the azimuthal vorticity com-
ponent n with (left column, n € [—400,400]) and without (right
column, n(m # 0) € [—200,200]) the axisymmetric component on
an unrolled cylindrical surface at the midgap (r = d/2) for different
flows and different values of Re. Red (dark gray) and yellow (light
gray) colors correspond to positive and negative values, respectively,
and the black curves indicate the zero contours. Distinct flow patterns
are shown in (a) WVF;9 for Re = 500, (b) LP for Re = 540, (c)
ring bursts (n = 3) for Re = 545, and (d) VSWB for Re = 800,
respectively. Note that (d) shows the situation in which VSWBs
occupy the entire angular (see Carey et al. [10]).

2. High-order instabilities

a. Very short wavelength bursts and localized patches. For
the commonly studied [6], wide-gap Taylor-Couette system,
e.g., of radius ratio 0.883, the typical sequence of solutions
with increasing Re values is as follows. As the stationary TVF
becomes unstable, a time-dependent WVF arises, followed
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by a modulated WVF [6], eventually leading to turbulent
behaviors. However, in the narrow-gap case we do not observe
the global transition from WVF to modulated WVF. Instead,
we find that a state, named VSWB [10], appears immediately
after the onset of WVF without any other types of intermediate
solutions. The onset of VSWBs occurs for Re &~ 483, which
agrees with the experimentally observed onset value. The
VSWB state can effectively be regarded as a burst because
it occurs on top of some background flow structure such as
wavy vortices. The term “short wavelength” is with respect to
the length scale of the background pattern. VSWB is in fact a
state of weak turbulence.

As Re is increased further, we observe localized patches
(LPs) [10,20] superposed on the WVF. The pattern within
LPs can be either wavylike [Fig. 1(b)] or turbulent, depending
on the Re value. In particular, wavylike patterns occur for
relatively low values of Re but turbulence occurs for high Re
values, e.g., for Re > 580. A turbulent pattern can either evolve
into VSWBs or decay slowly. The number of LPs depends on
Re as well. In general, the higher the value of Re the larger
the number of LPs that appear, and their lifetimes increase
as well. The patches are randomly distributed over the whole
bulk length.

b. Ring-bursting patterns. When Re is increased above
about 540, we discover a new type of localized, intermittent
bursting solution, the ring bursts that coexist with VSWBs.
While both types of solutions are localized, there are char-
acteristic differences. For example, VSWBs appear randomly
over the whole bulk fluid region with seemingly expanding
behaviors in all directions, but ring bursts always remain
localized in the axial direction. In fact, the bursts are generated
from the localized turbulent patches that grow in the azimuthal
direction as Re is increased. For sufficiently high values of Re,
the patches extend over one circumference, generating distinct
ring bursts that are separated from the flow patterns in the
rest of the bulk, as shown in Fig. 1(c). The characteristics
of the background flows in the regions surrounding the ring
bursts depend strongly on Re. They can range from wavylike
patterns (i.e., WVF39) to interpenetrating spirals [6] due to the
interactions among various azimuthal wave numbers, as shown
in Fig. 1(b). We observe ring-bursting patterns of different
order j, as shown in Figs. 1 and 3. For example, we observe
Jj €1{1,2,3}. All these states coexist but the probability for
ring bursts with larger j values increases with Re. Along
the axial direction, the ring-bursting patterns can appear
at any position, except for the Ekman-vortex region near
the lids, because strong boundary layer vortices prevent the
development of ring-bursting patterns. In terms of the lifetime,
the ring-bursting patterns exhibit a similar behavior to LPs. In
general, the higher the value of Re the longer the lifetime of
the pattern, and the lifetime does not seem to depend on the
number of ring bursts (order-1, order-2, or order-3).

While there is no apparent order associated with the flow
patterns within the ring bursts, the flow in the regions in
between exhibit a clear WVF39 signature. The ring bursts
can spontaneously break up and disappear. Depending on
the number of ring bursts, the transient time for the burst to
decay into localized patches can be relatively long. In addition,
there can be transitions between patterns with distinct numbers
of ring bursts. For example, suppose there is a ring-bursting
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pattern of order-3. If one ring disappears, a new ring-bursting
region can appear and grow. Transitions between patterns with
either increasing or decreasing numbers of ring bursts have
been observed.

For Re > 850, we find that VSWBs can fill the whole bulk
fluid region, as shown in Fig. 1(d). For this relatively high
Reynolds number, there is one large VSWB pattern that fills
the whole annulus. To see the evolution of VSWBs we refer to
Fig. 3 in Carey et al. [10]. In fact, for Re > 900, the entire fluid
region is saturated with VSWBs. These numerical observations
are in agreement with experimental findings [10].

c. Underlying flow patterns. The right panels in Fig. 1
show contours for the same pattern as those for the left
panels but without the underlying axisymmetric contribution.
The resulting “reduced” flow pattern of WVF34 in Fig. 1(a)
appears quite regular, indicating the existence of the dominant
wavy with azimuthal wave number m = 39. The nearly
vertical black curves specify the contours of zero vorticity. At
several azimuthal positions, these lines narrow, signifying the
emergence of a second, but weaker, azimuthal wave number,
e.g., m = 8. For order-3 ring bursts, the flow patterns near
the lids are somewhat modified due to the presence of higher
azimuthal wave number m, as shown in Fig. 1(c), where these
wave numbers can be seen from the n(m # 0) plot (right
column). The somewhat random patterns near the lids indicate
the higher values of the azimuthal wave number m. The flow
patterns in the central region (including that containing the
three ring bursts) exhibit completely different behaviors. In
particular, with respect to the contours n(m # 0) (right column
in Fig. 1) the turbulent ring bursts and the separating WVF3g
pattern appear indistinguishable, suggesting an axisymmetric
dominance of the ring bursts. For turbulent flows or VSWBs
in Fig. 1(d), none of the patterns has such an ordered structure.
The somewhat visible separation by vertical lines in the con-
tours n(m # 0) for WVF39 and order-3 ring bursts [Figs. 1(a)
and 1(c)] suggests a similarity to the underlying or surrounding
wavylike pattern. However, the contours n(m # 0) for VSWB
[(Fig. 1(d)] differ considerably, suggesting that the underlying
structure differs. It is in fact turbulent. The schematic diagram
in Fig. 2 shows the regimes of Re values in which different
flow patterns exist. Regimes on top of each other indicate
coexistence and the numbers below the axis give numerical
and experimental (in parentheses) values of regime onset,
respectively. Note that the thick (solid) dashed line illustrates
the regime of LPs with a wavylike or a turbulent interior.

ring bursts

| TVF |
CCF ElocalizedI filled
[ [
356 435 473 480 537 580 Re
(358) (437)  (4735) (483) (—) (580)

FIG. 2. (Color online) Schematic illustration of the Re regimes in
which different patterns exist. Shown are the regimes of CCF, TVF,
WVE, and VSWB and ring bursts and their corresponding numerical
and experimental (in parentheses) onsets. Thick dashed (solid) line
illustrates approximately the existence of LPs with a wavylike or a
turbulent interior.
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FIG. 3. (Color online) Angular momentum and vorticity. Isosur-
faces of rv (top row) and n (bottom row) for flows at different values
of Re (isolevels shown for the top and bottom rows are rv = 80
and n = £30, respectively). Red (dark gray) and yellow (light gray)
colors correspond to positive and negative values, respectively. The
different flow states are shown in (a) WVF;39 for Re = 500, (b) ring
bursts (order-3) for Re = 545, (c) ring burst (order-1) for Re = 550,
and (d) VSWB for Re = 900, respectively. For clear visualization,
here and in all subsequent three-dimensional plots the radius ratio is
scaled with the factor 100.

III. CHARACTERIZATION OF RING BURSTS

A. Angular momentum, azimuthal vorticity,
and modal kinetic energy

Figure 3 shows the isosurfaces of the angular momen-
tum rv (top row) and azimuthal vorticity n (bottom row)
for representative flow patterns at different values of Re.
WVF;9 with the dominant axisymmetric contribution and
high azimuthal wave number, as shown in Fig. 3(a), serves
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FIG. 4. (Color online) Three-dimensional views of angular mo-
mentum and vorticity. Magnitude of the angular momentum (top
panels) and azimuthal vorticity (bottom panels) for a flow segment of
vertical length I'/10 for ring bursts (left column) and VSWB (right
column); (a) ring bursts of order-3 for Re = 545 and (b) VSWB
for Re = 800, respectively. The segment is taken from the region
containing the middle ring burst in Fig. 3(b) and has the same color
coding.

as the background pattern for ring bursts and VSWBs. The
three turbulent, azimuthally closed bursting regions associated
with the order-3 ring-bursting pattern are distinctly visible, as
shown in Fig. 3(b). Within each bursting region, both rv and
n appear random but the (background) flow patterns between
the bursting regions are remnants of the WVF3g pattern. With
increasing Re, higher wave numbers emerge, but the separation
between bursting and nonbursting regions persists. For high
values of Re, VSWBs arise, as shown in Fig. 3(d). In this case,
isosurface plots of rv and n exhibit random flow patterns.

To better visualize and illustrate the similarity and dif-
ferences between ring burst and VSWB patterns, we present
in Fig. 4 the angular momentum (top panels) and azimuthal
vorticity (bottom panels) for a segment of the bulk flow. The
length of the segment is I'/10. The entire structure of the ring-
bursting pattern possesses an axial symmetry and an azimuthal
dominance of rotation symmetric mode (mm = 0). The interior
of the bursting regions has no symmetry—similarly to the
structures of VSWBs. There are thus two distinct spatial scales
associated with ring bursts: a large scale determined by the
azimuthal symmetry and a small scale present in the interior
of the bursting regions.

Figure 5 illustrates the time evolution of different ring-
bursting patterns. Starting from WVF3g at r =0, a ring-
bursting pattern emerges almost immediately near the central
region (z/T" & 0.5), followed at r & 0.1 by the occurrence of
an order-2 pattern in the upper half of the bulk (z/I" &~ 0.7).
For ¢ 2 3.5, an order-3 ring-bursting pattern is formed in the
lower half of the bulk (z/I" ~ 0.25), which remains in the
system for # &~ 12.5 and then decays. Hereafter the system
shows again an order-2 ring bursting, as the lowest ring burst
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FIG. 5. (Color online) Time series from ring-bursting regime.
Time evolution of (a) u, and (b) n at & = const and midgap of the
bulk (r = d/2) for a flow exhibiting different ring-bursting patterns
(Color coding as in Fig. 1).

region (z = 0.25z/ ") has vanished. This pattern persists until
t ~ 15, at which the order-2 bursting ring disappears with the
burst region in the center (z = 0.5z/T"). In the time interval
considered, an order-1 pattern persists.

Figures 6(a) and 6(b) show the power spectral density (PSD)
of the radial velocity profile at the midgap for WVF and ring
burst, respectively. We see that the PSD associated with the
ring-bursting pattern (b) indicates the existence of significantly
higher azimuthal wave number than the WVF pattern (a). In
fact, the PSD of WVFj in (a) shows a strong peak at frequency
about 19, which corresponds to the dominant azimuthal wave
number (m = 39). This peak is still present in (b) but it is
broadened, indicating WVF as the background flow pattern
for the ring burst. Figure 6(c) shows the scaled PSD curves
for several flow patterns for different values of Re. We see
that the PSD curves for the ring-bursting patterns essentially
collapse into one frequency band, but the PSD curve associated
with WVF; lies slightly below those of ring-bursting patterns.
There is relatively large difference for small frequencies but
it becomes insignificant for higher frequencies. This is further
support for the role of WVFs9 in providing the skeleton
structure for all ring-bursting patterns.
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FIG. 6. (Color online) Power spectral density (PSD). PSD curves
calculated from the radial flow component ug/, = u(d/2,0,I"/2,t) for
(a) WVF3g for Re = 500 and (b) ring burst of order-3 for Re = 545.
(c) PSD curves scaled by the respective Reynolds number for different
flow patterns. As the number of ring bursts is increased, the local
peaks in the PSD curves become more pronounced. The vertical line
highlights the resemblance of the spectra.

B. Cross-flow energy

A suitable and commonly used quantity in the study of
fluid turbulence is the cross-flow energy [21], where small
values indicate a laminar flow but large values correspond to
turbulence.

PHYSICAL REVIEW E 92, 053018 (2015)

FIG. 7. (Color online) Radial component of cross-flow energy.
Space-time plots of the radial component of the cross-flow energy,
ET(r,t) = (u? + u2) a¢), averaged over the surfaces A of a con-
centric cylinder of radius r for (a) Re =500, (b) Re = 545, and
(c) Re = 560. Red (dark gray) [yellow (light gray)] color indicates
high (low) energy value with contours defined as AE"" =5 x 10°.
The maximum energy values in (a)—(c) are approximately 8.1 x 103,
8.5 x 10°, and 1.2 x 10°, respectively. For better visualization the
radial gap width is magnified by the factor of 500 (the same for Fig. 8
below).

1. Radial component of cross-flow energy

The radial component of the cross-flow energy is given
by [21]

ET(rn) = (u} +u) s @)

where () 4¢-) denotes the average over the surface of a con-
centric cylinder at radius r. The cross-flow energy component
E<I'"(r,t) measures the instantaneous energy associated with
the radial and axial velocity components at radial distance
r. Figure 7 shows the space-time plots of E<(r,t) over
the time period of 50 diffusion times for three values of
Re. We observe the temporal emergence and disappearance
of various ring-bursting patterns in the bulk. For example,
for Re = 545, an order-3 ring-bursting pattern exists for
40 <t < 44, and an order-2 pattern appears for 0.5 < ¢t < 4.5,
as shown in Fig. 7(b). For Re = 560, an order-3 pattern appears
for 2.5 <t < 7.0, and a single ring-bursting pattern (order-1)
exists for 43 < ¢ < 47, as shown in Fig. 7(c).

Plots of the cross-flow energy exhibit two features. First, the
presence of the order-1 ring-bursting pattern is accompanied
by a significant increase in the radial cross-flow energy as
compared with that associated with the background flow, e.g.,
WVF;y, indicated as the uniform red (dark gray) regions.
Second, the profile of E/"(r,t) for any ring-bursting pattern
is approximately symmetric with respect to the middle of
the gap. Regarding the structural properties the ring-bursting
patterns are similar to the tfurbulent WVF state [14,22-24]
(see Sec. III C). The (radial) symmetry is a consequence of the
narrow-gap nature of the flow. From Fig. 7, we see that it is not
feasible to determine the number of ring bursts (e.g., order-1,
order-2, or order-3) present in the bulk. However, in all cases,
this can be done using the magnitude of the cross-flow energy.
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(a)

FIG. 8. (Color online) Magnified view of the radial component of
the cross-flow energy. (a) Magnification of a segment of Fig. 7(b) for
t € [0,1.8] illustrating the emergence and disappearance of the order-
3 ring-bursting pattern for Re = 545 (color coding as in Fig. 7). The
contours are defined through AEY" =5 x 10°, and the maximum
energy value is about 8.288 x 10°. (b) Average radial cross-flow
energy (E/"), versus t for the order-3 ring burst for Re = 545. The
nearly constant background flow is WVF3y with (E<"(WVFs)), &
2 x 1078,

Figure 8(a) shows a magnification of a segment of Fig. 7(b)
for ¢ € [0,1.8], which contains the emergence and disappear-
ance of an order-3 ring burst for Re = 545, occurring at ¢t =
0.45 and ¢ & 1.35, respectively. Outside this time interval the
flow is WVF39, which constitutes a nearly uniform background
without any significant variations in E<"(r,#). The spatial
distribution of E</’(r,t) exhibits an approximate symmetry
about r = 0.5. Figure 8(b) shows the average cross-flow
energy, (ES/"),, as a function of time ¢, corresponding to
the emergence and disappearance of the ring-bursting pattern.
We observe a significant enhancement of the average radial
energy over that of the background flow ((E/"), ~ 2 x 1079).
In fact, in the time interval where the ring burst exists, the
maximum value of the average radial energy is about one
order of magnitude larger than that of the background flow.
In general, the maximum energy depends on the number j
(order) of ring bursts in the annulus, where a larger value of j
corresponds to a higher value of the maximum energy.

The emergence and development of any type of bursting
pattern with increasing Re can be conveniently characterized
using the quantity fp, the percentage of the annulus containing
bursts in the space-time plot. Figure 9(a) shows fp versus
Re, where we observe approximately a linear behavior for
Re < 900, and the transition to bursts occurs for Re ~ 480, in
agreement with the experimentally found onset of VSWB [10].
Onset of ring bursts can be revealed through examination
of the maximum value of the average radial energy (E</"),
versus Re, as shown in Fig. 9(b). Regardless of the order of
the ring bursts, there is a linear increase in (E</"), with Re,
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FIG. 9. (Color online) Onset of bursting patterns. (a) Burst frac-
tion f, as a function of Re. A linear fit indicates that the onset
of VSWBs occurs for Re &~ 480 (the experimental onset [10] is
Re = 483). (b) The maximum average radial energy (E</"), [Eq. (4)]
versus Re for ring bursts of different orders (j € {1,2,3}). The linear
behavior indicates that the ring bursts are a result of a forward
bifurcation, the onset of which occurs for Re. ~ 537. In (b), the
average energy of the underlying background flow, (E/"),, has been
subtracted off.

suggesting a type of forward bifurcation. Calculations of the
flow amplitudes show a square-root type of scaling behavior
with increasing parameter difference from the “critical”
point, providing further support for the forward nature of
the bifurcation. Due to strong localization, the slope of the
linear scaling regime depends on the order of the ring burst.
Nonetheless, the onset value Re. ~ 537 of ring bursts does not
depend on the order. Thus ring bursts emerge after VSWBs
(Re ~ 483).

2. Axial component of cross-flow energy

The axial component of the cross-flow energy is
, _ 2 2
E;l*(z,0) = (), + () 0 )

where A(z) stands for averaging over the radial and az-
imuthal variables on the surface of a disk at a fixed axial
position z. Figure 10 shows the time-averaged value for the
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FIG. 10. (Color online) Axial component of cross-flow energy.
Associated with the order-3 ring-bursting pattern for Re = 545, time

averaged axisymmetric energy component E;f'z. Note that all higher
azimuthal wave numbers are on the order of 1074,

dominant axisymmetric component ng.z' Near the center of
the ring-bursting region in the axial direction, the values of

ng’z are smaller than those around the edges. However, the
contributions from all higher azimuthal wave numbers (not

shown), i.e., Efr{'z for m > 0, have similarly small magnitudes

as compared with Ec)f’z, which are on the order of 10~*. In fact,
for higher azimuthal wave numbers m, the axial components of
their cross-flow energies are randomly distributed over z and
they are not indicators of any appreciable difference between
the background flow and the ring-bursting pattern.

3. Azimuthal wave number separation of axial cross-flow energy

To better characterize the ring-bursting patterns in relation
to the background wavylike and general bursting patterns, we
devise a method based on the idea of wave number separation.
Since a bursting pattern includes modes of higher azimuthal
wave numbers, we can decompose the axial component of the

cross-flow energy ES ;Z(z,t) into two distinct subcomponents:

me—1 M
EF@+E (@)=Y Ef @+ Y EL@. (©)
m=1 m=m,

where ES/%(z) and E;f *“(z) denote the axial components of the
cross-flow energy associated with the background wavylike
and burst patterns, respectively, and m, is some cutoff wave
number. Note that the axisymmetric component of the cross-
flow energy is excluded because it is significantly larger than
all other components (Fig. 10). We choose the normalization
factor to be the total cross-flow energy for all azimuthal wave
numbers except m = 0:

M
Ejfi @) =Y Ed(. (7)

m=1
Figure 11(a) shows the basic E, and the burst contribution
E}, at different axial positions versus the cut-off wave number
m.. We observe that the curves for the z positions within
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FIG. 11. (Color online) Characterization of axial cross-flow en-
ergy based on wave number separation. (a) Variation of the axial
cross-flow energy component E<%(z) = E;f’z(z) + E¢/*(z) versus
the cutoff wave number m, for two axial positions in the burst
region (z = 0.3T" and 0.45T", circles) and in the background region
(z = 0.15T and 0.35T, squares). (b) Spatial variations of E;f’z(z) =
SV ESA(2) and ES(2) = You ES(z) with 2 for me = 20
(circles) and 30 (squares), respectively. Regions above (below) each
curve indicate E, (E,). The two horizontal dashed lines give the
80% threshold of the maximum values of [E,(m., = 20)] (lower)
and [E, (m. = 30)] (upper), respectively. In the calculations the zero
wave number contribution is excluded. Due to normalization with
E ) the sum must be unity.

the bursting region [in Fig. 11(a) at z = 0.3T" and 0.45T"] are
higher than those in the wavylike background [in Fig. 11(a)
at z = 0.15T" and 0.35T"], where the former exhibit a rapid
decrease in the energy to collapse with the latter for m. about
39. The variations of E;, and E,, along the annulus length for
two different cutoff wave numbers [m,. = 20,30, as indicated
by the vertical lines in Fig. 11(a)] are shown in Fig. 11(b).
Neglecting the differences in their magnitudes, the variations
show qualitatively similar behaviors. Using a cutoff level at
80% of the maximum of the background contribution E\,(m.),
we find a good agreement with the visible energy thresholds
between the background and burst regions (cf. Fig. 1). We thus
see that, through a proper choice of the cutoff wave number,
the bursting and nonbursting regions can be distinguished by
examining the axial cross-flow energy variations associated
with the cutoff wave number.
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FIG. 12. (Color online) Spatial power spectral density (SPSD)
of the radial velocity u, at the midgap for Re = 545, where k is the
axial wave number. Inset shows the full spectrum.

C. Axial spacing and localization

The axial ranges of distinct ring-bursting regions are
approximately identical. Figure 12 shows the spatial power
spectral density (SPSD) of the radial velocity u, along a line
at the midgap in the center of the bulk for the background flow
and three types of ring-bursting patterns. Here SPSD is a power
spectral density obtained from an axial Fourier transformation.
In particular, we use a window of 0.8I" about the center
of the system for the axial Fourier transform to avoid the
Ekman regions near the lids. We observe that the four curves
coincide at the first sharp peak determined by the wave number
associated with the background flow WVF; that consists of
24 vortex pairs in the axial direction. The corresponding axial
wavelength and wave number are A =~ 1.667 and k =~ 3.770,
respectively. In addition, several broadband peaks at higher
wave numbers exist in the SPSD of the ring-bursting patterns,
corresponding to a number of short wavelength bursts within
the respective patterns. The broadband nature at higher wave
numbers is indicative of the dominance of small-scale bursting
patterns. The axial spacing is apparently independent of the
value of Re and of the order of the ring-bursting pattern. The
typical value of axial expansion agrees well with the axial
dimension of two-pair Taylor vortices that constitute four
single vortex cells, which holds for all ring-bursting flows that
we have succeeded in uncovering. Analogous to the behavior
of the cross-flow energy, this behavior is indicative of turbulent
WVFs [14,22-24]. We note that the size of only one pair of
Taylor vortices (two cells) is too small to account for the
observed range of axial expansion. This is consistent with the
formation process of ring bursts. In particular, any localized
turbulent patch, after its generation, first expands in the axial
direction (to four cells) before growing in the azimuthal
direction. Whenever the bursting region has expanded to a
larger size in the axial direction, the closed ring structure is
destroyed, leading to VSWBs.

IV. CONCLUSIONS AND DISCUSSIONS

This paper provides a comprehensive numerical study of
the Taylor-Couette system of radius ratio 0.99 and stationary
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outer cylinder, a regime that was not studied previously. The
relevant control or bifurcation parameter is the Reynolds
number Re. For small Re values, TVF initially arises near
one of the lids in a single cell, extends, and, finally, fills the
bulk interior completely. As Re is increased the TVF loses
its stability and WVF emerges through a supercritical Hopf
bifurcation. WVFs with high azimuthal wave numbers, e.g.,
m = 39, constitute a persistent background flow, on top of
which more complex flow structures develop, such as VSWBs
that have been experimentally observed [10].

The main result of this paper is the uncovering of a new
type of transient, intermittent state en route to turbulence
with increasing Re: ring bursts. They emerge when localized
turbulent patches grow and close azimuthally, signifying a
higher-order instability. The ring bursts occur in various orders
and the azimuthally closed bursting regions possess axially
expanding subregions surrounded by the WVF background
flow or more complex flows at high Re values. The ring-
bursting patterns differ characteristically from the localized
VSWB turbulent patches. The axial expansion of ring-bursting
patterns of different orders correlates well with the size of
the double-pair Taylor vortex structure, providing a plausible
reason for the similarity of the patterns to the turbulent WVF
structure [14,22-24] that usually occurs in the whole annulus
at higher Reynolds numbers. We develop a wave number
separation method based on decomposing the cross-flow
energy to distinguish bursting and nonbursting patterns. In
particular, the burst regions are associated with high order
and the nonbursting regions (background flow) are associated
with lower order azimuthal wave numbers. We also find
that the radial cross-flow energy changes significantly in
the presence of ring-bursting patterns. By examining the
maximum value of the cross-flow energy, we determine the
onset of the ring-bursting patterns at the critical Reynolds
number of Re. &~ 537, which is larger than that for the onset
of VSWBs [10] (about 482). For ring-bursting patterns of
different orders, their expansions in the axial direction are
nearly identical, and they tend to shift along the axial direction.

There are a number of differences between turbulence in the
wide-gap (e.g., radius ratio 0.5 to 0.8) and narrow-gap (e.g.,
radius ratio 0.99) Taylor-Couette systems. First, in the wide-
gap case, the intensity distributions of turbulent fluctuations
are often uneven in the radial direction [14,21], where more en-
ergetic turbulent fluctuations occur towards the inner cylinder
wall. The regions near the inner cylinder thus exhibits stronger
turbulence than in the region near the outer cylinder. This radial
dependence of turbulent fluctuations is lost in the narrow-gap
Taylor-Couette system, where turbulence is observed through
the bulk in the radial direction. Second, in wide-gap systems,
phenomena such as turbulent streaks [14], small-scale Gortler
vortices, and herringbone-like streaks [15] can occur near both
inner and outer cylindrical walls. Examining the typical size of
the small Gortler vortices [15] reveals that, in the narrow-gap
case these vortices have expansion larger than the radial width,
excluding the possibility of generating turbulent streaks from
small-scale Gortler vortices. Indeed, our simulations do not
reveal any small-scale vortices. This might explain the loss
of radial dependence of turbulence, as can be seen, e.g.,
from the cross-flow energy behavior in Fig. 7. In fact, in
narrow-gap systems turbulence emerges at the boundary layer
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of the neighboring vortex cells almost immediately at any
radial position.

While there are ring-bursting patterns of turbulent bands in
planar Couette flow systems [25,26], the background flow is
quiescent, which defines a threshold between a “simple” state
and the coexisting turbulent state. However, in our narrow-gap
Taylor-Couette system, the background flow has wavylike
patterns, which represents a “threshold” state between an
already complex (nonbasic) state and turbulence. Despite
these differences there is in fact a remarkable similarity
between turbulence in both types of systems. For example,
detailed investigations [25] of the separating regime of
laminar and turbulent characteristics in planar Couette flows
revealed isolated band states of turbulence in confined domains
close to the global stability threshold. In the plane Couette
flow [25], these bands appear at different angles but are
always parallel for a given experiment or simulation. They
are are remarkably analogous to our ring-bursting patterns on
an unrolled cylindrical surface (e.g., comparing Fig. 1 with
Fig. 11 in Ref. [26]). In addition, the routes to turbulence are

PHYSICAL REVIEW E 92, 053018 (2015)

similar: In both cases the turbulent bands grow out of a small
localized turbulent spot that subsequently expands in some
direction.

It may be challenging to detect ring-bursting patterns
experimentally as they coexist with other complex states such
as VSWBs with similar turbulent characteristics. Nonetheless,
given that the Taylor-Couette system is a paradigm enabling
well-controlled experiments on complex vortex dynamics and
turbulence, we are hopeful that our finding will stimulate
further research of turbulence in narrow-gap regime of the
system, a regime that has received little attention in spite of
the large body of literature on Taylor-Couette flows.
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