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Dynamical systems based on the minority game (MG) have been a paradigm for gaining significant insights
into a variety of social and biological behaviors. Recently, a grouping phenomenon has been unveiled in MG
systems of multiple resources (strategies) in which the strategies spontaneously break into an even number
of groups, each exhibiting an identical oscillation pattern in the attendance of game players. Here we report
our finding of spontaneous breakup of resources into three groups, each exhibiting period-three oscillations. An
analysis is developed to understand the emergence of the striking phenomenon of triple grouping and period-three
oscillations. In the presence of random disturbances, the triple-group/period-three state becomes transient, and
we obtain explicit formula for the average transient lifetime using two methods of approximation. Our finding
indicates that, period-three oscillation, regarded as one of the most fundamental behaviors in smooth nonlinear
dynamical systems, can also occur in much more complex, evolutionary-game dynamical systems. Our result
also provides a plausible insight for the occurrence of triple grouping observed, for example, in the U.S. housing
market.
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I. INTRODUCTION

A paradigmatic model to study a variety of complex social
and biological behaviors is the minority game (MG) [1–4].
In the simplest setting of multiple identical agents with two
resources, e.g., the El Farol bar problem in game theory [1],
each agent has two strategies to choose from: either exploiting
the resource (going to the bar) or no (staying at home). In this
case, the winning strategy is the one taken by the minority of
agents [3]. In the MG system, in spite of each agent’s best
effort to choose the minority strategy, there is no guarantee
that the strategy chosen would indeed be the minority one.
Often, coherence or herd behavior, in which a vast majority of
the agents choose an identical strategy, can emerge. This can
cause large oscillations in the usage of the available resource,
leading to low efficiency for the system. In the past two
decades, there has been a great deal of interest in MG dynamics
[5–25]. In physics, MG dynamics has been shown to be highly
relevant to problems associated with nonequilibrium phase
transitions [26–28].

In a previous work [29], we studied the MG dynamics with
multiple resources in which agents are homogeneous and the
game rules are uniform, where at each time step an individual
agent has to choose one of the k (k > 2) resources or strategies
based on local information only. We found the phenomenon of
grouping, in which the resources spontaneously break into two
groups, with resources in the same group having same number
of attendees. Intuitively, this phenomenon can be explained
using a variant of the El Farol bar problem, in which there
are k bars available. Every night each individual can choose
to go to any of the bars based on information about the bar
attendances in the previous night. The number of individuals
attending any specific bar thus varies from night to night, and
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typically exhibits a kind of oscillation with time. Depending
on the probability that each agent selects a less crowded bar,
two characteristically distinct oscillating patterns of the bar
attendance can emerge, where a subset of bars exhibit one
pattern while the remaining bars belong to the other camp.
It was suggested [29] that this grouping mechanism may be
responsible for the phenomenon of spontaneous grouping of
stocks observed in real financial markets.

In this paper, we report a period-three grouping behavior
in multiple resource MG systems. In such a case, the
available resources in the system spontaneously break into
three groups, in which the number of agents attending each
group exhibits period-three oscillations, and the oscillation
patterns of different groups are 2π/3 phase shifted with respect
to each other. We derive an analytic theory to understand
the period-three phenomenon in MG systems. We also study
the bifurcations to oscillations of higher periods and the
basis of attractions of the distinct states. Considering that
the period-three behavior is fundamental in smooth nonlinear
dynamical systems [30], our finding that oscillations of odd
periods can occur in agent-based MG systems is striking.
This may have practical relevance as triple grouping has been
observed in real economical systems, e.g., the U.S. housing
market [31], and our result represents a plausible insight
for this behavior. In the presence of random fluctuations, a
period-three grouping state becomes transient, and we provide
a scaling analysis of its average lifetime using two levels of
approximation. We also provide a theoretical argument that
periodic grouping states of higher periods are increasingly
unlikely as the period becomes higher, suggesting that such
periodic states should rarely appear in real-world systems.

This work uncovers the period-three behavior, a funda-
mental phenomenon in traditional nonlinear dynamics, in MG
dynamics. The finding can potentially be interesting to workers
in both fields. Nonetheless, whether the period-three behavior
can have direct impact on human-subject strategy evolution
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remains an open issue. For example, suppose each player can
obtain global information about the game dynamics. When a
regular oscillating behavior arises, the players will exploit the
regularity spontaneously, thereby destroying the oscillations.
In real-world situations most individuals are unable to get
access to global information and thus may not be aware of any
regular oscillatory dynamics of the system in time to respond to
it. In this case, we expect the period-three behavior uncovered
in this work to be relevant, as evidenced by the phenomenon
of triple grouping observed in the U.S. housing market.

In Sec. II we describe our multiple resource MG dynamics
model. In Sec. III we present theoretical analysis and numerical
results with respect to the following three issues: the emer-
gence of period-three grouping states, the transient nature of
such states and the associated scaling behavior, and the rarity
of periodic grouping states of higher periods. In Sec. IV we
offer conclusions and discussions.

II. MULTIRESOURCE MG-DYNAMICS MODEL

The commonly studied setting of the MG model [1–3,5–25]
has two resources (e.g., the bar and home in the El Farol bar
problem). At each time step, every agent can choose one of the
two strategies, e.g., to attend the bar or stay at home. To make
a decision, an agent would rely on historical information of
bar attendance. The El Farol bar problem can be generalized
to MG dynamics with multiple resources, as follows.

Consider an MG system of N interacting agents competing
for k (k > 2) available resources/strategies, labeled by s,
where s = 1,2, . . . ,k. Each resource has a limited capacity,
so the number of agents it can accommodate has the upper
bound nc = N/k. At each round of game (or equivalently,
each time step), each agent chooses one from the k available
resources. Let ns be the attendance of a particular resource
s, i.e., the number of agents selecting s. If ns � nc, s is a
minority strategy, so the agents selecting strategy s win the
game. However, if ns > nc, resource s is too crowded so
that the strategy fails and the agents taking it lose the game.
An optimal solution (Nash equilibrium) of the system is thus
ns = nc.

In a realistic situation, agents gain information about the
dynamical state of the whole system from other agents. It
is in this sense that the agents interact with each other.
At each time step, with probability p each agent selects
one of the k available resources based on local information,
i.e., information from neighboring agents. In Ref. [29], p is
called the minority-preference probability. The probability that
an agent acts randomly is 1 − p. When agent i makes an
informed decision based on interactions with its d neighbors
in the network, the required information is all its neighbors’
strategies and, among them, the winners of the game, i.e., those
neighboring agents who chose the winning resources at the last
time step. Let � = {swin} be the set of resources selected by
i’s winning neighbors, where a resource may appear a number
of times if it has been chosen by different winning neighbors.
With probability p, agent i chooses one winning resource
randomly from the set �. Thus, the probability Ps for one
given resource s to be selected is proportional to the times
it appears in � (denoted by ηs). We have Ps = ηs/Card(�),
where Card(�) is the number of elements in �. Here the

decision making of each agent is dependent upon the outcome
of the game at the previous step as it adopts the winners’
choices based on local information. The higher probability
for agents to keep the choices won in the last round can
be considered as a conditional response behavior [32] in the
multiagent interaction setting. If the winning-resource set �

is empty, agent i will randomly select one from the k available
resources. For the case where an agent acts without any local
information (with probability 1 − p), it will choose a resource
randomly from the k available ones.

III. RESULTS AND ANALYSIS

For the case that the k resources are organized into M

groups, we denote the number of resources in group i to be
kgi

with i ∈ {1,2, . . . ,M}, and denote the number of all agents
choosing the resources in group i to be Ngi

, where k = ∑
i kgi

and N = ∑
i Ngi

. In the stable state, the attendances of each
resource in the same group i are identical [29]: ns

.= Ngi
/kgi

.
That is, the Ngi

agents in group i are equally distributed among
the kgi

resources.
The master equation underlying the MG dynamics can be

written as

ns(t + 1) = nir = (1 − p)N
1

k
, for ns(t) > nc, (1a)

ns(t + 1) = nir + nra

= (1 − p)N
1

k
+ pN

ns(t)

Nwin
, for ns(t) < nc, (1b)

where Nwin is the total number of agents in the
winning-resource group at time t , i.e., those that satisfy
ns(t) < nc. The failing resources at time t , i.e., those for
which ns(t) > nc holds, may have nonzero attendance nir

at time t + 1 due to agents’ “irrational” selections with
probability 1 − p. For a nonzero value of p, since nir < nc,
the failing resources become winning ones at time t + 1.
For a winning resource at time t , its attendance at t + 1 is
composed of two contributions: one due to the nir irrational
agents and another due to the nra rational agents, where nra is
proportional to ns(t), the number of agents taking the winning
strategies at the previous time step, for the reason that agents
spread the information about their winning strategies. This
self-enhancing process of ns persists until it increases over
nc. Thus, initiated from a sufficiently small value of ns(t), it is
possible for ns(t + 1) to be less than nc. That is, resource i can
remain to be winning for a consecutive period of time. Figure 1
shows representative periodic behaviors of period greater than
2 with consecutive winning states separated by a single failing
state. For example, a period-three behavior is observed, such
as (. . . ,w,f,w,w,f,w,w,f,w, . . .). Additionally, the social
efficiencies of different periodic states are different due to
their distinct modes of oscillation. In the following, we focus
on the period-three state by using two approaches: solutions
of the master equation and direct simulation of the MG
dynamics. We then discuss periodic states of higher periods.

A. Emergence of period-three state

For the period-three state, the k resources are organized
into M = 3 groups, and the attendances to the three different
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FIG. 1. (Color online) For an MG system of k = 3 resources on
fully connected network (FCN), time series ns(t) from simulation:
(a) about a state transition from p3g3 to p2g2 for p = 0.51, and (b) a
stable p3g3 state for p = 0.88. The system is composed of N = 105

agents.

groups exhibit the same value but alternate in time with a
2π/3 phase difference with respect to each other, as shown in
Fig. 1(b). For convenience, we denote such period-three and
group-three state by p3g3. In order for such a state to arise as
the steady state, the attendance of resources in one given group
must satisfy the equations

ns(t) = (1 − p)N
1

k
, (2a)

ns(t + 1) = (1 − p)N
1

k
+ pN

ns(t)

Nwin
, (2b)

ns(t + 2) = (1 − p)N
1

k
+ pN

ns(t + 1)

Nwin
, (2c)

with the constraints ns(t) < ns(t + 1) < nc < ns(t + 2) and
ns(t ′) = ns(t ′ + 3). There are two groups composed of win-
ning resources and one group of failing resources, and we have
Nwin = k[ns(t) + ns(t + 1)]/M .

Generally, for the case that the number of resources k is not
an integer multiple of M , the M-group state also emerges with
each group size about k/M , which is nonetheless less stable
than the states in systems where k is an integer multiple of M .

Period-three orbit. The period-three state can be observed
for cases of more than three resources, and the required
number of resources is not necessarily integer multiples
of 3. For example, we have observed that a system with
k = 16 resources can self-organize into three groups of sizes
k1 = 5, k2 = 5, and k3 = 6, respectively. Here, to facilitate
analysis, we focus on systems with k = 3 resources (labeled
by s = 1,2,3), which is the minimally required number of
resources that satisfies Eq. (2) with the periodic condition. In
this case, each of the three groups possesses just one resource:
k1 = k2 = k3 = 1. The solution of Eqs. (2) is

x1 ≡ n1(t) = n3(t + 1) = n2(t + 2)

= 1

3
N (1 − p) = nir|M=3, (3a)

x2 ≡ n2(t) = n1(t + 1) = n3(t + 2)

=
√

(1 − p)(1 + 2p)

3
N, (3b)

x3 ≡ n3(t) = n2(t + 1) = n1(t + 2)

= 1

3
N (2 + p) −

√
(1 − p)(1 + 2p)

3
N. (3c)

The existence of the p3g3 state requires x1 < x2 < nc < x3

and N = ∑
s ns = ∑

i xi . Apparently, we have x1 < nc. The
condition x2 < nc implies the requirement for the parameter
p: p > 0.5, where for p � 0.5, no p3g3 orbit can exist.
Figures 2(a)–2(c) show the dynamical states of the system
(n1,n2,n3) in the phase space of triangular representation. In
Fig. 2(b), the orbits for the state of period two and group two
(denoted by p2g2) correspond to the three line segments with
solid triangles as vertices. The p3g3 state corresponds to the
clockwise or the counterclockwise triangular orbits (blue solid

FIG. 2. (Color online) For an MG system of k = 3 resources on fully connected networks (FCNs), basins of distinct grouping states in the
triangular representation of the phase space defined by the variables n1, n2, and n3. In each panel, the blue (dark gray) and yellow (light gray)
regions denote the basins of the p3g3 and p2g2 states, respectively. The three dashed lines are the boundaries of the basins corresponding to the
constraints (4)–(6), as labeled in the inset of (a). (a)–(c) Theoretically determined orbits of the system in the states p2g2 and p3g3 for p = 0.51,
0.62, and 0.88, respectively. For clarity, in (b) the orbits of p2g2 are plotted by three line segments (with solid triangle as vertices), and in
(c) the orbits of p3g3 are illustrated by the clockwise or counterclockwise triangular orbits (solid lines with full circles or squares as vertices).
The arrowheads associated with the p3g3 orbit denote the direction of dynamical evolution. The system size is N = 104.

062917-3



DONG, HUANG, HUANG, AND LAI PHYSICAL REVIEW E 90, 062917 (2014)

lines), as shown in Fig. 2(c), with the three respective vertices
(solid circle or solid square) of the two triangles determined by
the six possible permutations of x1, x2, and x3 in Eq. (3). The
corresponding time series ns(t) of the p3g3 and p2g2 states are
shown in Figs. 1(a) and 1(b), respectively.

Basins of attraction. Figure 2 shows the basins of the two
final states p3g3 and p2g2 of a fully connected MG networked
system in the simplex representation of the three variables
(n1,n2,n3), which are obtained from iterations of the master
equations (1a) and (1b) for 104 time steps. The basin of the
p3g3 state consists of six blue (or dark gray) regions, and
that of the p2g2 state is the complementary (yellow or light
gray) region. If the initial state (n1,n2,n3) is chosen from any
of the six blue (dark gray) regions, the system will evolve
into the triangular orbit of the stable p3g3 state after a few
iterations. Specifically, the clockwise triangular orbit of p3g3

results from the initial state n1(t0) < n2(t0) < nc < n3(t0) but
the counterclockwise triangular orbit is from the state with
transposition of n2(t0) and n3(t0). The system evolving from
the initial state in the yellow (light gray) region will finally
settle into the p2g2 state, i.e., one of the three line-segment
orbits in Fig. 2(b).

The basin boundaries of the p3g3 and p2g2 marked by
the three dashed lines in Fig. 2 are determined by the three
constraints of the p3g3 with respect to the initial states, which
can be obtained analytically. Taking the clockwise triangular
orbit as an example, one constraint is that the second largest
attendance in ns is smaller than nc, i.e.,

n2(t0) < nc. (4)

In the opposite case of n2(t0) > nc, both resources 2 and 3 are
failing ones. From Eq. (1a) we have

n2(t0 + 1) = n3(t0 + 1) = nir.

The system then transitions from the p3g3 to the p2g2 states.
The constraint (4) corresponds to the basin boundary n2(t0) =
nc, as shown by the horizontal dashed line in Fig. 2 (labeled
in the inset).

The second constraint of p3g3 is that the values of ns(t0)’s
are such that the second largest variable ns obeys the following
inequality: n1(t0 + 1) < nc. In the opposite case of n1(t0 +
1) > nc, both resources 1 and 2 are failing ones. Similarly, the
system transitions from the p3g3 to the p2g2 states because of
n1(t0 + 2) = n2(t0 + 2) = nir. Specifically, from Eq. (1b), the
second constraint to the state at time t0 can be expressed by
the inequality

n1(t0 + 1) = nir + pN
n1(t0)

n1(t0) + n2(t0)
< nc,

where nir = (1 − p)Nk1/k. For the simple case of k = 3, the
solution is given by

n2(t0) > 2n1(t0), (5)

indicating that the basin boundary is determined by n2(t0) =
2n1(t0), as marked by the dashed line in the inset of Fig. 2
(labeled in the inset).

The third constraint on p3g3 is a further requirement for
condition (5); i.e., the difference between n1(t0) and n2(t0)
should not be too large. The reason is that, if n2(t0) is too large,
then n1(t0 + 1) would be too small to satisfy the constraint (5)

n1(t0 + 1) < 2n3(t0 + 1). This constraint to the initial state can
be expressed as

n1(t0 + 1) = nir + pN
n1(t0)

n1(t0) + n2(t0)
> 2nir,

which requires that the initial states,

n2(t0) <
(4p − 1)

(1 − p)
n1(t0), (6)

correspond to the third basin boundary marked by the dashed
lines in Fig. 2 (labeled in the inset). It should be noted
that, all the three constraints (4)–(6) concern the present
second-largest resource attendance in the system. Additionally,
for the three boundaries associated with (4)–(6), only the third
boundary depends on the bifurcation parameter p. The areas
of the p3g3 basins (blue or dark gray regions) increase with
p. Since the condition for the existence of p3g3 orbits is
p > 0.5, they correspond to the nonzero area of the p3g3

basins. Furthermore, the six different blue basin regions of
p3g3 correspond to the six permutations of the three resources
obeying the three constraints on the initial states, respectively.

Bifurcations. Figures 3(a) and 3(c) show the theoretically
obtained bifurcation diagrams from Eq. (1) with the minority-
preference probability p for fully connected networks (FCNs)
and regular random networks (RRNs), respectively. We see
that the attendance of resources in the p2g2 state is stable in
the whole parameter range considered, while the p3g3 state
is unstable for p < pc = 0.5 and becomes stable afterwards.
Associated with the p2g2 state, the k resources break into two
groups, with resources in the same group possessing identical
attendance. The attendance to both groups tends to oscillate
in time, but the smaller group exhibits larger oscillations. The
relative attendance ns(t)/N associated with the p2g2 state thus
consists of two pairs of lines (blue solid lines) corresponding
to the respective groups (it appears that there are only three
lines, but this is due to the fact that two bottom lines of
the two groups are degenerate). In the p3g3 state, the three
groups share the same values x1, x2, and x3, as shown in
Fig. 1(b), so there are only three distinct lines (red dashed
lines) in the bifurcation diagram. For comparison, simulation
results are also shown (open blue diamonds and red circles for
p2g3 and p3g3, respectively). From Fig. 3(a), we see that the
simulation results for the FCN structure agree well with the
theoretical result from the master equations Eq. (1). However,
the simulation results for the RRN structure do not agree well
with the predictions of Eq. (1). We note that the RRN structure
is sparse and homogeneous, in which each agent interacts
with a finite number d of neighbors (the FCN structure has
d → N ). In fact, the RRN model is more realistic as an
agent cannot obtain global information about the strategies
that all other agents took. It is necessary to modify the simple
master-equation theory for sparse network systems.

To develop a theory to predict the grouping structure
for random networks, we note that a failed agent may be
surrounded by agents from the same group (who will likewise
fail the game). In this case, the failed agent has no minority
strategy to imitate because the set � is empty and thus will
randomly select one of the k available resources. The master
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FIG. 3. (Color online) Bifurcation diagram and the correspond-
ing social efficiency with minority-preference probability p leading
to the p2g2 and p3g3 states. (a),(b) Theoretical results from Eq. (1)
and simulation results for fully connected networks; (c),(d) theoretical
results from Eq. (7) and simulation results for random networks with
d = 4. The system has N = 2.5 × 105 agents and k = 3 resources.
All simulation results are obtained for 200 time steps for both p3g3

and p2g2 states. The region for p3g3 from simulation cannot reach the
theoretical threshold pc = 0.5, because the state is only marginally
stable in the vicinity of pc.

equation (1) should then be modified as

ns(t + 1) = (1 − p)
N

k
+ Np

[
ns(t)

Nwin
− k − 1

k

(
1 − Nwin

N

)d]
,

for ns(t) < nc,

ns(t + 1) = (1 − p)
N

k
+ Np

[(
1 − Nwin

N

)d 1

k

]
,

for ns(t) > nc. (7)

Predictions from this modified master-equation set fit well
with the simulation results’ RRNs, as shown in Fig. 3(c).
The social efficiency of the system is dependent upon
the oscillatory behavior of ns(t) and can be measured
by the variance σ 2 = ∑

s〈(ns(t) − N/k)2〉t , where a larger
value of σ 2 corresponds to lower efficiency. Figures 3(b)
and 3(d) show the normalized variance σ 2/N2. We see
that the social efficiency decreases monotonously with
p, and the two different periodic states exhibit distinct
efficiencies.

B. Transient dynamics of period-three grouping states

MG dynamics in real systems are typically stochastic
processes due to intrinsic randomness and various kinds of
external disturbances. When stochastic effects are present, the
system wanders randomly about the p3g3 state, as determined
by Eq. (3). The period-three state then becomes transient with
finite lifetime. Figure 4 shows the expected lifetime T of the
p3g3 state from simulation for p ≈ pc = 0.5 for different
system sizes. We see that, as δp = p − pc is increased,
the lifetime increases exponentially. To develop an analytic
understanding of the transient behavior of the period-three
state in a concrete setting, we assume that initially the
system is located at the orbit point (x1,x2,x3). The transient
dynamics of orbits of higher periods can be developed
accordingly.

First-order approximation. Due to intrinsic randomness,
the state variables of the system, [n1(t),n2(t),n3(t)], fluctuate
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FIG. 4. (Color online) Expected lifetime T of the period-three
state p3g3 in the vicinity of pc = 0.5 obtained from simulation
(blue/dark gray symbols) and from Eq. (11) (solid curves). All
systems have k = 3 resources and their sizes are N = 104 (circles),
5 × 104 (triangles), 105 (crosses), 2 × 105 (stars), and 5 × 105

(squares). The dashed lines are respective linear fittings to the
simulation results. As indicated in the inset, the slope of the
linear fitting, or the exponent of exponential increase of T with
δp = p − pc, scales as ∼√

N .
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about their respective expected values. If the system is at the
orbit point (x1,x2,x3) at time t − 1, the mechanism for the
disappearance of the period-three state p3g3 at t is n1(t) > nc,
i.e., the present second largest value of ns violates the first
constraint (4). The probability for each individual agent to
choose resource 1 at t is

ft = (1 − p)
1

k
+ p

x1

x1 + x2
. (8)

The variable n1(t) thus obeys the binomial distribution
determined by ft as

P [n1(t)] = B[z; Z,f ] ≡
(

Z

z

)
f z(1 − f )Z−z, (9)

where z = n1(t), Z = N , and f = ft . The relative standard
deviation (RSD) is given by

σ/n1 =
√

Nft (1 − ft )/(Nft ) =
√

(1 − ft )/(Nft ),

where n1 is the expected value of n1. The probability for
n1(t) � nc, i.e., the probability for the period-three state p3g3

to survive, is

Plive =
∑

n1�nc

P [n1(t)], (10)

so Pdeath = 1 − Plive is the probability for the period-three state
to disappear. When this occurs, there is a transition from p3g3

to p2g2 states within one time step if the system is initially
located at (x1,x2,x3). As p is increased, Pdeath decreases for
the reasons that both the expected value of n1 (here is just x2)
and the RSD of n1 decreases.

The lifetime τ of the period-three state p3g3 can be
approximated by Plive. The analysis leading to Eq. (10)
indicates that the disappearance of p3g3 is due to violation
of the constraint (4) in one time step. In this case, the lifetime
of p3g3 is τ = 0. To analyze cases of longer lifetime, we
use a first-order approximation to neglect the accumulated
effect of fluctuations and assume that the system is located
exactly at the vertices of the orbit provided that it is still in
the basin of p3g3. The expected lifetime of p3g3 is then given
by

T =
∞∑

τ=0

τ (Plive)τ (1 − Plive) = Plive

1 − Plive
. (11)

Figure 4 compares the prediction of Eq. (11) with simulation
results. We see that our analysis based on the first-order
approximation captures the exponential behavior of the life-
time with p. Considering that the long-term effect of random
fluctuations may accumulate and induce the disappearance of
the period-three state, the lifetime given by Eq. (11) is thus an
overestimate.

Second-order approximation. To obtain a more accurate
estimate of the transient lifetime of period-three state, the
accumulated effect of intrinsic fluctuations must be included.
Here we use a second-order approximation that takes into
account one-step accumulation of fluctuations. As can be
seen from our analysis of basins of attraction, violation of
constraint (5) or (6) at the present time induces “death” of
the p3g3 at the next or the following time steps. One-step
accumulation of fluctuation corresponds to the first case, where

the system deviates from constraint (5) but constraint (4) is
still satisfied at t . In this case, the period-three state disappears
at time t + 1. The probability of death of p3g3 can then be
estimated.

Suppose the system is in state (x1,x2,x3) at time t − 1.
If the system is still in the period-three state at time t + 1,
n3 would represent the second largest attendance. From the
distribution of n3(t + 1), we can calculate the probability
of disappearance of the period-three state. Specifically, the
probability for each agent to choose resource 3 at time t + 1
is

ft+1 = (1 − p)
1

k
+ p

n3(t)

n3(t) + n1(t)
.

The distribution of n3(t + 1) is binomial with parameter ft+1:

P [n3(t + 1)] = B[n3(t + 1); N,ft+1].

Differing from Eqs. (8) and (9) under the first-order approxi-
mation, here the distribution of the second largest attendance
is determined by the previous state rather than the relocated
orbit point (x1,x2,x3) because fluctuations at time t have
been taken into account. The probability for p3g3 to sustain
for two continuous time steps, starting from (x1,x2,x3),
is

P
(2)
live ≡

∑
n3(t+1)�nc

∑
n1(t)�nc

P [n3(t + 1)|n1(t)]P [n1(t)].

Then the expected lifetime of the p3g3 state is

T =
∞∑

τ=1

τ
(√

P
(2)
live

)τ (
1 −

√
P

(2)
live

) =
√

P
(2)
live

1 −
√

P
(2)
live

, (12)

which is similar in form to Eq. (11) from the first-order
approximation. The numerical result from Eq. (12) diverges
rapidly as δp is increased, thus is not shown in Fig. 4. However,
the result is more accurate as compared with Eq. (11) in the
small δp region.

C. Periodic grouping states of higher periods

To be concrete, we address the existence of pkgk state for
MG systems with k resources. Similar to Eq. (3) for p3g3

state for systems of k = 3 resources, the attendances ns of
the k resources in the pkgk state satisfy x1 < x2 < · · · < xk ,
where xk > nc. Temporally, each resource undergoes k − 1
consecutive winning states with ns = x1, . . . ,xk−1, separated
by a single failing state with ns = xk . From Eq. (1b), we have
that the difference δxi ≡ xi+1 − xi = qδxi−1 is a geometric
series with ratio q = pN/Nwin. We thus have

xi = (1 − p)N

k
+

i−2∑
j=0

(
pN

Nwin

)j

δx1

= (1 − p)N

k
+ qi − q

q2 − q
δx1. (13)

The two constraints to the solution xi are

N =
k∑

i=1

xi and Nwin =
k−1∑
i=1

xi,
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FIG. 5. (Color online) Regions of parameter p in which periodic
states of periods from three to six exist, obtained from Eq. (16). The
insets illustrate the corresponding time series ns(t) of the systems
at periods three and four, respectively, with the number of resources
k = 16, N = 105.

which can be written, respectively, as,

N = (1 − p)N + qk − kq + k − 1

(1 − q)2
δx1, (14)

Nwin = (1 − p)N

k
(k − 1) + qk − (k − 1)q2 + (k − 2)q

(1 − q)2q
δx1,

(15)

from which we get the simple relation

δx1 = (1 − p)N

k
q.

The normalized form of Eq. (14) is then

1 = (1 − p) + qk − kq + k − 1

(1 − q)2

q(1 − p)

k
. (16)

The emergence of the pkgk grouping state for given p value
requires that the value of q (q > 0) obtained from Eq. (16)
satisfy xk−1 < N/k, and xk > N/k. As shown in Fig. 5,
the allowable region for the solution of pkgk grouping state
decreases rapidly as k is increased. It can then be concluded
that periodic grouping states of high period are more and more
unlikely as the period is increased, providing a plausible reason
for rarity of such states in realistic systems.

IV. CONCLUSION

A triumphant paradigm in complexity science is MG
dynamics that are relevant to a host of phenomena in social
and biological sciences [1–4]. Initially conceived through the

analysis of the popular El Farol bar problem [1], the MG model
with two resources has been studied extensively by researchers
from various disciplines [5–28]. MG models with multiple
resources were recently proposed and studied [29], where
the phenomena of resource grouping and periodic oscillations
were unveiled. The oscillations, however, were found to be
mainly of the limit-cycle type and period two as well as
its successive doubles created through period doubling like
bifurcations. A question remained as to whether period-three
oscillations can occur in multiple resource MG systems.

There are two main reasons to address this question. First,
in nonlinear dynamical systems, period-three orbits play a
fundamental role, best exemplified by the phenomenon “period
three implies chaos” [30] that first defined the term “chaos” for
the field. Indeed, for one-dimensional smooth maps that are
representative of a host of nonlinear systems, the emergence
of period-three motion immediately implies the occurrence of
an infinite number of chaotic orbits (typically transient chaos).
Second, triple grouping behaviors have also been observed in
the U.S. housing market [31]. In particular, through a detailed
analysis of the partial correlation matrix of the housing price
index in each state of the United States, Zhou et al. found
that the logarithmic return in the U.S. housing market reveals
three clusters of comparable size in the fourth quarter in
2011. This phenomenon demands an explanation from the
standpoint of complex dynamical systems. Motivated by these
considerations, we derive theoretical criteria for the emergence
of triple grouping states with period-three oscillations and
provide solid numerical support. We also investigate the
physical issue of the effect of stochastic disturbances on
period-three states and identify their transient nature, with an
analysis to elucidate the scaling behaviors associated with the
transient lifetime.

Now that various grouping states and periodic oscillations
have been uncovered in MG systems, an interesting question
is whether more complicated behaviors, especially chaotic
oscillations, may arise in such systems. We have not yet
succeeded in identifying chaotic orbits in multiple resource
MG systems. While “period three implies chaos” is well
established in nonlinear dynamics, a main difficulty here
is the drastic complication of the MG systems beyond
smooth dynamical systems, as described by, for example,
one-dimensional quadratic maps. It would be interesting to
develop methods to search and understand potentially possible
chaotic behaviors in multiple resource MG systems.
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