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Complex dynamics associated with multistability have been studied extensively in the past but mostly for
low-dimensional nonlinear dynamical systems. A question of fundamental interest is whether multistability can
arise in high-dimensional physical systems. Motivated by the ever increasing widespread use of nanoscale systems,
we investigate a prototypical class of nanoelectromechanical systems: electrostatically driven Si nanowires,
mathematically described by a set of driven, nonlinear partial differential equations. We develop a computationally
efficient algorithm to solve the equations. Our finding is that multistability and complicated structures of basins of
attraction are common types of dynamics, and the latter can be attributed to extensive transient chaos. Implications

of these phenomena to device operations are discussed.
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I. INTRODUCTION

Multistability and transient chaos are common in
nonlinear dynamical systems. Phenomena associated with
multistability such as fractal basin boundaries, riddled and
intermingled basins, and noise-induced hopping have been
extensively studied in the past three decades [1]. However,
most previous studies on multistability were focused on
relatively low-dimensional dynamical systems [2] that,
mathematically, are often described by ordinary differential
equations (ODEs). The aim of this paper is to examine
multistability in terms of complex dynamics and implications
in a class of high-dimensional, physically significant,
nanoelectromechanical (NEM) systems at the frontier of
interdisciplinary research: electrostatically driven nanowire
systems. Such systems are characterized by their small
size, extremely low power consumption, and ultrafast speed.
Applications range from Zeptogram scale mass sensing [3] and
single electron spin detection [4] to RF communication [5],
semiconductor superlattice [6,7], and many others [8,9].
We note that multistability in microscale systems has been
previously uncovered and studied, such as a mixed behavior
in nonlinear micromechanical resonators [10] and multistable
microactuators with serially connected bistable elements [11].

A fundamental goal of science is to have an experimentally
validated, predictive theory based on a set of physical laws.
With such a theory, a question of concern is whether the final
state can be predicted from an initial state chosen in the
vicinity of a basin boundary, due to the inevitable error in the
specification of the initial state. Here, the basin of attraction of
an attractor is the set of initial conditions in the phase space that
approach asymptotically the attractor, and the basin boundary
separates the initial states leading to different final asymptotic
states or attractors. In nonlinear dynamical systems, it is
common for basin boundaries to be fractal [1]. In this case,
our ability to predict the final attractor of the system may be
compromised dramatically. Whether multistability can arise in
nanosystems and its dynamical consequences on device perfor-
mance are thus fundamental issues that need to be investigated
for the design and development of nanoscale devices.
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There were previous works on nonlinear dynamics in
nanosystems, such as synchronized oscillations in coupled
nanomechanical oscillators [12], signal amplification and
stochastic resonance in silicon-based nanomechanical res-
onators [13], and extensive chaos in driven nanowire systems
[14]. However, to explore multistability and complex basin
structures in driven nanowire systems is extremely challenging
because a physically realistic model of such systems is math-
ematically described by a set of nonlinear partial differential
equations (PDEs), and it is necessary to examine solutions
from a very large number of initial states. In the traditional
framework of finite-element method (FEM) [15], the solution
is obtained by solving a matrix equation, where the matrix
elements need to be evaluated in an iterative manner, a task that
can be computationally extremely demanding especially for
physically detailed models. Taking advantage of the specific
physics associated with the driven nanowire system, we find
that, surprisingly, a large set of matrix elements arising
from the finite-element paradigm can in fact be evaluated
analytically, reducing tremendously the integration time. Our
main finding is that multistability can occur in the wide
parameter regime of the driven Si-nanowire system, and the
origin of complex basin dynamics can be attributed to high-
dimensional transient chaos permeating the phase space. A
practical implication is that, because of the intrinsic difficulty
to predict the final state of the system, and because of the
tendency for the system to occasionally switch from one
stable state to another under disturbances, parameter regimes in
which multistability and complex basin dynamics arise should
be avoided in the design and development of nanowire devices.

Our model of a physically detailed, electrostatically driven
Si-nanowire system is described in Sec. II. Transient behavior
and the dynamical mechanism of multistability are analyzed
in Sec. III with the aid of extensive frequency analysis. Basin
structures and their characterization are presented in Sec. IV,
and the ubiquity of multistability in the driven nanowire system
is demonstrated in Sec. V. Concluding remarks are offered in
Sec. VI, and our efficient numerical procedure for solving the
nonlinear PDEs of the driven nanowire system is outlined in
the Appendix.
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FIG. 1. (Color online) Schematic diagram of a driven nanowire
system. A thin, electrostatically driven Si nanowire of length L and
diameter d is suspended on a U-shaped gate. The gap between the
wire and the gate is /. The oscillations can be nonplanar, even though
the driving is along the z direction.

II. MODEL OF DRIVEN SI NANOWIRE

Consider a driven nanowire system, as shown schematically
in Fig. 1. For a beam with ends clamped and subject to large
deformation, the equations of motion are

EA
pAd’Y + EIdYY — E103)31/ =F/,

EA (1)
PpAIZ + EI!Z — Eloagz =F} +F.,

where Y (x,t) and Z(x,t) are the displacements in the y,z
directions, respectively, E is the Young’s modulus, p is the
volume density, L is the original wire length, A is the cross-
sectional area, I = mr*/4 is the cross-sectional moment of
inertia of the wire, and [j is an integral proportional to the
length increment of the wire under stretch, which is given
by Iy = fOL [(3:Y)* + (3:Z)*1dx. In Eq. (1), F, is the applied
electrostatic force on the nanowire in the —z direction due to
an externally applied electric potential between the nanowire
and the substrate. The potential has a dc component Vg, and
an ac component V,. with adjustable frequency f. The terms
F }/ and F fZ in Eq. (1) represent the viscous damping forces
in the y and z directions, respectively, which are modeled
to be proportional to the velocity of the wire. Explicitly, the
electrical force is given by [14]

e V2(1)
F, = O RELE @)
(Z +h)[In (4532)]
and the viscous damping forces are
Pd
FfP = —TSar.z), )
. 4UT

where # is the vertical distance between the clamped ends of
the nanowire and the surface of the substrate, d = 2r is the
cross-sectional diameter of the wire, P is the air pressure, and
vr = +/kgT /m is the air molecule velocity at temperature 7.
The expression of F, is valid under the condition z >> d. In this
regime, the oscillation amplitude is about one order of magni-
tude smaller than that for the onset of the pull-in effect [16,17].
Also note that the electrostatic force is a priori conservative
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and, thus, it would not lead to any net loss during a driving
cycle. In general, the Ohmic loss associated with electrical
force can be modeled [18] by a term proportional to the time
derivative of Z(x,t), as in a typical mechanical system. While
this “electrical” source of dissipation can be included in a more
accurate model of the driven nanowire system, the dominant
source of dissipation in our study is fluid (viscous) damping.
The Ohmic loss will become comparable in magnitude to
viscous damping when the size of the nanowire is significantly
reduced, say by at least one order of magnitude below the
regime of our present study of multistability. For this reason the
“electrical” dissipation term is neglected in the present work.

It has been known that surface effects [19-21] can become
significant for nanosystems due to the reduction in the surface-
to-volume ratio. However, such effects can still be modeled
using the continuum model [19], and are negligible when
the local-bending curvature is small. For example, tensile
or compressive stress can be implemented in Eq. (1) by
modifying the stretching elastic nonlinear terms in the Z and
Y directions as —Z,,[SA + EA/(2L)2L1y] and —Y,,[SA +
EA/(2L)Iy], respectively, where S is the residual tensile or
compressive stress. The tensile force can harden the beam
and enhance the linear resonant frequency. This effect can
shift the onset of nonplanar motion [22] of the nanowire and
affect the onset of chaotic motion [14]. Another issue concerns
the geometrical shape of the nanowire. In experiments or
nanodevice fabrication processes, a rectangular cross-sectional
shape may be favored over a circular one. Such an alteration
will affect the moment of inertia of the nanowire as well as
the viscous damping coefficient. However, this will not lead to
qualitatively different dynamical behaviors.

To solve Eq. (1), we begin with the standard FEM method
[15] to derive element equations using a weighted residue
formulation. We then assemble element equations to obtain
a global matrix representation of the PDE system. After the
FEM formulation, Eq. (1) is reduced to an initial value problem
(IVP), which can be solved using the standard numerical
integration methods. Specifically, we use the Runge-Kutta
fourth-order Dormand-Prince pair embedded method [23] with
adaptive step size control. Details of our method can be found
in the Appendix.

III. TRANSIENT DYNAMICS AND EMERGENCE
OF MULTISTABILITY

The driven nanowire typically exhibits transiently chaotic
motion before settling into a final steady state, which can be
seen from Figs. 2(a)-2(d), oscillations of the central point
of the nanowire in the z and y directions for two values of
the environmental pressure. Figure 2(e) shows the average
transient time as a function of the pressure P. For each fixed
value of P, the average time is obtained by using a number of
initial configurations of the wire and calculating the time that
the wire reaches the final state to within 1% for the first time.
We observe that the average time scales with the pressure as a
power law, with the exponent being approximately —1.

Insights into the inverse scaling law of the average transient
time can be gained by considering a simple mechanical
oscillator: ¥ + 2Bwpx + a)(z)x =0, where w is the angular
frequency and B is the damping ratio. The amplitude solution
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FIG. 2. (Color online) (a) and (b) For P = 0.5 atm, oscillations in
the y (blue, left) and z (red, right) directions, respectively, of the center
point of the nanowire, (c) and (d) similar plots but for P = 0.01 atm.
The wire typically exhibits transient chaotic behavior before settling
into a final state. For (a)—(d), the driving frequency is f = fp. (€) Av-
erage transient time as a function of pressure. The threshold used for
calculating the transient time is 1%. Note that all Y and Z values are
represented in meters, if not specifically mentioned otherwise.

follows an exponential decay form: exp(—t/7), where t is the
characteristic time. For damped oscillations, we have t ~ 1/8.
Since pressure P is directly proportional to the damping
ratio, we have T ~ 1/P. A similar effect can occur through
variations in the temperature, as the quantity 1/+/7 plays a
similar role to P in the dynamical evolution of the nanosystem.

In general, the role of damping due to collision with
air molecules is important to the final vibration mode of
the driven nanowire system. We find that, at low pressure
(in contrast to ultrahigh vacuum), due to multistability and
complex basin dynamics, the vibration amplitude can show an
extreme sensitive dependence on the driving frequency of the
external electrical force. At room conditions (~300 K, 1 atm),
such a sensitive dependence is replaced by extensively chaotic
motion of the nanowire [14]. In particular, the nanowire can
exhibit a cascade of period-doubling bifurcations to relatively
small-size chaotic attractors as a parameter, e.g., the magnitude
of the ac component of the driving force, is increased. When
the parameter exceeds a critical value, the small chaotic
attractors can merge to generate extensive chaos, which has
been suggested for potential applications such as extremely
high frequency pseudo-random number generators [14]. Since
the aim of the present work is complex dynamics associated
with multistability, we focus on the low-pressure regime.

To demonstrate multistability, we investigate the frequency
response of the nanowire system. The natural oscillation
frequency of the nanowire can be estimated by using its me-
chanical and geometrical properties: fo = 3.56\/EI/(pAL*).
This formula gives fy = 16.84 MHz for the typical set of
parameters indicated in Fig. 3. However, this estimated value
fo is only to within an order-of-magnitude accuracy and there-
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FIG. 3. (Color online) Frequency response of nanowire at pres-
sure P = 0.01 atm. The motion of the center of the nanowire is
monitored and the time-averaged amplitudes after the system reaches
a steady state are computed. The average amplitudes in the y and
z directions versus the driving frequency are shown in (a) and (b),
respectively. The initial conditions are sinusoidal spatial functions
with zero velocities in both y and z directions, and are fixed for
all simulations at different frequencies. The parameter setting is:
E =169 GPa, p = 2332 kg/m?>, Vge =5V, Ve =1V, L =3 um,
d =20nm,and h = 0.2 pum.

fore should not be taken as the true intrinsic frequency. The
pressure is set to be 102 atm, which is much lower than that
under room conditions but still far above that associated with
ultrahigh vacuum condition, facilitating experimental study of
the nanowire dynamics. Figure 3 shows simulation results for
both in- and out-of-plane frequency responses, where extreme
amplitude fluctuations are observed, implying multistability.
In fact, a frequency analysis reveals wide parameter regions in
which multistability can arise, as we now describe.

To carry out a frequency analysis to uncover the dynamical
mechanism for multistability in the driven nanowire system,
we calculate the frequency response of the wire at typical
low-pressure (P = 0.01 atm) and normal-pressure (P =1
atm) values, as shown in Figs. 3 and 4, respectively. Both
figures show the average amplitudes as a function of the
normalized frequency f/fo in the y,z directions after a
transient time. Here the average is carried out in a large time
interval. In Fig. 3, both y and z amplitudes exhibit an extreme
type of fluctuations as the frequency is changed, indicating
that an arbitrarily small change in the frequency can lead to
a characteristically different final state. This provides strong
evidence for multistability. (Further support for the coexistence
of multiple states can be obtained by examining the phase
diagram, as we will discuss below.) Compared with the case
of low pressure (Fig. 3), the frequency responses under normal
pressure are considerably smoother due to the relatively strong
dissipation caused by collision with air molecules, as shown
in Fig. 4. Apparently, for most frequency values, there is only
one state remaining after the transient phase. We note that, in
Fig. 4(a), the peak about f/fy = 3, marked by the golden
arrow, is the frequency that a previous work [14] used to
identify the transition between planar and nonplanar motions
in the y direction (not the driving direction). This means
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FIG. 4. (Color online) Frequency response of nanowire at pres-
sure P = 1 atm. Other parameters are the same as in Fig. 3.

that this peak can be turned on and off just by increasing
or decreasing the ac component of the driving force. One
cannot expect the same behavior to occur for the first peak
(at f/fo = 2) or the third peak (at f/fy ~ 6.3), because they
correspond to resonances associated with the y and z motion
and the magnitude of the external force will simultaneously
affect the y and z responses. As a result, the oscillation mode
will consistently be nonplanar near these frequency values.
On the contrary, the second peak in y does not correspond
to a resonance in the z motion [Fig. 4(b)]. In fact, the
amplitude in the z direction is always finite (not affected by
the driving magnitude significantly), while the amplitude in
the y direction can be switched on and off. A comparison
between the low-pressure and the normal-pressure frequency
responses suggests that all resonances in the normal-pressure
case are actually present in exactly the same position as in the
low-pressure case. One can thus think of the high-pressure
case as a derived state from the low-pressure regime by
continuously increasing the pressure, and this can be explained
by the fact that dissipation tends to destroy higher-frequency
oscillations. An immediate conclusion is that, in a low-pressure
environment, the driven nanowire system can exhibit high-
dimensional transient chaos, associated with which multistable
states occur typically.

To provide stronger support for the existence of multista-
bility in the driven nanowire system, we use the method of
continuous frequency scan in which a simulation starts from
an initial frequency value and continues while incremental
changes to the frequency are applied adiabatically in the
sense that the frequency changes only when a steady state is
reached. Insofar as there is a finite volume in the phase space
surrounding the steady state (attractor), the trajectory tends to
remain in the vicinity of the attractor when the frequency is
changed adiabatically. The wild fluctuation patterns observed
in Figs. 3(a) and 3(b) should then disappear. Nonetheless, some
small peaks and valleys in the frequency response can still
remain, due to the extreme instability at such locations. In our
simulation, we start from the static sinusoidal initial condition
in both the y and z directions, and then keep increasing the
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FIG. 5. (Color online) Continuous scan of frequency response
of nanowire at low pressure P = 0.01 atm, where the frequency is
adiabatically increased or decreased during the simulation and, for
each fixed frequency, the average amplitudes associated with a steady
state are calculated. (a) and (b) show responses in the y,z directions,
respectively. In both panels, blue (thick dashed) lines represent
forward frequency scan from 0.1 to 10, red (solid) lines correspond to
backward scan where the frequency is reduced adiabatically from 10
to 0.1, and black (thin dashed) and cyan (dash-dotted) lines both stand
for forward scan from about 3.6 to 6, but a smaller frequency step size
is used for the cyan (dash-dotted) lines. The inset of (b) is the zoom-in
view of frequency around 4.14, where fourfold stability is observed.

frequency from 0.1fy to 10fy (forward scan, blue dashed
lines in both panels of Fig. 5). When the frequency reaches
the maximum value 10f), we reverse the direction of the
scan process (backward scan) by decreasing the frequency
until it returns to 0.1 fy (indicated by red lines). Two more
shorter forward scans are also performed starting from around
f/fo~3.51t0 f/fo =~ 6 (as shown by black and cyan lines
in both panels), but with different frequency resolutions. At
f/fo = 4.14, we observe a fourfold stable region as depicted
in the inset of Fig. 5(b). It is apparent from these results that
stable attractors coexist in a wide parameter regime.
Emergence of multistability in the driven nanowire system
can then be explained, as follows. For a common class of
electrically driven microelectromechanical systems, a previous
work based on a detailed bifurcation analysis of areduced ODE
model revealed that bistability can also be quite common [24].
In such a case, the two coexisting states are typically associated
with high and low energy, respectively. Our driven nanowire
system is an infinite dimensional dynamical system. In this
system, the characteristic frequency response associated with
bistability is a mirrored hysteresislike peak, where forward
and backward scan lead to relatively high- and low-energy
states, respectively. Figure 6 shows the phase-space diagrams
associated with the Z variable (Z versus v,) for different
frequencies. Figures 6(a), 6(g), and 6(h), for example, show
period 3, period 2, and a different period 3 behaviors, respec-
tively, corresponding to the three small peaks around frequency
f/fo = 1. Label “b” marks the small valley present in all
frequency response diagrams at the start of the first resonance.
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FIG. 6. (Color online) Phase diagrams (z versus v,) for different
frequencies. The central panel compares results from the forward
and backward scans to the separated frequency response of the
nanowire. Multiple mirrored, hysteresislike bistable regions are
observed. Phase-space diagrams for z are plotted at locations labeled
by letters, as shown in the upper and bottom rows.

Some phase diagrams indicate chaotic motions. The central
panel compares responses from the forward and backward
continuous scans to the separated frequency response of the
nanowire. We observe multiple, mirrored, hysteresislike peaks
at different resonant frequencies. The key feature is the overlap
among the bistable frequency responses, which naturally leads
to multistability. For example, the fourfold stable region in the
inset of Fig. 5 is formed by the overlap of the two largest
bistable regions in Fig. 6. The two states with the largest
amplitudes correspond to the mode similar to Fig. 6(c), and the
other two correspond to Fig. 6(d) and 6(e), respectively. From
these diagrams and their frequency values, we can conclude
that whenever there is a peak or valley emerging in the
frequency response function, the system is at the boundary
separating different basins of attraction where the system
behavior is extremely difficult to be predicted. There are
multiple directions or basins that the system can evolve into,
and the typical phenomenon when the system is undergoing
such change, as indicated by the phase diagrams, is period
increasing, and quite frequently, chaotic motion will emerge.
This is in fact transient chaos on the boundaries of the different
basins.

IV. BASIN STRUCTURE AND CHARACTERIZATION

A natural question in the presence of multistability concerns
the basin structure, because each coexisting stable state or
attractor has its own basin of attraction. For the electrically
driven nanowire system Eq. (1), a set of two coupled nonlinear
PDEs, a difficulty is that the phase-space dimension of the
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system is infinite. In order to compute and visualize the basin
structure, a two-dimensional representation of the phase space
is desirable. While there are an infinite number of initial
configurations for the entire wire, we can limit the choices
of the initial configurations to those with spatially sinusoidal
shape. For example, the initial z profile Z(r = 0,x) and its
velocity V,(¢ = 0,x) can be chosen as

Z(t =0,x) =zosin(mwx/L), V,(t =0,x) = v,sin(wx/L)

“)

for x € [0,L]. Fixing Z(t = 0,x) and V,(t = 0,x) as in Eq. (4)
and further fixing V,(t =0,x) =0, we see that (zg,v;0)
defines a two-dimensional initial-condition plane. Each point
in the (zg,v;0) plane thus corresponds to a particular initial
configuration of the wire, and we can compute to which
attractor it leads to.

We choose the frequency to be f/fy =4.14, where a
fourfold stability region is observed. The initial configurations
are randomly chosen within the rectangular two-dimensional
representation of the phase-space region defined by zp €
[—0.6A4,0.6h] and v, € [—60,60]m/s for the central point of
the nanowire. The basin structure is plotted in Fig. 7(a), where
different colors indicate the average amplitudes associated
with different final attractors. In Figs. 7(b)-7(d), the selected
phase-space regions are successively magnified up to 10°
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FIG. 7. (Color online) For initial configuration chosen according
to Z(t =0,x)=zpsin(rx/L) and V,(t =0,x) = vsin(wx/L)
(x € [0,L]) and normalized frequency f/fy = 4.14, representative
basin structures and successive magnifications, where the basins of
different attractors are distinguished by different colors/gray levels in
(a)—(d). (e) is a histogram of the amplitude associated with possible
final states, where there are three large peaks, indicating at least
three coexisting attractors. (f) shows the algebraic scaling of the
probability of error in the prediction of the final attractor, f(e), with
&, the error in the specification of the initial condition. The scaling
exponent is a & 0.009.
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times, where qualitatively similar structures are observed. The
coexisting attractors can also be implied from Fig. 7(e), a
histogram of the amplitude associated with the possible final
state. In particular, for each initial condition, we let the system
evolve, record the time-averaged amplitude associated with
the final oscillatory motion, and construct a histogram of the
values of the time-averaged amplitude. We observe three large
peaks in the histogram, indicating that most initial condi-
tions lead to trajectories approaching asymptotically to these
attractors.

The intermingled basin structure that appears to be invariant
when successively smaller phase-space regions are examined
indicates the difficulty to predict the final attractor from initial
conditions with finite precision, because there are regions with
the property that, for any initial condition that goes to one
attractor, there are initial conditions arbitrarily nearby, which
lead to different attractors. The degree of unpredictability can
be quantified by calculating the probability that a pair of
slightly different initial conditions lead to distinct attractors.
In particular, let ¢ be a small difference in the initial-condition
pair and f(e) be this probability. As ¢ is decreased, we
expect f(¢) to decrease and, in general, we have f(g) ~ &%,

8

x 10
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where 0 < « < 1 is the so-called uncertainty exponent [25].
A representative example of the scaling behavior of f(¢) is
shown in Fig. 7(f), where we obtain & ~ 0.009. The near-zero
value of the uncertainty exponent indicates an extreme degree
of difficulty to predict the final attractor. For example, if ¢ is
reduced by a factor of one million (which means that the pre-
cision in the specification of the initial condition is increased
by six orders of magnitude), the probability of prediction error
is reduced only by a factor of (10%)%%%° ~ 1.1—hardly any
change. Such severe degree of unpredictability of the final state
can also occur in low-dimensional chaotic systems, typically
those with some kind of symmetry [1].

The near-zero value of the uncertainty exponent implies
extensive transient chaos in the system. To argue for this,
we recall the phenomenon of fractal basin boundaries in
low-dimensional dynamical systems [25]. For a system whose
phase-space dimension is N, if the basin boundary is smooth,
then its dimension is N — 1 (e.g., a smooth boundary in a
two-dimensional phase space is a one-dimensional curve). For
fractal basin boundaries, the dimension typically assumes a
value between N — 1 and N. There is mathematical proof [26]
that in smooth dynamical systems, the dimension Dp of the
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FIG. 8. (Color online) Comparison of frequency responses for the same system with different dc voltages (V). The left and right columns
represent the frequency responses in the y and z directions, respectively. From top to bottom row, the dc values are 1,3,5,7,9 V, in order. All
simulations are performed using parameters: V,, =1V, P =0.01 atm, T = 300K, L =3 um, h = 0.2 um, d = 20 nm.
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fractal basin boundary is related to the uncertainty exponent
as: Dg=N —«a. For « 0, we have D~ N, which
means that the fractal boundaries permeate the entire phase
space. Dynamically, it has been established that fractal basin
boundaries are due to transient chaos on the boundaries [25].
That the boundaries permeate the phase space stipulates that
transient chaotic behavior also occurs in the entire phase space.
It is in this sense that we say that transient chaos is extensive.
In our nanowire system, the phase-space dimension is infinite,
but the emergence of multistability and basin boundaries with
near-zero uncertainty exponent can still be taken as strong
indication that the underlying transient chaotic behavior is
extensive.

A physically important issue concerns the effect of noise.
For a nanowire system in a realistic operating environment
(e.g., modest pressure and room temperature), the dominant
noise sources are thermal fluctuations and pressure instability.
As for low-dimensional systems, we find that noise can
induce switching among the multiple coexisting states. In fact,
similar behaviors were observed in another nanoscale, high-
dimensional system: the semiconductor superlattice [6,7].

V. UBIQUITY OF MULTISTABILITY IN DRIVEN
NANOWIRE SYSTEM

We have demonstrated the emergence of the multistable
states in the driven nanowire system, and elucidated the un-
derlying dynamical mechanism. A question is how ubiquitous
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multistability is in nanosystems. Here we address this question
by considering variations in several parameters, with the result
that multistability can be expected to occur commonly in
nanoscale systems.

We first consider the effect of varying dc voltage. As shown
in Fig. 8, varying dc voltage can shift the unstable frequency
regions. Moreover, a larger dc voltage can lead to stronger
fluctuations at high frequency, due to the increase in the
total driving energy input. For example, for Vg, = 1, most
unstable/frequency sensitive states can be found in the low-
frequency regime, but small amplitude fluctuations occur in the
high-frequency regime. As V. is increased, higher-frequency
states with larger amplitudes emerge and, at the same time, the
low-frequency region becomes more stable, typically settling
into one of the original states. This results in a shift of the
highly unstable regions towards higher frequency values. Also,
the peaks become sharper on edges for increased dc values.

Besides ac and dc voltages, it is also of interest, especially
from the point of view of experimental study, to vary the
system-design parameters such as the dimension of the
nanowire or the gate. Here, we present results of changing
two of these key parameters, the gate trench height # and
the diameter of the nanowire d. The two parameters both
appear in the formulation of the driving force, and thus should
be considered concurrently. Because our formulation of the
driving force is based on the capacitance expression of the
capacitor from the nanowire segment in conjunction with
the gate electrodes, a valid force expression requires & >> d.

x 10 x 10
4 4 h =200 nm 4 h =200 nm
g d=20nm d=30nm
>2 2 /”ﬂwm w 2
0 0 0
~4 4 4
0 0 0
0o 2 4 6 8 10 0 2 6 8 10 0 2 4 6 8 10
x 10 x 10 x 10
4 4 h =300 nm 4 h =300 nm
= d=20nm d=30nm
Se 2 2
e ...__/"lu-"”_...___..____
0 0 0
~4 4 4
Ne QJMWWHW Mo ZJAMML et
= )
0 0 0
0 o 0 2 6 8 10 0 2 4 6 8 10
x 10~ x 10~ x 10~
4 h =400 nm 4 h =400 nm 4 h =400 nm
% d=10nm d=20nm d=30nm
e . LM
0 0 0 A MMJIM
~4 4 4
N2 2 2
0 0 0
0 2 4 6 8 10 0 2 6 8 10 0 2 4 6 8 10

FIG. 9. (Color online) Effect of gate trench height # and the nanowire diameter d on the frequency response. From top to bottom row,
h = 200,300,400 nm, respectively. From left to right column, d = 10,20,30 nm, respectively. Other parameters are Vge =5V, V,e =1V,

P =0.01 atm, T = 300 K, wire length L = 3 pum.
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FIG. 10. (Color online) Extreme case of hardening wire fre-
quency response. Except & =400 nm, and d =40 nm, other
parameters are the same as in Fig. 9.
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Taking these into consideration, we study the oscillations of
the system for a series of combinations of (4,d) pairs, as shown
in Fig. 9. We see that, an increase in either & or d can stabilize
the system. However, a larger value of 4 tends to stabilize the
oscillation in different frequency regions uniformly, whereas a
thicker wire (larger values of d) tends suppress high-frequency
oscillations. Figure 10 shows an extreme example of the beam
hardening behavior, where most multistable states, especially
those with large amplitudes, disappear. Another interesting
behavior is that, due to the hardening effect, in the Y direction,
the beam stabilizes at about 10 nm instead of zero vibration
amplitude as in other cases. In addition, multiple states of
smaller amplitudes are present in the Y oscillations.

Finally, we discuss the effect of varying the environmental
pressure. As mentioned, the normal pressure (P = 1 atm)
regime can be regarded as an extension from the low-pressure
regime, where the final stable state is a continuation of one of
the multiple stable states under low pressure. From Fig. 11
we can see how high-frequency oscillations are gradually
destroyed as the pressure is increased. An implication of
potential application from such a “survival” process would

AYen

P = 0.005 atm

x107°

10

x107°

Avn

8

al P =0.01 atm | al P =0.01 atm |
> o} N 2
0 . : : : Ot . . . :
o ., 2 4 6 8 10 o ., 2 4 6 8 10
x 10 x 10
al P =0.02 atm | al P =0.02 atm |
> of N 2
0 . . ! . ok . . ; :
0 s 2 4 6 8 10 0 s 2 4 6 8 10
x 10 x 10
al P =0.05 atm | al P =0.05 atm |
o} ||| 1 N2
0 . : - 0] "
0 2 4 6 8 10 0 2 4 6 8 10
/1, f/f

FIG. 11. (Color online) Comparison of frequency responses for

the same system with slightly changing pressure (P). The left and

right columns represent the frequency responses in the y and z directions, respectively. From top to bottom row, the pressure values are
0.005,0.008,0.01,0.02,0.05 atm, in order. All simulations are performed using parameters: Voo =5V, V,e =1V, T =300 K, L =3 um,

h=0.2pum,d =20nm.
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be to use pressure as a control parameter to select the relative
proportion of the multistable states.

VI. CONCLUSION

To summarize, we focus on the working regime in between
room conditions and ultrahigh vacuum. This regime can
be realized relatively readily in experimental studies, in
which we find a number of interesting dynamical phenomena
such as multistability, complex basin structures, leading to a
fundamental difficulty in terms of prediction of the final state,
and extensive transient chaos as the dynamical origin of the
complex basin structure.

A possible experimental scheme to test the findings of this
paper is as follows. Due to the extensive nature of transient
chaos leading to basin boundaries permeating the phase space,
random perturbations can cause the system to “hop” from one
attractor to another in an intermittent manner. Experimentally
one can add a stochastic voltage signal to the sinusoidal driving
and monitor the motion of the nanowire. The occurrence of
intermittency, i.e., the system’s exhibiting one type of periodic
motion for a finite duration of time and then switching to
another, is an indication of multistability. Persistence of the
intermittent behavior, regardless of how the amplitude of
the stochastic voltage signal changes, implies complex basin
structure and extensive transient chaos.
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APPENDIX: EFFICIENT FINITE-ELEMENT METHOD FOR
ELECTROSTATICALLY DRIVEN SI NANOWIRE

The physically detailed model of electrostatically driven
Si nanowire is a set of nonlinear PDEs with integrals of
the dynamical variables. While the system can be solved
using the standard finite-element method (FEM), where the
partial derivatives, the integrals, and the nonlinear forces
are evaluated completely numerically, the computations turn
out to be extremely intensive, prohibiting systematic and
comprehensive analysis of the model. We realize that many
quantities associated with the FEM for this class of systems
can in fact be evaluated analytically, which can help reduce the
computation significantly. Motivated by this, we have devel-
oped an improved FEM, which entails an efficient procedure
that combines analytic evaluation, numerical discretization and
integration to solve the nonlinear PDE system. Below is a
description of the mathematical formulation of our method.

Finite-element formulation. To formulate a finite-element
(FE) solution, we rewrite Eq. (1) in the following compact
form:

—Y —+ 6‘1Y —+ CzYW/ =+ C3I()Y” = 0,
L (Al)
—Z+aZ+ CQZ//// + C3I()Z// +F,=0,
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Y element e

clamped

LTe—1 Te \ TN = L
Y (e, t)

xo = (K1 , T2

FIG. 12. (Color online) Schematic picture of element division
using the finite-element method.

where primes and dots represent derivatives with respect to x
and ¢, respectively, the coefficients are

w Pd El E

= — ) (&)
4pAvr pPA

(A2)

and the electrical force F, has been normalized by the
factor 1/(pA). The basic steps in a typical FE formulation
are: discretization, choosing approximation model and basis
functions, deriving element equations using the weighted
residue method, assembling element equations to get the global
matrix representation of the problem, and solving a set of initial
value problems (ODE set).

Discretization. First we divide the x axis equally into N
element ranges, with the element index e running from 1 to
N, as shown in Fig. 12. For each element e, we have x €
[xe—1,x.] and x, — x,_1 = € = L/N. Because the two ends
of the wire are clamped, we have {Y,Z}({0,L},#) =0, and
{Y’',Z’}({0,L},t) = 0, which are the boundary conditions for
generating a unique solution.

Basis functions. To preserve the physical condition of
the continuity of beam deflections, the nodal displacement
values must be matched between the neighboring elements.
To obtain physically correct results that require smoothness,
a second-order approximation can be used so that both the
displacement and the slope of the wire at the nodal points
are continuous between neighboring elements. Consequently,
for element e, at least second order or four degrees-of-
freedom, i.e., Z(xe—1),Z'(x0—1),Z(x.),Z'(x.), at both ends
of the element, are needed. In this setup, each node has
two unknown values, and there are 2(N — 1) unknowns in
total for the whole nanowire (excluding the two clamped
ends).

Having obtained the nodal values of element e, we can use
the interpolation approximation model, for example, to express
Z(x,t) as

4
Zx.) =) ¢ilngi(t) = 9" q".

i=1

(A3)

where ¢;(x) are the basis functions to be computed, and
q°(t) = [Z(Xo1,), Z' (Xe—1,1), Z(Xe 1), Z' (x,,)]T is the un-
known vector for element e. To compute a general set of
basis functions, we let X = x — x._1, X € [0,£], and s = X /¢,
s € [0,1]. Assuming that each element has four degrees-of-
freedom, we can express the displacement in terms of a
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third-order polynomial, as follows:
z® =01 © & BPllag a o a5]" =x4°,

s0 Z¢(x) = X'A¢. Using the expression for Z¢(x) and Z¢'(X),
and setting ¥ = 0,¢, we obtain the following expression of g¢
in terms of A°:

100 0
. o1 0 o], .
=1 ¢ 2 p|A =84
0 1 2¢ 3¢2

The displacement Z¢(X) can then be written as

Z¢(%) = XA° = XB~'¢°. (A4)

Comparing Egs. (A4) with (A3), we find that the basis func-
tions in terms of s are ¢ = XB~! = [1 — 35 + 253,€s5(1 —
2s + 52),5%(3 — 25),85%(s — D]".

Element equations. We use a standard weighted-residue
method in finite-element analysis to derive the element
equations, where the selection of weight functions is key. We
use the Galerkin’s formulation [15], where the basis functions
are selected as the weight functions. The method requires, for
element e, the following:

Xe
/ (=Z 4+ c1Z+ 2 Z" + 310 Z" + F)gi(x)dx =0,
Xe—1
(AS5)
fori = 1,2,3,4. Integrating by parts, we have

/ " 240

e—

= 01/ ‘ Z¢i(x)dx —l—cz/ ) Z" ¢! (x)dx
Xe—1 Xe—1

X,

+cl (Z/”¢l‘ _ Z//¢l/)

"ty / 2" i (x)dx
1 Xe—1

Xe—

+ / " Fads. (A6)

—

Substituting Eq. (A3) into the above equation, we reduce it to
the following matrix representation:

M{§¢ = ciM{q° + (M5 + c3loM5)q° + wen T fow (A7)

where the elements of the matrices are given by

MiG,j) = f $:(0); (¥)dx,
M5, j) = / ¢/ (1) (x)dx,
MG j) = f 9:(0)) (x)dx,
My, j) = f 9/(r))(x)dx.

Note that element M4, which is used for calculating [y, is
listed here for completeness. While the integration range is

PHYSICAL REVIEW E 87, 052911 (2013)

element dependent, the basis functions are universal. The
matrix elements can be found by using the normalized
variable s for integration. The term ¢i(Z"¢; — Z"¢))[}_ is
the generalized force vector for the element, which can be
expressed as

feen = [Q1.P{. Q5. P5]T,

where Qf = —Z"(x.—1), Q5 =2Z"(x.), P =—Z2Z"(x,-1),
Py = —Z"(x,), and subscripts 1 and 2 are for the left and right
nodes, respectively. These forces are also required to satisfy
the interelement continuity condition if no external forces,
as in our case, are applied on the connecting nodes. In fact,
the general forces of neighboring elements e and e + 1 must
satisfy

054+ 0 =0, e=12,....N—1, (A8)
and so does P. These conditions can simplify the next step,
namely, assembly, substantially.

The last term in Eq. (A7) is the external force vector f,.
The integral term on the external force F,(x,f) can be com-
puted either by direct analytical integration or approximated
method, depending on the exact form of the force and its
behavior over the whole domain. If the integral cannot be
evaluated analytically, we can use numerical integration in
case the force has large deviation over a single element, or we
can simply expand the force if it is a spatially slowly varying
function. For our nanowire system, the electrostatic force F,
is in fact a slowly changing function with respect z, because of
the condition & >> z. Thus, we can use linear approximation
of F,

Fo(s,t) = (1 = ) f1(1) + sf2(0), (A9)
where f) and f, are the forces exerted on the two nodes
of the element. The great advantage is that the integrals in
the external force vector can be analytically calculated since
they are over polynomials, making the whole computational
process extremely efficient.

Assembly. Having obtained the 4 x 4 matrix representation
of element equations, Eq. (A7), we can assemble them in a
proper way to derive the global equation of motion by using
the fact that each node x; (i # 0,N) is shared by two elements.
In the matrix representation, adding the contributions from the
two neighboring elements on one shared node is equivalent
to shifting a direct sum of element matrices Mf/s (i =1,2,3),
which can be expressed as

N
MM = (@91[:211 M;) @ 0y

N

+0,® (@2 M) ®0__iyv,  (ALO)
for i =1,2,3, where MiAll isa2(N + 1) x 2(N + 1) global
assembled matrix for M?, and 0; is a j x j zero matrix.
This assembly equation means the following: letting the 4 x 4
matrix M; be the upper left block of the assembled matrix
MM then increasing both row and column indices by 2,
and adding M; again. We then repeat this process until Ml.All
reaches the desired dimension, 2(N + 1) x 2(N + 1).
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Next, we assemble the general and external force vectors
into the corresponding global quantities by using the same
technique. Using the continuity condition Eq. (A8) and the
approximation Eq. (A9), we have, for the general and external
force vectors, the following:

- 00
P
0

an_ | .
Jaen = : and

i £(7 fo +3£1)/20 T
23 fo+2£1)/60
LB fo+14f1 +31)/20

(- fo + f2)/30

fA = . (ALD)
LB fn-—+ 14fN 1+3/n%)/20

(—fn-a+ fv)/30

LB fn-1+7fn)/20

L (=2fy-1 —3fn)/60

where we have used global subscripts from O to N. Notice
that the nodes 0 and N represent the two clamped ends of the
wire, so their displacements and slopes are always zero. As
mentioned earlier, we have only 2(N — 1) unknowns defined
as the assembled g¢'s
Z=12\.2,,22.2Z),....Zy-1.Zy 1",

and Y can be defined in a similar way. The matrices MA!" and
the force vectors g’g}, Al should be modified accordingly.
As shown in Eq. (A11), the first and last two components of
the vectors should be cut off so that

fen =0, fouD = fRlG+2), 1<i <2V =),
The first and last two rows and columns should be cut off for
Ml-AH,

My (i, j) = MM +2,j+2)

for k=1,2,3 and 1 <i,j < 2(N — 1). After assembly and
modification, we convert Eq. (A7) into the following global
matrix form of equations of motion:

Y = ClY + (CQMfle +6'3[0M171M3)Y, (A12)
Z = c12+ (CZMI_IMZ +C310M1_1M3)Z+M1_Ifexl.

Calculation of Iy. In Eq. (A12), the only unknown coeffi-
cient is Iy, which is twice the change in the original length of
the nanowire under nonlinear stretching. We can rewrite I; as
Iy = IOY + IOZ, where

L
1 = / (3, Z2)%dx.
0

PHYSICAL REVIEW E 87, 052911 (2013)

To calculate this integral, we substitute the basis expansion of
Z(x,t), Eq. (A3), into 1Z, and obtain

If = Z / Z ¢l (x)g g dx

a]l’jl

4
= Z (/ $; (X)) (x)dx) qu q;

Xe—

Z M, J)Zq, g5

Similarly, using the expansion Y¢(x,t) = Z, L Di(X)pi(t), we
can compute /) . Finally, we obtain

Z MG, J)Z aiqs + pips)-

i,j=1

(A13)

Solving the initial value problem (IVP). Equation (A12)
represents an initial-value problem (IVP), which can be
solved using the standard numerical integration methods. For
example, in the absence of random fluctuations, we can use
the Runge-Kutta fourth-order Dormand-Prince pair embedded
method [23] with adaptive step size control to solve the
following transformed first order ODE set:

Y
d |Y!'
dt | Z
Zt
Yt
C]YI + (Cle_le + C3I()MI_IM3)Y
caZ' + (C2M1_1M2 + C310M1_1M3)Z + Ml_lfext
(Al14)
with the initial condition
Y (0) Yy
Y'(0 Y!
O _ | Yo . (A15)
Z(0) Z
Z'(0) Z;

We remark that, in conventional molecular-dynamics sim-
ulations, due to the requirement of energy conservation,
relatively simple, second-order implicit methods such as the
Verlet leapfrog algorithm are usually used. However, more
sophisticated, fourth-order methods such as the traditional
Gear algorithm [27] exist for integrating Hamiltonian systems.
The improved fourth-order method developed by Martyna
and Tuckerman [28] retains the basic properties of the Gear
method but is both symplectic and time reversible. Our driven
nanowire system, however, is dissipative, so a symplectic
reversible integrator is not necessary. We choose the standard
fourth-order Runge-Kutta method due to its high stability and
efficiency. When random fluctuations are present, Eq. (A12)
can be solved by the standard second-order method for solving
stochastic ODEs [29].
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