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Given a complex networked system whose topology and dynamical equations are unknown, is it possible to
foresee that a certain type of collective dynamics can potentially emerge in the system, provided that only time-
series measurements are available? We address this question by focusing on a commonly studied type of collective
dynamics, namely, synchronization in coupled dynamical networks. We demonstrate that, using the compressive-
sensing paradigm, even when the coupling strength is not uniform so that the network is effectively weighted,
the full topology, the coupling weights, and the nodal dynamical equations can all be uncovered accurately.
The reconstruction accuracy and data requirement are systematically analyzed, in a process that includes a
validation of the reconstructed eigenvalue spectrum of the underlying coupling matrix. A master stability function
(MSF), the fundamental quantity determining the network synchronizability, can then be calculated based on the
reconstructed dynamical system, the accuracy of which can be assessed as well. With the coupling matrix and
MSF fully uncovered, the emergence of synchronous dynamics in the network can be anticipated and controlled.
To forecast the collective dynamics on complex networks is an extremely challenging problem with significant

applications in many disciplines, and our work represents an initial step in this important area.
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I. INTRODUCTION

The most amazing feature of a complex dynamical system
consisting of a large number of interacting units (or com-
ponents) is the emergence of collective dynamics. Indeed,
it is this feature of “more is different” [1] which makes
complex systems extremely interesting and the study of
collective dynamics fundamentally important to many natural
and technological systems. Given a complex system, if the
underlying mathematical rules or equations are completely
known, then in principle the possible types of collective
dynamics in the system can be predicted and studied, and
most existing works on complex systems are of this nature. In
realistic applications one may encounter the situation where,
for a complex system of interest, the local system equations
and the interactions among the components are not known
a priori but only a set of time series are available. Can one
still forecast or anticipate whether a certain type of collective
dynamics can potentially occur in the system?

Even when the system equations of a complex system are
known, it is still extremely challenging to predict, investi-
gate, and explore the emergence and evolution of collective
dynamics. In order to address the issue of time-series-based
prediction of collective dynamics, one must focus on a
relatively well known class of such dynamics. We shall then
consider synchronization [2-4]. Specifically, we shall study
coupled-oscillator networks [5], a paradigm for probing and
understanding the synchronous behavior of interacting units
with nonlinear dynamics. When the system equations are
known, a widely used tool to determine whether synchro-
nization can emerge physically is the master stability function
(MSF) articulated by Pecora and Carroll [6]. In the MSF frame-
work, synchronization under various combinations of network
structures and oscillator dynamics can be predicted [5]. For
example, given the nodal dynamical equations, possible states
of synchronization can be determined, which are basically the
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possible dynamics on the synchronization manifold. The MSF
is nothing but the largest Lyapunov exponent characterizing
the transverse stability of the synchronous dynamical state.
For a typical nonlinear or chaotic oscillator, there may exist
an open interval in the space of some generalized coupling
parameter [7] where the MSF is negative, so that any point
in this interval can lead to stable synchronization. When
the network structure is given, the set of eigenvalues of the
underlying coupling matrix can be determined. For a network
of coupled oscillators, the phase-space dimension can be
extremely high, so there can be many transverse subspaces.
The set of eigenvalues, after suitable normalization, gives the
set of effective generalized coupling parameters associated
with all the transverse subspaces. Network synchronization
can occur only when all these parameters fall into the interval
of negative MSF.

In this paper, we propose a general approach to forecasting
the emergence of synchronization in complex oscillator net-
works based on a complete set of time series collected from
all components of every oscillator. The specific setting of the
problem is as follows. Assume that at the time of interest
the oscillator network is in an asynchronous state and time
series from each node in the network can be obtained. Assume
further that there exists a parameter characterizing the average
coupling strength among the nodes. The question we ask is
whether it would be possible to predict that synchronization
can or cannot occur when the coupling parameter is allowed
to change. Our method consists of two steps. First, we
reconstruct the full topology of the network, together with
the coupling strengths and the nodal dynamics, based solely
on time series. This is accomplished by casting the prediction
or reverse-engineering [8—10] problem into the framework of
compressive sensing, a recently developed, powerful convex
optimization paradigm [11-15] for recovering sparse vectors
based on very limited amount of data. Here the relevant vector
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to be reconstructed originated from both nodal dynamics and
topology, which is typically sparse due to the sparsity of
complex networks. Second, from the predicted nodal dynamics
and network structure, we perform synchronizability analysis
by using the standard MSF approach [5]. We validate our
method by using random weighted networks [16] of both
continuous-time and discrete-time chaotic systems (e.g., the
classical Lorenz system [17] and Hénon map [18]). Our
computation and analysis indicate that, with only a small
amount of measured data, the synchronization regions in the
parameter space as identified by MSF and the network struc-
ture can be accurately predicted, rendering possible inference
of synchronous dynamics. The critical data requirement and
sampling frequency for different network sizes and degree
distributions are studied in detail. The issue of the effect of
measurement noise on prediction accuracy is also addressed.
In addition, the dependence of the amount of measurements
for accurate reconstruction and computational time on the
network size are studied. Finally, we speculate on one potential
application of our prediction method: controlling coupled
oscillators to bring the system to synchronization.

In Sec. II, we describe our compressive-sensing-based
method for reconstructing weighted complex oscillator net-
works and for estimating the MSF. In Sec. III, we present
a detailed account of representative examples, together with
a systematic analysis of the prediction accuracy, data re-
quirement from different perspectives, effects of network size
and noise, and computation time. In Sec. IV, we discuss
how possible emergence of synchronous dynamics can be
anticipated based on data. In Sec. V, a conclusion and
discussion are provided.

II. NETWORK SYSTEM RECONSTRUCTION AND
SYNCHRONIZABILITY ANALYSIS

A. Reverse engineering of weighted complex networked
dynamical systems

Our method is in fact a combination of two schemes:
compressive-sensing-based reverse engineering of complex
networked dynamical systems [19,20] and synchronizability
analysis [5]. Reverse engineering of complex networks to
uncover network topologies from experimental time series is
a problem of tremendous interest with significant applications
[21-32]. Earlier examples include reconstruction of gene
regulation networks [22] from gene expression data and iden-
tification of neuronal interactions based on spike classification
methods [23-25]. More recently, a number of methods for net-
work reconstruction have been proposed; these include reverse
engineering of coupled differential equations [26], a response-
dynamics-based method for coupled phase oscillators [27],
phase-space reconstruction based on optimization [28], use
of a noise-induced scaling law [29], use of a noise-induced
dynamical correlation [30], random phase resetting [31], and
inner composition alignment [32]. While these methods can
successfully determine the network structure, they are unable
to determine two pieces of key information needed for predict-
ing the emergence of synchronization: the interaction strength
among nodes and the nodal dynamical equations. As will be ex-
plained, our compressive-sensing-based method [11-15] can
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uncover not only the full topology of the underlying network
but also the detailed nodal dynamics and link weights (interac-
tion strengths), making it possible to forecast synchronization.

The problem of compressive sensing [11-15] can be
formulated as reconstructing a sparse vector X € RY with
U unknown coefficients from measurement vector Y of
M linearly independent measurements under the projection
matrix A in the form Y = A - X, where Y € R and A is
an M x U matrix. Because of the sparsity of the vector
X, the number of required measurements can usually be
much smaller than the number of unknowns, i.e., M < U.
Accurate reconstruction can be achieved by solving the convex
optimization problem:

min || X]|;,s.t. A-X = Y. (1)

Recently, we developed a method based on compressive
sensing to infer the full network topology but for cases where
the network is unweighted [20]. Here we shall show that a
compressive-sensing-based framework can be formulated even
for weighted complex networks, for both continuous-time and
discrete-time nodal dynamics.

We first discuss the continuous-time case where the dynam-
ics of a single isolated node is governed by

X =F(x), 2

where x is a d-dimensional vector, and F(x) is the velocity
field of dimension d. Without loss of generality, we choose the
parameters such that the individual nodal dynamical system
generates a chaotic attractor. For a weighted network of N
coupled oscillators, the system equations are

N
% =Fx)— Y GyH(x)), i=1..N (3
j=1

where H(x) is the coupling function from R¢ to R?, and G
isthe N x N coupling matrix with symmetric weights G;; =
Gj; and diagonal elements satisfying G;; = — Z#i Gij. A
nonzero G;; is the necessary condition for nodes i and j to
be connected, regardless of the form of the coupling function
H(x).

To separate different variables we rewrite Eq. (3) in the
following form:

% =Ti(x) = Y GijH(x;), )
J#
where T';(x;) = F(x;) — G;;H(x;) is the term associated with
components at node i only, which, in general, can be
approximated by a power series of the d components in X;
up to order 7 in the following form:

[Cide =Y - Y L@y o, [l - [l ()
L=0 ;=0
for all components k =1, ... ,d. Here [(a;)¢]y,,....1, 1s the coef-

ficient assigned to each polynomial term for the kth component
of node i. For many well-studied nonlinear dynamical systems,
most of these coefficients are in fact zero so that the vector of
coefficients is typically sparse, justifying the applicability of
the compressive-sensing paradigm.
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For simplicity and illustrative purpose, we choose a linear
coupling form for the second term on the right-hand side of
Eq. (4). Consider the simplest case where each oscillator inter-
acts with every other oscillator through only one component.
In this case, when the coupling is from the k'th component
of node j to the kth component of node i, the only nonzero
coupling term between nodes i and j is [H(x;)]x = [x;]p. A
general expression for this type of linear coupling is

d
[HX)]r = Skn Zak’h’[xj]h’v h=1,....4d, (6)
W=1

where 8y, is the Kronecker delta. For nonlinear coupling
between multiple variables, we can group all terms containing
nonzero powers of x; into I';(x;).

Once we have obtained a power series expansion of the
right-hand side of Eq. (4), the next step is to estimate
the velocity field x; on the left-hand side, which can be
extracted directly from time series by using some typical
finite-difference or interpolation methods. In this way, with
all expansion coefficients as unknowns, Eq. (4) can be
transformed into a set of linear equations, which can be solved
by using a standard compressive-sensing algorithm. After all
the expansion coefficients are determined, the nonlinear nodal
dynamical equations and the coupling functions are known,
uncovering the full networked dynamical system including
accurate estimates of the coupling weights.

To better illustrate the steps to cast the nonlinear dynamical
network equations into the compressive-sensing framework,
we consider a concrete example of an N-oscillator network,
where the nodal dynamics of each oscillator is three dimen-
sional (d = 3, say x, y, and 7). In this case, we have x; =
[x;,yi,z:]T for 1 <i < N. Take component x for example.
According to Eq. (5), we expand [I';], up to order n = 3:

[Ti(x)] = [@)xJooox; vz + -+ + @) loos ] v/ 2]

+[(@)xJotoxyi 2) + - + [(@)x 100X, ¥ 2
+ o4 @) Jsasx v 2

Letting b; = ([(@i)x]o00.[(@:)xJoo1, - - -, [(@)x]333)" be the co-

efficient vector of [I";(x;)],, and
Bi(1) = [x:()°yi()°z:(0)° . x: () yi ()°z: (1),
X (i (0 7 ()*], (7)

we have [I";(x;)], = B; - b;. Similarly, for the coupling terms
we can write

Z GijHx;) =C; - ¢
J#
and
¢ = 0lGitdrx,Git1dky, Git Sz,
- sGinux,GinSiry, Gindi:]"

where node i itself is excluded. The measurement vector for
node i is denoted by

Ci(0) = [xi (). 1(0),21(0), ... .xn (@), yn (@), 2n (@) (8)
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If the coupling is linear and applies to a single dynamical
variable, the coefficient vector ¢; is generally sparse. The
velocity vector x; can be calculated from time series at M
sample times #;,f,, ... ,f). Finally, we have a set of linear
equations, each in the matrix form of Eq. (4):

(1) Bi(r)  Ci(tr)
xi(t) B Bi(n) Ci(r) b; o
2 I '<cl~>' ®
Xi(ty) Bi(tw) Cilta)

Note that the above linear equation [33] is only for component
x of node i. For the entire oscillator network, there are Nd
such linear equations that need to be solved in order to fully
reconstruct the network topology and the nodal dynamics. A
key advantage of the compressive-sensing framework is that
it requires only relatively short time-series data to accomplish
this task.

We now discuss the case where the nodal dynamics are
described by discrete-time maps:

N
x;[r + 11 = F(x;[t]) — Z G H(x;[1]), (10)

Jj=1

where F(x;[¢]) is the map on node i, H(x/[]) is the coupling
function, and Gj; is the coupling strength. Similar to the
continuous-time case, G is the weighted matrix. In order to
estimate the derivatives of the dynamical variables, we assume
that in one measurement two successive observations of the
nodal states are available: x;[¢] and x;[t + 1], for all nodes
in the network. In particular, the time series at ¢ is used
to construct the power series, as in the continue-time case,
and the observation at # + 1 can then be used to construct
the measurement vector on the left side of Eq. (9). The
networked system of discrete-time maps can then be cast into
the framework of compressive sensing:

xi[t + 1] B:[n1] Cilt]

xi[tr + 1] B[] Cilr.] b;
e ( ) (11)

xilty + 1] Bi[tm] Ciltm]

where B;[7] is a function of the observation of node i at 7, and
C;[¢] relies on the observation of all other nodes coupled to i
at the same time z. The isolated map and the network topology
(the coupling interactions) can then be extracted separately
from the coefficients in b; and c;.

B. Stability analysis for synchronous dynamics

After the nodal dynamics and the network structure have
been uncovered from the time series, we can use the MSF
framework to assess the emergence of synchronous dynamics
and its stability [5]. For the network system of Eq. (3), the
synchronous state X; = X, = --- = Xy = s, where ds/dt =
F(s) is an exact solution. The time evolutions of small
variations from the synchronous state, §x;(¢) = x;(t) — s(t),
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are governed by

N
% = DF(s) - 8x; — £ 2 G;jDH(s) - 8x;,  (12)
J=

where DF(s) and DH(s) are the d x d Jacobian matrices of
the corresponding vector functions evaluated at s(¢), and £ is a
parameter characterizing the global coupling strength, which
can be set to unity for convenience. We denote the eigenvalues
of the coupling matrix G as uy,u2, . ..,y and the associated
eigenvectors as eq, ey, . . .,ey. While compressive sensing does
not require network connectivity, it is meaningful to explore
synchronizability only when the underlying network is a
single connected component. Since the network is connected,
there is only one zero eigenvalue, so the eigenvalues can
be sorted as 0 = ) < up < --- < uy. We then diagonalize
the coupling matrix to a block matrix form composed of all
the eigenvectors: Q = [e;; ey; - - - ; ey ]. This can be used in the
transformation §x = Q - 8y to bring Eq. (12) into the following
block-diagonally decoupled form:

OV DR~ KDH®! -3y, (13)
where K; = &u; (i =2,...,N) are the coupling strengths in
the oscillator network. For each K; value, the corresponding
MSF W(K) is the largest Lyapunov exponent of Eq. (13) [6].
If, for all possible values of K;, the corresponding MSFs are
all negative, a small perturbation about the synchronous state
will vanish exponentially so that it is stable. Since MSFs do not
depend on the specific network topology but on the coupling
parameters, we can first infer the parameters from one set of
specific measurements and calculate the MSF for arbitrary
K so that the emergence of synchronous behavior can be
anticipated. This can be done even when links are added or
removed, because of the MSF’s independence of the network
structure.

After the MSF is known, the synchronization behavior of
the whole oscillator network can be assessed. For example,
suppose the system is not currently in a synchronous state,
but there is a region of K, K, < K < Kj, in which the MSF
satisfies ¥ (K) < 0. We can find a suitable positive coupling
strength & such that K, < éuy < &uy < K so as to drive
the system into synchronization. This is because, under the
stretching and squeezing effect of &, all possible K;’s can be
brought into the negative MSF region.

III. EXAMPLES

To illustrate our method to forecast synchronization, we first
choose the Erd6s-Rényi (ER) type of homogeneous random
network consisting of identical Lorenz oscillators as an exam-
ple, and then we extend our study to scale-free networks and
discrete-time nodal dynamics as well. In fact, similar results
have been obtained for other network topologies and different
types of nodal dynamics besides the cases presented here.

The classical Lorenz system is given by [x,y,z] = [o(y —
x),x(p —z) — y,xy — Bz], where we set o = 10, p = 28,
and B = 2 so that the oscillator is chaotic. Time-series data
are generated from 6 x 10° numerical-integration steps with
maximum step size of 107*. The Hénon map system is
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givenby [x;11,yr41] = [1 — ax? + y;,bx,],and we seta = 1.4
and b = 0.3 so that the map exhibits chaotic dynamics, for
which time series of length 7y = 100 are generated. However,
the amount of measurement data used in the compressive-
sensing algorithm can be much smaller. Using an adjustable
sampling frequency 1 /AT (or iterative interval Ty ), we obtain
sparse measurement data to reconstruct the nodal dynamics,
coupling pattern, and the network structure. In a typical
application, some physical knowledge about the underlying
complex networked system may be available. This can in
fact help reduce the computational complexity and increase
the efficiency and accuracy significantly. For example, in
the case of Lorenz-oscillator networks, some preliminary
understanding of the system can facilitate the choice of the
power-expansion order in Eq. (5). To be illustrative, we
apply the constraint /; + 1/, + I3 < 4 on the powers of the
components x,y,z so that the number of unknown coefficients
can be reduced.
The Jacobian matrix of the Lorenz system is

-0 o 0
p—z —1 —x]. (14)
y x =B

DF =

The Jacobian matrix of the coupling function, DH, for one
specific node component, is a 3 x 3 matrix with only one
nonzero element at the corresponding position determined
by the coupling pattern. In order to compute the MSF, we
need to reconstruct the network structure, find the coupling
pattern, and determine the parameters characterizing the nodal
dynamics.

A. Predicting weighted networks

Figure 1 shows the results of predicting a small weighted
Lorenz-oscillator network. There are in total 122 terms in
the coefficient vector a for each node, in which the 1st
to the 35th terms correspond to nodal dynamics vector b;
and the rest to the coupling vector ¢; with other nodes. The
inferred coupling strengths of node No. 1 with other nodes is
shown in Fig. 1(a), where, with respect to the number of power-
expansion terms with nonzero coefficient values, the predicted
coupling terms with other nodes are marked in Fig. 1(b).
The network structure with node degrees and link weights is
shown in Fig. 1(c). We see that all existent couplings, together
with their corresponding link weights, have been successfully
predicted. Results of prediction of all 122 terms in a for all
three variables x, y,z in the coupled Lorenz-oscillator network
are presented in Fig. 1(a). Besides the nonzero coupling terms,
other nonzero terms represent various power-series terms in the
nodal dynamics in each variable. The mathematical terms of
nonzero terms are marked in Fig. 1(a). For example, 10y — Cy
is in fact a combination of a nodal function and coupling, as
indicated in Eq. (4). Based on the indices of the coupling
terms, we can identify that the couplings are from y to x,
because of the term Z?’:] Gij(y; — yi) in the equation of
x. Therefore, the term —Cy comes from ) —G; i ¥i» which
has been merged into the nodal dynamical equation. Since
all coupling terms are successfully identified, the —Cy term
can be separated from the combination, resulting in complete
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FIG. 1. (Color online) Results of detecting dynamical and cou-
pling terms via compressive sensing. The network used is the ER
random network with N = 30 nodes and connection probability
p = 0.04. The network is weighted and the symmetric weights are
randomly distributed in [0.1,1.0]. Panel (a) shows the prediction
results for all three components x,y,z of node No. 1, where the
number of data points (after sampling) used is 70% of the total
number of the power-series coefficients assumed. Terms with nonzero
coefficients are marked by open circles, while others are marked by
plus signs. The first 35 terms are for nodal dynamical equations,
and the rest are for the coupling functions. In the first panel for
component x, the data points surrounded by the dashed box represent
coupling-term coefficients from other node components to component
x of node No. 1, which is magnified in panel (b) with numbers above
data points indicating the nodes from which the couplings come.
Panel (c) shows the original ER network, where the thickness of
the edges indicates the corresponding coupling strength. One-to-one
correspondence can be identified between the predicted coefficients
in panel (b) and the coupling strengths in panel (c) for each of node
No. 1’s neighbors.

prediction of all power-series terms in the velocity field and
the coupling function associated with node No. 1. We have
also examined the prediction results for all other nodes in the
network and found excellent agreement between the predicted
and actual power-series terms governing the whole networked
dynamical system.

The efficiency of our method for reconstructing weighted
networks can be assessed by addressing the issue of data
requirement and sampling frequency when nearly perfect
prediction accuracy is achieved. It is useful then to define
prediction errors in the coefficient vector a. Since a is sparse,
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0 005 0.1

FIG. 2. (Color online) Prediction errors as functions of the
normalized amount of measurement, R,, and sampling interval
AT for a random symmetric weighted network of N = 60 Lorenz
oscillators, where the connection probability is p = 0.04 and the
weights are randomly distributed in [0.1,1.0]. There are possibilities
that the generated networks are disconnected, but in order to be
able to consider synchronizability, we disregard rare cases where
the networks generated consist of isolated components. In (a), the
sampling interval is fixed at AT = 0.1, whereas in (b), the amount
of measurement is fixed at R,, = 0.6. In both panels, E,, is averaged
over 10 independent network realizations.

i.e., most of its elements are zero, it is necessary to calculate
the errors for nonzero (existing) and zero (nonexisting) terms
separately. In particular, the relative error of a nonzero term,
Erm, 1s defined as the ratio to the true value of the absolute
difference between the inferred and the true values. The
prediction error E,, of all nonzero terms in a component,

Enz = <Eterm) )

is the average over them. For a zero term, a relative error cannot
be defined. As an alternative, we define the absolute error as
the average value of the inferred zero terms. The prediction
errors can then be computed as functions of the amount R,,
of measurements, normalized by the total number of unknown
coefficients to be determined, i.e.,

number of measurements

number of all unknown coefficients’
and the sampling time interval AT, as shown in Fig. 2, where
AT is the average time interval between two pairs of data
points, with each pair containing two nearby data points for
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FIG. 3. (Color online) Comparison of the reconstructed (a) and
the original (b) adjacency matrices for the weighted network shown in
Fig. 1(c). The coupling scheme is y — x and the normalized amount
of measurements is R,, = 0.3.

the purpose of estimating the corresponding derivative. In
Fig. 2(a), we see that, for sufficiently large values of R, E,.
reduces essentially to zero with extremely small error bars,
indicating accurate reconstruction of both nodal dynamics
and network structures with complete information about the
locations of the links and their weights. From Fig. 2(b), we
observe that a larger sampling interval AT tends to facilitate
prediction. This can be intuitively understood by noting that
suitably large AT values weaken the correlation between two
adjacency data points, from which reconstruction may benefit.
In both Figs. 2(a) and 2(b), the Y component appears to be
the most difficult one to be fully reconstructed, as the required
data amount is the largest. This is due to the presence of
the px term in the Y component, where the value of the
coefficient p is much larger than other nodal dynamical and
coupling coefficients, requiring more measurements and larger
sampling intervals. Our experience indicates that, in general,
the data requirement for equations that involve relatively larger
coefficients tends to be higher.

In order to assess the accuracy of the predicted weighted
network, it is necessary to reconstruct the adjacency matrix
for any given coupling scheme. With all expansion coefficients
obtained from compressive sensing for all dynamical variables
of each oscillator, we can readily form the matrix by using
the terms associated with the various coupling functions. For
example, coupling coefficients from each node contribute to
a single row of the adjacency matrix, given any coupling
scheme. Figure 3 shows, for the y — x coupling scheme,
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(a)
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FIG. 4. (Color online) (a) For ER random networks, measure of
critical data requirement R, as a function of the density of nonzero
coefficients R,,, where R, is adjusted by fixing the average degree at
k = 3 and increasing the network size from N =20 to N = 200.
(b) For scale-free networks, R. as a function of the power-law
exponent « in the degree distribution p(k) ~ k~*. The network size is
N = 60 with the minimal degree k;, = 3. For both panels, the data
points are results of averaging over 10 different network realizations.

the reconstructed and the original adjacency matrices. The
good agreement between the two suggests that not only have
the link locations been predicted but also the values of the
corresponding weights.

To further address the practically important issue of data
requirement in reconstructing weighted networks, we define a
quantity R., which is the critical amount of data required for
the prediction error E,; to fall below some predefined small
threshold value (e.g., 0.01), namely,

R, = inf{R,, : En.(R,) < 0.01}.

Although R, depends on the choice of the threshold, the
qualitative behavior of R, is insensitive to the network
structure. For example, we can calculate R, for different ratios
R, defined as

R number of nonzero coefficients
nz

number of all unknown coefficients’

where R,; can be adjusted by varying the network size while
keeping the average degree unchanged. Figure 4(a) shows R,
versus R, for different ER random networks. We see that, as
R, . becomes smaller so that the network becomes more sparse,
the value of R, tends to decrease, indicating that a smaller
amount of data is required to achieve the same prediction
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FIG. 5. (Color online) For the random Lorenz network under the
coupling scheme y — x, accuracy measure Ag of the eigenvalue
spectrum of the reconstructed network coupling matrix as a function
of the normalized data amount R,,,.

accuracy. This is due to the merit of our compressive-sensing-
based method in dealing with large networks, i.e., low data
requirement. This feature does not depend on the network
topology either, as shown in Fig. 4(b) for scale-free networks,
where R, is shown as a function of «, the power-law exponent
in the degree distribution. When the network size and the
average degree are fixed, a smaller value of o corresponds
to a more heterogeneous network structure. In this case, the
value of R, is relatively large. This is because, for a more
heterogeneous network, the probability of having dense sets of
coefficients for the hub nodes is larger, requiring more data. As
« is increased so that the network becomes less heterogeneous,
R. can be reduced.

Eigenvalues of the network coupling matrix can be
calculated upon determining the structural parameters of
the network. It is thus useful to define another quantity
to characterize the accuracy of the reconstructed weighted
network. Specifically, we first define the eigenvalue interval
that contains all the original eigenvalues as R; = (K»,Ky)
and the predicted one as R;) = (K},K}). We then define the
following quantity Ag to characterize the accuracy of the
reconstructed eigenvalue spectrum:

_ R,NR  min(Ky,K})— max(K,,K})
RIUR;  max(Ky,Ky) —min(Kp,K})'

Here we use a continuous region instead of a set of individual
eigenvalues of the coupling matrix for the definition of the
true region R;, because the necessary condition for the system
to be synchronizable is that all eigenvalues must be located
in the negative region of MSF W(K). Since the MSF is not
involved in the definition of Afg, a convenient choice is to
compare the region from the minimum nonzero eigenvalue
K> to the maximum K, which limits our discussion within
the systems possessing the type of MSF [see, e.g., Fig. 9(b)].
A representative plot of Ar as a function of R, is shown in
Fig. 5. We see that the eigenvalue spectrum can be predicted
accurately when R, exceeds about 35%, due to the low data
requirement of compressive sensing.

Similar results are obtained from networks of Hénon map
systems. In the following examples we discuss the effect of the
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FIG. 6. (Color online) For weighted, random networks of Hénon
maps, prediction errors as functions of the normalized data amount
Rys. The network size varies from 20 to 200, and all the networks
tested have the same connection probability p = 0.04 with weights
distributed in [5 x 107#,1073]. Each point is the result of averaging
over 10 independent network realizations. The horizontal solid line
at Eyz = 0.01 is used to indicate the critical data requirement R for
each case.

network size and noise on system reconstruction and also the
issue of computational time. To be illustrative, we assumed
weighted random networks with weights distributed in the
range w;; € [5 x 1074,107°] (so that dynamical trajectories
from the Hénon map do not diverge). The coupling function
is chosen to be linear, and it occurs between the x variables
among the nodes. Applying the compressive sensing algorithm
allows us to infer the nodal dynamics and network topology
from the coefficients a.

The performance of our method with respect to different
network size is an important issue. As shown in Fig. 6, as
the data amount R, is increased, for different network sizes
ranging from N = 20 to N = 200, the normalized predicted
errors E,, approach zero, as indicated by the horizontal solid
line, suggesting that the system can be reconstructed with
high accuracy based on a small amount of data, regardless
of the network size. While slightly more data are required for
larger networks, the amounts are still quite small, i.e., less than
the total number of unknown coefficients in the power-series
expansion. We also find that the critical data ratio R, defined
as the relative data amount required to make the normalized
predicted error E,, less than a small threshold value (e.g.,
0.01), decreases with the network size N. This is in accordance
with the results in Fig. 4(a), since the degree of sparsity of the
unknown vector a increases with the random network size as
the connection probability p is fixed.

Another issue that we have studied is the effect of measure-
ment noise on reconstruction. In our framework, observations
of the variable states in one measurement are associated with
the state of the system at the particular time, so measurement
noise can be quite important. Figure 7 shows the reconstruction
result when additive noise of amplitude 5 x 107> is present.
We see that compressive sensing is capable of generating
approximate solutions of the networked system even in the
presence of noise. The data amount required to reconstruct
the network, however, tends to be slightly larger than that in
the case where no noise is present.
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FIG. 7. (Color online) For uniform measurement noise, predic-
tion error E,, vs the normalized data amount R,,, where the networks
are the same as in Fig. 6. The amplitude of additive noise is 5 x 10~°
for both curves. Each point is the result of averaging over 10 different
network realizations.

We have also considered the issue of computational time.
In our method, the main computational load lies in solving
Eq. (11), which depends on the number of unknown coef-
ficients and the number of measurements. We first fix the
network sizes at N = 100 and record the computation time as
the relative data amount R,, is changed. As shown in Fig. 8(a),
the required time to reconstruct one coefficient vector (for one
variable of one node in the network) scales approximately
linearly with the data amount. Next we fix R, and monitor
the required computation time as a function of the network
size. For linear coupling, the number of unknown coefficients
is proportional to the network size N if it is sufficiently large.
We set R,, = 0.75 to ensure accurate reconstruction in each
case, so the amount of data used for reconstruction increases
linearly with the number of unknown coefficients. Figure 8(b)
shows the result, where the network size varies from N = 20
to N = 500. We see that the required computation time indeed
increases approximately linearly with the number of unknown
coefficients.

B. Prediction of network synchronizability from data

A full reconstruction of nodal dynamics allows us to
calculate the MSF W as a function of K =&u for any
given coupling scheme. To be illustrative, we calculate the
MSFs for four different coupling schemes (x — x, y — x,
z— x, and z — z) for the coupled network of Lorenz
oscillators, as shown in Fig. 9. These coupling patterns
generate distinct behaviors of the MSF in terms of its number
of zeros. If a region of W(K) < 0 exists, emergence of
stable synchronization is likely for the oscillator network,
regardless of the network structure; otherwise synchronization
is unlikely for any network structure. In Fig. 9, for example,
for the x — x coupling scheme, there is a relatively large
synchronization region for K beyond a critical value. For
the y — x scheme, a synchronization region exists but its
size is not as large as that for the case of x — x coupling. For
the z — z coupling scheme, there are in fact two separated
synchronization regions. In contrast, for the z — x coupling
scheme, synchronization is unlikely because W(K) is positive
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FIG. 8. (Color online) For weighted, random networks of Hénon
maps, (a) the average computational time 7' (in arbitrary units)
required for one variable on one node vs the data ratio R,,, for fixed
network size (N = 100) and (b) T vs the network size N for fixed R,,
(0.75) for which accurate reconstruction can be achieved. For both
panels, 20 network realizations are used.

(a) X—>X (b) y—>X
1 2
—— Model — Model
o Predicted ©  Predicted

— Model
o Predicted

O Predicted
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FIG. 9. (Color online) Comparison of MSFs calculated from
predicted parameters (open circles) and from real ones (solid lines)
for the random Lorenz oscillator network. Panels (a)—(d) are for
coupling schemes x — x, y — x, z — x, and z — z, respectively.
All time-series data are generated by the same oscillator network as
in Fig. (2).
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for all values of K. A more systematic analysis of the
MSF behaviors for typical nonlinear oscillators can be found
in Ref. [7]. The excellent agreement between the true and
predicted MSFs shown in Fig. 9 suggests that our compressive-
sensing-based approach can lead to a quite reliable estimate
of the MSF at a quantitative level. Likewise, the boundaries
between synchronous and asynchronous regions can also be
precisely identified, rendering possible anticipation of the
emergence of synchronization in the underlying network
system.

To quantify the performance of our method in identifying
the synchronization region, we define a measure of agreement,
denoted by A, between the predicted and the true synchro-
nization region, as exemplified in Fig. 9(b) for the y — x
coupling scheme. Specifically, we denote the true synchro-
nization region R, by (K,, K}) in which the MSF is negative,
and denote the predicted region R, by (K, K ). We thus define

_ R,MNR _ min(K,,K;) — max(K,,K)
" R,UR  max(KpK,)—min(K,,K.)’

where generally Ay < 1. Two extreme cases are Ay =0
when R,(YR, =¥ and Ay =1 when R, = R,, which
indicate perfect prediction. Results are shown in Fig. 10, where
Ay approaches unity as the amount of measurement exceeds
only about 65% of the number of assumed coefficients to be
predicted. For the case of a single intersection K, of a MSF
with W(K) = 0, as shown in Fig. 9(a) for the x — x coupling
scheme, we can define an agreement measure in a similar way:
min(K,,K})

= —*° 17
M max(K,,K]) 17

Ay (16)

where 0 < Ay < 1. In cases where there are multiple
synchronization regions, e.g., as happened for the z — z
coupling scheme in Fig. 9(d), the agreement measure can be
taken as the average of all measures, one calculated from each
separate region.

IV. DATA-BASED ANTICIPATION AND CONTROL OF
NETWORK SYNCHRONIZATION

Based on the reconstructed network structure and dynamics,
we now propose a strategy to anticipate and control collective

0.8f 1
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FIG. 10. (Color online) Measure of agreement of synchronization
prediction, A, as a function of R, for the MSF shown in Fig. 9(b),
where the coupling scheme is y — x.
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dynamics of complex oscillator networks. The base of control
is prediction of future behavior by decoding the presently
available time series. If the natural dynamics in the future
is undesirable, one can implement a certain control scheme
to drive the system to avoid the undesirable state before it
occurs. This, however, requires relatively complete knowledge
about the networked dynamical system, which, as we have
demonstrated in Sec. III, can be achieved by exploiting the
compressive-sensing paradigm.

To be concrete, we discuss the case where synchronization
is a desirable state of operation for the system, under the
assumption that the system is not synchronized at the present.
The first step is to determine, from currently available
time series, whether synchronization is intrinsically likely to
emerge. An answer can be obtained by using the reconstructed
network structure and dynamics to estimate the network
eigenvalue spectrum and MSF. The answer can be affirmative,
for example, if the MSF is predicted to be negative in an
open generalized coupling-parameter interval. That the system
is not currently synchronized indicates that the normalized
eigenvalue spectrum does not fall into the interval and,
hence, suitable control can be applied to rescale and shift
the eigenvalue spectrum into the negative MSF interval. To
illustrate this method, we use the network system of coupled
chaotic Lorenz oscillators in Sec. IIl. Figure 11(a) shows
some representative time series in a case where the network is
not synchronized, and the corresponding MSF and eigenvalue
spectrum calculated from the reconstructed network structure
and dynamics are shown in Fig. 11(c). We see that for
some values of K [data points in Fig. 11(c)], the products
between the coupling strength & and eigenvalues p are not
located in the synchronizable region as indicated by the MSF

FIG. 11. (Color online) Time series of y component for 10 of the
N = 30 nodes in two random networks of global coupling strength
& =1 and & = 1.6, respectively, for (a) a nonsynchronized network
and (b) a synchronized network. Other parameters are the same for
both bases: connection probability p = 0.2 and weight distribution
interval of [0.9,1.0]. (c) and (d) Rescaled eigenvalues K;(=&u;)
(denoted by open circles) of the network coupling matrices with
respect to the MSF (denoted by solid lines) inferred from the same
nodal dynamics and coupling scheme from the time series in (a) and
(b), respectively.
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[curve in Fig. 11(c)]. Thus, at the current parameter setting,
synchronization cannot be realized in the system. In order for
synchronization to emerge, all K values must fall into a region
where the MSF is negative. A simple and practical way to
manipulate K is to adjust the coupling strength but to keep the
nodal dynamics and network structure unchanged. When the
coupling strength £ is modified, the network system can indeed
achieve synchronization, as shown by the synchronous time
series in Fig. 11(b). Examination of the MSF and eigenvalue
spectrum indicates that, indeed, in this case all K values fall
into the negative MSF interval. We stress that a prerequisite to
this simple control scheme is full knowledge of the network
structure and dynamics, which, as we have demonstrated, can
be faithfully reconstructed based solely on a small amount of
data.

V. CONCLUSION AND DISCUSSION

Reconstructing dynamical systems based on time series
is a problem of significant interest with broad applications in
many areas of science and engineering. However, this problem
has been outstanding in nonlinear dynamics because, despite
previous efforts [34] in phase-space reconstruction using the
standard delay-coordinate embedding method [35] to decode
the topological properties of the underlying system, how to
accurately infer the underlying nonlinear system equations
remains largely an unsolved problem. In principle, a nonlinear
system can be approximated by a large collection of linear
equations in different regions of the phase space, which can
indeed be achieved by reconstructing the Jacobian matrices on
a proper grid that covers the phase-space region of interest [36,
37]. However, the accuracy and robustness of the procedure
are challenging issues, involving the difficulty associated with
the required computations. The recently emerged paradigm
of compressive sensing [11-15] provides a possible approach
to addressing the dynamical-system reconstruction problem
[19,20]. In particular, our ability to fully reconstruct dynamical
systems using only time-series data is based on the fact that
the dynamics of natural and artificial systems are determined
by smooth enough functions that can be approximated by
finite expansions. The major task then becomes estimating
the coefficients in the series representation of the vector field
governing the system dynamics, for example, from a power-
series expansion. In general, the power series can contain high-
order terms, and the total number of coefficients to be estimated
can therefore be quite large. This is a very difficult problem to
solve, since large amounts of data would be needed, making the
computations extremely demanding. However, most of these
coefficients are either zero or negligible, rendering sparse the
coefficient vector to be reconstructed, and enabling application
of the compressive-sensing paradigm.

The main achievement of this paper is to extend our re-
cently developed method of reconstructing dynamical systems
[19,20] to complex weighted oscillator networks and then to
address the problem of forecasting collective dynamics. In
general, predicting the emergence of collective dynamics is
an extremely difficult problem, and it is necessary to focus
on a relatively well understood type of collective dynamics.
We choose synchronization. We have detailed the basic
principle of time-series-based prediction of synchronization
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in complex oscillator networks. We have also demonstrated,
using a prototype of oscillator networks with nonuniform
coupling strengths (so that the network is weighted), that our
compressive-sensing approach can indeed fully reconstruct
the network structure and dynamics, based on which the
emergence of synchronous dynamics can be anticipated. We
have also articulated and demonstrated a method, based on
full reconstruction of a complex networked dynamical system
that is not yet synchronized, to make it synchronizable by
parameter adjustment.

One issue is the continuity of the available data. We wish to
point out that compressive sensing in general does not depend
strictly on this property of the observed time series. When
constructing the linear equations, we need to approximate the
derivatives of dynamical variables for all oscillators. Because
of this, insofar as a small slice window of the time series (either
continuous or discrete) is available so that the derivatives
can be calculated, compressive sensing can be carried out to
recover the network structures and nodal dynamics. In fact,
slices of time series can be collected at different times to
facilitate collection of measurements.

Another issue is the hidden dimensions, which presents
a serious obstacle to network and dynamical-system recon-
struction. This is similar to the case of searching for a
power-expansion basis. If the expansion basis is not complete
to cover all factors with significant magnitude, the error caused
will be distributed onto the rest of the coefficients, leading to
incorrect reconstruction. While this remains an outstanding
problem in the reverse engineering of complex dynamical
systems, we speculate that traditional nonlinear time-series
analysis methods such as phase-space reconstruction may be
used to determine the intrinsic dimension of the system prior to
applying compressive sensing, which is an issue worth further
investigation.

We emphasize that a full reconstruction of a complex
oscillator networked system from time series is possible only
when the system is not in synchronization, and the information
can then be used to forecast or anticipate synchronization in the
future. If the system is already synchronized, time series from
different nodes are practically identical so that it is not possible
to reconstruct the network structure. However, there may exist
a solution to this problem. In particular, given a network
system that is already synchronized, we hypothesize using
small, random, and rare perturbations to disturb the system so
that it desynchronizes temporally. Since the synchronization
state is stable, the system will settle back to being synchronous
quickly. However, the window of temporal desynchronization
provides us with an opportunity to probe the system structure.
While the transient desynchronization phase may be short,
our compressive-sensing method can be particularly suitable
because of the extremely low data requirement.
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