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Onset of chaotic phase synchronization in complex networks of coupled heterogeneous oscillators
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Existing studies on network synchronization focused on complex networks possessing either identical or
nonidentical but simple nodal dynamics. We consider networks of both complex topologies and heterogeneous
but chaotic oscillators, and investigate the onset of global phase synchronization. Based on a heuristic analysis
and by developing an efficient numerical procedure to detect the onset of phase synchronization, we uncover a
general scaling law, revealing that chaotic phase synchronization can be facilitated by making the network more
densely connected. Our methodology can find applications in probing the fundamental network dynamics in
realistic situations, where both complex topology and complicated, heterogeneous nodal dynamics are expected.
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Synchronization in complex networks has been a problem
of continuous interest [1–10]. For networks having identical
nodal dynamics, e.g., a network of coupled identical oscilla-
tors, the question of whether the network is synchronizable can
be answered through the approach of master-stability function
(MSF) [11,12]. In particular, due to the fact that the nodal
dynamics are all identical, synchronization among all nodes in
the network is a mathematical solution of the system, defining
a synchronization manifold in the phase space of the whole
system. If the solution is stable with respect to perturbations
in all subeigenspaces that are transverse to the manifold, syn-
chronization is physically observable or realizable. The MSF,
an invariant property determined solely by the nodal dynamics,
provides a computationally feasible way to determine the
transverse stabilities of the synchronization manifold in terms
of the network structure. This approach has been applied to
analyzing the synchronizability of various complex networks,
such as small-world networks [2–4], scale-free networks [5,6],
weighted complex networks [7], adaptive complex networks
[8], complex clustered networks [9], and complex gradient
networks [10]. Particularly, in Ref. [6] the authors found that
on the example of coupled Rossler systems, that small network
size N and dense network connection favor synchronization.
The approach has also been extended to situations where the
nodal dynamics are slightly nonidentical [13].

In real-world networks heterogeneity in the nodal dynamics
is expected. In such a case, an exact synchronization manifold
cannot be defined. To probe into the fundamental synchroniza-
tion dynamics for heterogeneous networks, a viable approach
is to reduce the complexity of the nodal dynamics. In
this regard, the Kuramoto model [14,15] has been studied
extensively in which the nodal dynamics is given by that of
a uniform rotation: θ̇ = ω, where θ is a phase variable and ω

is the frequency. Heterogeneity can be modeled by assuming
that the frequency for each node is distinct and can be drawn
from a random distribution. For complex networks hosting the
Kuramoto phase dynamics, transition to synchronization can
be understood fairly comprehensively [16,17]. For example,
say K is a general coupling parameter. As K is increased

through a critical value Kc, partial synchronization in the
network in the form of synchronous clusters can arise, where
Kc is determined by the network topology and the frequency
distribution of the oscillators. Transition to complete or
global synchronization, where all nodes in the network are
synchronized, has also been investigated [18]. In other systems
of heterogenous dynamics, like two-dimensional nonidentical
neuron-like maps, phase synchronization has been investigated
[19].

Despite vast literature on complete synchronization of
identical chaotic oscillators in complex dynamical systems,
the problem of phase synchronization in complex networks
with heterogeneous nodal dynamics that are more complicated
than uniform rotation has remained to be outstanding. The
specific question that we ask is, if the nonidentical individual
nodal dynamics are chaotic, what determines the transition to
synchronization? Since the nodal dynamics are not identical,
chaotic phase synchronization is expected to arise [20],
especially in the weakly coupling regime. To be concrete and
realistic, we shall then focus on the onset of chaotic phase
synchronization in complex networks, with the goal to uncover
scaling relation of the critical coupling strength Kc required
for this type of synchronization to occur in the entire network.
A heuristic analysis reveals an algebraic scaling relation
between Kc and a parameter characterizing the link density
of the network, indicating that as the network becomes more
densely connected, the threshold coupling value required for
chaotic phase synchronization decreases. To verify the scaling
relation, we develop a computational procedure to accurately
determine Kc for large networks in an extremely efficient
manner. Our result has the following significance. In complex
dynamical systems complete synchronization is difficult to be
realized, as enormous coupling may be required. However,
phase synchronization, a weaker type of synchronization, can
be typical and finds applications in many areas of significant
interest such as epileptic seizures [21]. The scaling relation
uncovered in this paper can be used to assess, for complex
networks of given topology, size, and linkage, when phase
synchronization can be expected.
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We consider networks of coupled, nonidentical oscillators,
mathematically described by

dxi

dt
= Fi(xi) − ε

N∑
j=1

Gij H(xj ), (1)

where N is the number of oscillators (nodes) in the network, xi

is a d-dimensional vector of the dynamical variables of node
i, Fi(xi) is the vector field of node i, ε is a coupling parameter,
and G is a coupling matrix determined by the connection
topology. The elements of G are Gij = −1,i �= j if oscillators
i,j are coupled and Gij = 0 if they are not. The diagonal
elements are given by Gii = −∑

j �=i Gij in order to satisfy the

condition
∑N

j=1 Gij = 0 for any i, where N is the network size.
When all the oscillators are identical, a complete synchronized
state defined by x1 = x2 = · · · = xN = s is an exact solution of
Eq. (1). The coupling matrix G, as determined by the network
topology, can be diagonalized with a set of real eigenvalues
{λi,i = 1, . . . ,N} and the corresponding set of eigenvectors
e1,e2, . . . ,eN . Full connectivity of the network ensures that
there is one zero eigenvalue and the eigenvalues can be
sorted as 0 = λ1 < λ2 � · · · � λN . The variational equations
governing the time evolution of the set of infinitesimal
vectors transverse to the synchronization manifold, δxi(t) ≡
xi(t) − s(t), are dδxi/dt = DF(s) · δxi − ε

∑N
j=1 Gij DH(s) ·

δxj , where DF(s) and DH(s) are the d × d Jacobian matrices
of the corresponding vector functions evaluated at s(t). The
transform δy = Q−1 · δx, where Q is a matrix whose columns
are the set of eigenvectors of G, leads to the block-diagonally
decoupled form of the variational equation: dδyi/dt =
[DF(s) − ελiDH(s)] · δyi . Let Ki = ελi(i = 2, . . . ,N ) be a
specific set of values of a normalized coupling parameter
K . All blocks of the decoupled equation are structurally
the same with only the factor of Ki being different, leading
to the following generic form for all the decoupled blocks:
dδy/dt = [DF(s) − KDH(s)] · δy.

The largest Lyapunov exponent of the above block-diagonal
variational equation is the MSF �(K). If �(K) is negative, a
small disturbance from the synchronization state will diminish
exponentially so that the synchronous solution is stable,
at least when the oscillators are initialized in its vicinity.
The synchronous solution is unstable and cannot be realized
physically if �(K) is positive because small perturbations
from the synchronous state will lead to trajectories that diverge
from the state. For the coupled oscillator network Eq. (1),
a necessary condition for synchronization is then that all
normalized coupling parameters Ki(i = 2, . . . ,N) fall in an
interval on the K axis where �(K) is negative. The network
is more synchronizable if the spread in the set of Ki values,
or equivalently, the spread in the eigenvalue spectrum λi , is
smaller. The MSF allows the synchronization interval to be
determined, which depends only on the coupling function (H)
but is independent of the network topology. In particular, the
condition for complete synchronization is given by ελ2 � K1,
and the critical parameter for the onset of synchronization
is Kc � K1/λ2, where K1 is the value of K at which �(K)
becomes negative from the positive side.

In Ref. [13], a stability analysis for synchronization of
nearly identical oscillators was carried out, which was based

on the following extended master-stability function (eMSF):

ξ̇ = [Dωf − KDH] · ξ + Dμf · ψ. (2)

The term in the square parentheses is the same as that in
the block-diagonal form of the variational equation in the
case of identical nodal dynamics. In the second term, Dμ is
the Jacobian matrix with respect to the parameter vector μ

and ψ = ∑N
j=1 uij δμj , where δμi = μi − μ̄ is the parameter

mismatch with respect to mean of μi over all oscillators, and
ui is the ith eigenvector of G. The stability of Eq. (2) can
then be determined as a function of the two parameters K

and ψ , and we can decompose the problem into two separate
parts: one that depends only on the nodal dynamics and the
coupling function H, and another determined by the parameter
mismatch among the oscillators.

Let �(K,ψ) be the largest Lyapunov exponent of Eq. (2).
In general, the value of K1 depends on ψ . To be specific, we
fix the number of oscillators and variation in the parameter
mismatch, and focus on the scaling relation between Kc and
the link density. In this case, δμi obeys the same statistic
as that for ψ in Eq. (2). For different link density, since the
mismatch is bounded in the same range, the value of K1 can be
regarded as a constant, which is slightly larger than K1|ψ=0.
As the amount of mismatch is increased, i.e., with a larger
standard deviation σ as in our case, K1 also increases, which
has been verified numerically. Since the oscillators are not
identical, K1 is not the critical coupling strength for complete
synchronization, but the value for which the variation for the
dynamical variables are bounded [13], so it is essentially the
onset point of phase synchronization. Approximately, we can
use K1|ψ=0 to represent K1 with parameter mismatches. In
fact, we find numerically that the product Kcλ2 for different
networks is nearly constant and the values are comparable with
those of identical oscillators. We thus have Kcλ2 � K1.

For complex topologies we consider random and scale-free
networks. For the former, the link density is determined
by p, the probability that an arbitrary pair of oscillators in
the network are coupled. For the latter, we consider those
generated by the preferential-attachment mechanism [22]:
starting from a small number m0 of completely connected
oscillators, a new oscillator is introduced into the network
with m links according to the preferential-attachment rule.
The parameter m thus determines the link density. For
both types of networks, estimates of the value of λ2 are
available [23]. In particular, for random networks, we have
λ2 ∼ Np − 2

√
Np(1 − p), while for scale-free networks, we

have λ2 ∼ Cm. The relationship Kcλ2 � K1 gives, for random
and scale-free networks, respectively, the following scaling
law governing the onset of phase synchronization:

Kc ∼
{

K1

Np−2
√

Np(1−p)
, random networks,

K1
Cm

, scale-free networks.
(3)

The scaling laws (3) are the main result of this paper. We
note that, for large random networks that satisfy Np � 1, the
scaling law becomes Kc ∼ p−1.

To provide numerical verification of Eq. (3), we consider
networks of coupled Rössler chaotic oscillators. The vector
field of the ith oscillator (node i) is given by Fi(x) = [−(ωiy +
z),ωix + 0.165y,0.2 + z(x − 10)], where the parameter ωi is
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FIG. 1. (Color online) For random network of N = 102, 103,
and 104 chaotic Rössler oscillators, nonlinear fit Kc ∼ A/[Np −
2
√

Np(1 − p)], as predicted theoretically, where A is a fitting
parameter.

different for each oscillator and is taken from some random
distribution. For oscillator i, a phase variable φi(t) can be
calculated [20]. For a pair of oscillators i and j , phase
synchronization is defined by �φij = |φi(t) − φj (t)| < 2π .
The average phase-synchronization time τij is the average
time interval during which the phase difference is bounded
within 2π . As the coupling parameter K is increased toward
Kc, τij increases and obeys the scaling law [24]: τij ∼
exp [C(Kc − K)−γ ], where C and γ are positive constants
and τij diverges for K � Kc. For a network of N oscillators,
as Kc is reached, all N (N − 1)/2 values of τij (one for each
distinct pair) diverge. Computationally the behavior of τij can
thus be used to determine the onset of phase synchronization
on the network. In particular, τij can be regarded as an element
of the N × N symmetric matrix, �. For finite time series
measured from oscillators in the network, when the diagonal
elements of � are chosen properly, the determinant of the
matrix provides an effective way to determine the onset of
chaotic phase synchronization globally [21].

To calculate the determinant is computationally costly. To
remedy this difficulty, we propose the following quantity:

P =
N−1∏
i=1

N
√

τi,i+1, (4)
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FIG. 2. (Color online) For random networks of N = 102, 103,
and 104 nodes, numerically obtained scaling of Kc with the linking
probability p. The scaling is algebraic in the regime of large Np

values, as predicted by our theory.
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FIG. 3. (Color online) For scale-free networks of N = 102 and
103 oscillators, numerically obtained scaling of Kc with the network-
generating parameter m.

which can be computed extremely efficiently. As phase
synchronization is approached, P tends to diverge. The
computational load is only proportional to N , the network size.
We have verified that the values of critical coupling parameter
Kc computed using P and the previous method of determinant
coincide with high accuracy.

Figure 1 shows for random networks of N = 102, 103, and
104 nodes, the relationship between Kc and p, fitted according
to the theoretical prediction in Eq. (3). We observe a good
agreement between numerics and theory. For the regime of
large Np values, the scaling becomes algebraic, as shown in
Fig. 2 for networks of three different sizes (N = 102, 103, and
104). Figure 3 shows for scale-free networks of N = 102 and
103 oscillators, numerically obtained scaling of Kc with the
network-generating parameter m. The scaling is algebraic, as
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FIG. 4. (Color online) For random (upper panel) and scale-free
(lower panel) networks, scaling of Kc with p and m, respectively, for
different distributions of the frequency parameter ωi of the chaotic
oscillators. The network size is N = 103.
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predicted. The scaling laws (3) are independent of the intrinsic
properties of the oscillators, as shown in Fig. 4.

In summary, we have demonstrated, by using a heuristic
analysis and numerical computations, that the onset of phase
synchronization in complex networks of coupled, heteroge-
neous chaotic oscillators can be facilitated by increasing the
link density. This is substantiated by a scaling law relating the
critical coupling parameter required for phase synchronization
among all oscillators in the network to a parameter charac-
terizing the network linkage. Computational detection of the
onset of global chaotic phase synchronization is made possible
by an efficient numerical method to calculate the pairwise
average phase-synchronization time. Our work treats both
complex network topology and complicated heterogeneous
nodal dynamics at the same time, versus existing works, e.g.,
on complex networks of simple Kuramoto phase oscillators.

The complexity of our problem renders infeasible any analytic
treatment at a comprehensive level, but nonetheless we are able
to obtain quantitative results on chaotic phase synchronization
in the network. Networked systems in real applications are
often heterogeneous, complicated in both topology and nodal
dynamical processes. The methodology developed in our work
can be useful and further developed to probe into the funda-
mentals of the network dynamics with significant applications.
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