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Optimizing cooperation on complex networks in the presence of failure
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Cooperation has been recognized as a fundamental driving force in many natural, social, and economic systems.
We investigate whether, given a complex-networked system in which agents (nodes) interact with one another
according to the rules of evolutionary games and are subject to failure or death, cooperation can prevail and
be optimized. We articulate a control scheme to maximize cooperation by introducing a time tolerance, a time
duration that sustains an agent even if its payoff falls below a threshold. Strikingly, we find that a significant
cooperation cluster can emerge when the time tolerance is approximately uniformly distributed over the network.
A heuristic theory is derived to understand the optimization mechanism, which emphasizes the role played by
medium-degree nodes. Implications for policy making to prevent or mitigate large-scale cascading breakdown
are pointed out.
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Natural selection favors the survival and prevalence of
species with a competitive edge, yet the phenomenon of
cooperation is ubiquitous in many biological, economic,
and social systems [1,2]. Understanding the emergence and
evolution of cooperation has thus become a field of significant
interdisciplinary interest, where evolutionary-game theory [3]
has served as a powerful mathematical paradigm [1,4,5]. In a
typical setting, a number of agents on a network interact with
one another, where the network topology can be regular or
complex and each agent can take on one of two strategies at any
given time: cooperation or defection. The defection strategy
is a selfish action that usually generates a higher payoff [3]
temporally, as in paradigmatic games such as the prisoner’s
dilemma games (PDGs) [4], snowdrift games [6], and public
good games [7]. A basic issue is then how cooperation can
possibly survive when natural selection favors the defection
strategy in order to gain higher individual fitness (at least
temporally). In the past two decades, many cooperation-
facilitating mechanisms have been uncovered, which include
network reciprocity [8], reputation and punishment [9], ran-
dom diffusion [10], success-driven migration [11], memory
effect [12], benefit of noise [13], social diversity [14,15],
asymmetric cost [16], and teaching ability [17].

In most previous works, no death mechanism was incor-
porated in the evolutionary-game model on networks, i.e., no
agent can be removed from the system even if it gains no payoff
in a substantial amount of time [18]. In real-world situations,
an agent can go bankrupt and be eliminated immediately
when its payoff falls below a critical threshold for a certain
period of time. An example is the great economic recession
in 2008, where a large number of financial institutions and
corporations collapsed. In an ecological system, the death of
individuals is a common phenomenon. In this regard, a recent
work [19] has incorporated a simple elimination mechanism
into the evolutionary-game rules. In particular, a tolerance
parameter was assigned to each individual in the network,
which is the lowest allowed payoff. An agent dies and is
removed from the network when its payoff falls below this
threshold. The threshold can be heterogeneously distributed
among agents. It was shown that rapid, cascadelike elimination
of agents can result from such a death mechanism, and a pure

cooperation state can emerge afterwards, where all defectors
are eliminated and the survivors are exclusively cooperators
[19]. One implication is that defectors, despite their advantages
in getting temporarily higher payoffs, may be particularly
vulnerable to large-scale catastrophic failures. These findings
thus suggest that in a complex system where agents are subject
to failure or death, cooperation may be beneficial to mitigating
large-scale breakdown.

In this paper we propose a control scheme to enhance
cooperation and eliminate large-scale failures in complex-
networked systems. Our key idea is that, due to the complex
time evolution of the system, although the payoff of any
agent can inevitably become arbitrarily low, the probability
that the payoff remains low for an extended period of time
will be small. We are thus led to introduce a time tolerance
for each agent, where an agent will not die or be removed
unless its payoff remains below a critical threshold for time
longer than the tolerance. Since the degree distribution of
the network is in general not uniform, it is reasonable that
the time tolerance be degree dependent. A parameter β can
then be introduced to characterize the heterogeneity of the
distribution of the time tolerance, where β = 0 signifies
a completely uniform distribution. Our main result is that
properly chosen time delay can optimize cooperation and
prevent large-scale death. A surprising finding is that optimal
state of cooperation occurs near β = 0, indicating that making
a time-tolerance distribution uniform is an effective strategy
to enhance cooperation.

To impose a time tolerance on a complex network, we
conceive that a node or an agent’s debt capacity depends on its
relative importance in the network. We thus hypothesize the
following relationship between the time tolerance of agent i

and its degree ki [15,20]:

Ti = NT0
k

β

i∑
l k

β

l

, (1)

where N is the total number of agents, T0 is the nominal time
tolerance, and β is an externally control parameter. For β < 0,
agents with higher (lower) degree have lower (higher) time
tolerance; the situation is the opposite for β > 0 and β = 0
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corresponds to a uniform time tolerance in the network. A
large values of Ti means that the node is more resilient to
failure or bankruptcy. A death mechanism can be introduced
for a PDG by choosing the following payoff tolerance for
agent i [19]: P T

i ≡ αP N
i = αki , where agent i dies and is

removed from the network if its payoff is lower than Pi for
consecutive Ti time steps, P N

i is the normal payoff of agent i

when the system is in a healthy state in which all agents are
cooperators, and 0 < α < 1 is a tolerance parameter. Since
an agent’s degree may change when its neighbors die, ki is
the instantaneous degree of agent i. For α = 1 agents have a
zero payoff tolerance to breakdown, while for α = 0 agents
are completely tolerant.

In our evolutionary game model, each time step (iteration)
thus consists of the following four dynamical processes.

(i) Game playing and payoffs. Each agent plays the classical
prisoner’s dilemma game with all its nearest neighbors and the
total payoff is the sum of the payoffs gained in its two-player
games with all other connected agents. The PDG parameters
are chosen to be R = 1, T = b > 1, and S = P = 0 [4].

(ii) Strategy updating. At each time step, agent i randomly
chooses a neighbor j and imitates j ’s strategy with the
probability Wi→j = {1 + exp [−(Pj − Pi)/κ]}−1, where Pi

and Pj are the payoffs agents i and j , and κ is the level of the
agents’ rationality representing the uncertainties in assessing
the best strategy. We set κ = 0.1.

(iii) Failure and agent removal. At each iteration, for agent
i, the time in debt ti increases by 1 if Pi falls below the payoff
tolerance P T

i during the prior ti time steps. Otherwise, we set
ti = 0. Since ki varies with time, P T

i and Ti also change with
time. If ti > Ti or if ki = 0, agent i and all its links will be
removed from the network.

(iv) Random rewiring. For agent i whose neighbor j has
been removed in step (iii), a new connection is added between
agent i and a randomly selected agent in the remaining agents
outside i’s current neighborhood, provided such an agent
exists. This is motivated by the consideration that an agent
in general will try to seek and engage new partners when the
payoffs of some of its current partners become insignificant,
and lack of global information leads to random selection.

Note that dynamical processes (i) and (ii) are conventional
for typical evolutionary-game dynamics [21], but processes
(iii) and (iv) are unique features of our model [22].

In our simulations we use the standard scale-free network
model [23,24] with parameters m0 = 5, m = 5, and average
degree k̄ = 10. The total number of agents is N = 1000. The
initial condition is that both cooperative and defective strate-
gies populate the scale-free network with equal probability.
A synchronous updating scheme is adopted. For the results
that will be presented below, the transient time is chosen to be
10 000 iterations and each data point is obtained by averaging
over 25 independent network realizations with 20 runs for each
realization.

To characterize the behavior of the network dynamics in the
presence of death, we use three quantities: the death rate Sd

(the number of the dead agents in the final state normalized by
the network size) and the asymptotic frequencies of co-
operators ρC and defectors ρD , where Sd + ρC + ρD = 1.
Figures 1(a)–1(f) show, for six combinations of three values
of the control parameter β and two values of the nominal time
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FIG. 1. (Color online) Death rate Sd (red circles) and frequencies
of cooperation ρC (blue squares) and defection ρD (green triangles)
versus the tolerance parameter α for six combinations of three values
of the control parameter β (−1, 0, and 1) and two values of T0 (20
and 100) for b = 1.5.

tolerance T0, the asymptotic values of the three characteristic
quantities versus the profit-tolerance parameter α. We observe
that, while in all cases Sd increases and ρC decreases nearly
monotonically with α, a large value of T0 can delay the
occurrence of total death. In fact, for T0 = 100 there exists
a region of small-α values in which the death rate is nearly
zero and the vast majority of agents are cooperators. For
T0 → ∞, cooperators rule the whole region of 0 � α � 1.
Comparing the three cases of β values, we see that this
interval of sustainable cooperation appears to be the largest
for β = 0, implying that adjusting β can have the effect
of significantly promoting cooperation. Further investigation
shows that during the cascading failure and random rewiring
process, the degree distribution of the network can evolve from
power law to eventually being Poisson.

To demonstrate the ability of control scheme to optimize
cooperation, we explore how the three characteristic quantities
depend on the control parameter β. Figure 2 shows their
behaviors for four combinations of two values of α and T0.
We observe that ρC exhibits a nonmonotonic behavior with
β, indicating that ρC can be optimized by a proper choice
of β and this optimization effect is stronger for larger value
of T0 [Figs. 2(b) and 2(d)]. For example, for α = 0.3 and
T0 = 100 [Fig. 2(b)], for β near zero, the networked system
becomes supercooperative in the sense that almost no agents
die (Sd ≈ 0) and nearly all agents survive as cooperators
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FIG. 2. (Color online) For four combinations of the parameter
values of α and T0, Sd (red circles), ρC (blue squares), and ρD (green
triangles) versus the control parameter β for b = 1.5.

(ρC ≈ 1). The results do not depend on the choices of b and κ .
The revelation that the optimal value of β occurs near zero
is striking: It indicates that distributing the time tolerance
uniformly can be tremendously advantageous to promoting
and sustaining cooperation on the networked system, despite
the highly heterogeneous character of the network topology.
This finding has a certain implication for policy making.
For example, an economic network constituting financial
institutions and banks of various sizes as its nodes may be
subject to catastrophic breakdown [19]. External intervention,
e.g., government bailout, can prevent large-scale breakdown.
Our result indicates that the intervention should be so as to
make the time tolerance as uniform as possible to keep any
agent “alive” after it becomes broke, regardless of the size
of the agent. In particular, given a large and a small bank,
both facing possible bankruptcy, the criterion to determine
the amount of governmental bailout is that they can survive
for approximately the same amount of time before turning
themselves into profitable agents.

We now present a heuristic argument to understand the
mechanism of cooperation optimization. It is useful to rank
the nodes into three classes according to their degree values.
From Eq. (1) and the degree distribution of the Barabási-Albert
network P (k) = 2m2k−3, we obtain a power-law distribution
of the time tolerance T as

P (T ) = 2m2

[(∑
l k

β

l

NT0

)−3/β]
T −3/β . (2)

From the expression of the degree distribution P (k), we obtain

k̄β =
∫ kL

kS

2m2k−3kβdk = 2m2

β − 2

(
k

β−2
L − mβ−2

)
, (3)

where kL and kS = m denote the largest and smallest degree
value in the network, respectively. From Eqs. (1) and (3) we
get the dependence of an agent’s time tolerance T (k) on its

degree value k as

T (k) = NT0
kβ∑
l k

β

l

= T0
kβ

k̄β
= T0k

β

2m2

β−2

(
k

β−2
L − mβ−2

)
and hence

dT (k)

dβ
= 2m2T0k

β

[
2m2

β−2

(
k

β−2
L − mβ−2

)]2 [f (kL) − f (m)], (4)

where

f (x) ≡ xβ−2

β − 2

(
ln

k

x
+ 1

β − 2

)
(m � x � kL). (5)

We have df/dx = xβ−3 ln (k/x). For the agent with the largest
(or the smallest) degree value, i.e., k = kL (or m), the sign of
df/dx is fixed in the open interval (m,kL) of x and accordingly
f (x) is a monotonic function. For k = kL we have k � x,
thus df/dx � 0 holds. The situation df/dx = 0 occurs if
and only if x = kL and subsequently f (x) monotonically
increases with x. Since kL > m we have f (kL) − f (m) > 0
and correspondingly dT (k)/dβ > 0. This means that the time
tolerance of the network’s largest-degree node monotonically
increases with β. By the same argument, the time tolerance
of the smallest-degree agents decreases monotonically with
β. This means that the agents with the largest-degree value,
which play a critical role in maintaining cooperation [24], and
the agents with the smallest-degree values, which account for
the majority of the system population, do not play a significant
role in optimizing cooperation. Note that the effects are in fact
insignificant, as can be seen from Fig. 2, where ρC , ρD , and
sd vary nonmonotonically with the control parameter β. Since
T (m) and T (kL) exhibit a monotonic behavior (which can be
argued analytically), the nonmonotonic behavior in ρC , ρD ,
and sd is unlikely to be caused by the behavior of T (m) and
T (kL). In fact, it is caused by the nonmonotonic behavior of
T (k) for m < k < kL.

The key to cooperation optimization thus lies in the nodes
of medium degrees. In particular, for m < k < kL the sign of
df (x)/dx becomes indeterminate and accordingly the sign of
dT (k)/dβ cannot be determined. The dependence of T on β for
agents with different degrees can be studied numerically. We
find that, except for the smallest- and highest-degree agents,
T is typically a convex function of β. Since the time-tolerance
values for the agents with medium degrees peak near β = 0, as
shown in Fig. 3, the corresponding agents live longer than other
agents. Since the peak values of T are not much larger than
the nominal value T0, a slight increase in the medium-degree
agents’ lifetimes can help stabilize cooperation. The lifetimes
of the medium-degree agents are thus critically important for
promoting cooperation [15].

In summary, we find that in complex-networked systems
where agent interactions are governed by evolutionary-game
dynamics but agents are subject to death, an effective control
scheme can be introduced to optimize cooperation, which
has the advantage of stabilizing the system by preventing
large-scale cascading failures. The key to our control scheme is
a time tolerance that prevents any agent from being removed
from the system immediately when its payoff falls below a
threshold. Our computation and heuristic analysis indicate
that, despite the network’s being highly heterogeneous, making
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FIG. 3. (Color online) Time tolerance T (k) (left) and its derivative dT (k)/dβ (right) versus the control parameter β for T0 = 20.

the time tolerance as uniformly as possible across the network
can lead to the emergence of a stable cooperation cluster
that has recruited the majority of agents in the network.
Simultaneously, the death of a substantial number of agents
can be avoided. This finding may have implications in policy
making to prevent, for example, large-scale breakdown of
social and economic systems. The emergence and evolution of
cooperation in complex systems have been recognized as fun-
damental issues in natural, social, and economic sciences [1]

and our work provides insights into the control of complex
dynamical systems in terms of critical issues such as stability,
performance, and sustainability.
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