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We propose a strategy for achieving maximum cooperation in evolutionary games on complex networks.
Each individual is assigned a weight that is proportional to the power of its degree, where the exponent � is an
adjustable parameter that controls the level of diversity among individuals in the network. During the evolu-
tion, every individual chooses one of its neighbors as a reference with a probability proportional to the weight
of the neighbor, and updates its strategy depending on their payoff difference. It is found that there exists an
optimal value of �, for which the level of cooperation reaches maximum. This phenomenon indicates that,
although high-degree individuals play a prominent role in maintaining the cooperation, too strong influences
from the hubs may counterintuitively inhibit the diffusion of cooperation. Other pertinent quantities such as the
payoff, the cooperator density as a function of the degree, and the payoff distribution are also investigated
computationally and theoretically. Our results suggest that in order to achieve strong cooperation on a complex
network, individuals should learn more frequently from neighbors with higher degrees, but only to a certain
extent.
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I. INTRODUCTION

Cooperation is ubiquitous in a variety of complex systems
ranging from natural to economical and social systems �1�.
However, understanding the emergence and persistence of
cooperative behaviors remains a challenge. In this regard,
evolutionary game theory has provided a suitable mathemati-
cal framework to address this fundamental phenomenon in
complex systems �2,3�. For example, games such as the pris-
oner’s dilemma game �PDG� and the snowdrift game �SG� as
a paradigm to explain cooperative behaviors through pair-
wise interactions �4� have been studied �5�. A more general
model for cooperation among social species, including hu-
man behaviors ranging from family relations to global warm-
ing �6�, is the public goods game �PGG� that allows more
general group interactions. In a typical PGG played by N
individuals, each individual can choose to cooperate or de-
fect. Cooperators, denoted by C, contribute an amount c to
the PGG, while defectors �D� do not contribute. The total
contribution is multiplied by a factor r, and is then redistrib-
uted uniformly among all players. Similar to the situation
associated with PDG and SG, defection represents the domi-
nant strategy leading to the deterioration of cooperation. This
somewhat generates a dilemma, as cooperation has been
widely observed in all kinds of complex systems.

To resolve the dilemma associated with the PGG, exten-
sive research has been carried out in the past few years
�7–13�. In Ref. �7�, voluntary participation is introduced into
the PGG, which results in a substantial and persistent will-
ingness to cooperate. In Ref. �8�, voluntary participation in
PGG on a square lattice is studied with the result that the
introduction of loners who refuse to participate and rather
rely on some small but fixed income leads to a cyclic domi-
nance of strategies and promotes substantial levels of coop-

eration. The effects of inhomogeneous activity in the PGG
have been studied in Ref. �12�, where the cooperation level is
found to be considerably enhanced. Quite recently, social
diversity has been introduced by means of heterogeneous
graphs �13�. It is found that diversity associated with the
number and the size of the PGG, where each individual par-
ticipates and contributes to each game, can promote strong
cooperation. This finding is quite surprising as that coopera-
tion can be remarkably facilitated in the absence of other
mechanisms based on, for example, reputation and punish-
ment �14–16�.

In this paper, we investigate, quantitatively, the effects of
individual diversity on the emergence and the evolution of
cooperation in the framework of evolutionary games. Our
main motivation comes from the realization that, while di-
versity can promote cooperation, too much diversity will not
be desirable for cooperation. There must then exist an opti-
mal level of diversity for which the degree of cooperation is
maximized. An analogous situation occurs in physics: sto-
chastic resonance �17�, where a proper level of noise can
result in better system response to, for example, weak peri-
odic signals, but too much noise will certainly not be benefi-
cial. An approach to addressing diversity is to consider PGG
on complex systems consisting of heterogeneous individuals
�13�. For convenience, we choose scale-free networks that
typically exhibit a high level of heterogeneity, e.g., in the
degree distribution. To incorporate heterogeneity in the PGG,
we introduce diversity in the strategy updating according to
the degrees of the individuals �nodes� in the network. This is
reasonable because updating rules play an important role in
the evolution of cooperation, where individuals can update
their strategies by adopting different rules in the evolutionary
game. For example, in �18�, a stochastic evolutionary rule is
proposed: when updating strategy, each individual randomly
selects one of its neighbors to refer to, and adopts the strat-
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egy of the reference with a probability determined by their
payoff difference.

Due to the existence of social diversity �19�, the impact of
different individuals can be different. For example, leaders
may have stronger influence than others and may be fol-
lowed more frequently. That is, different neighbors can have
different impacts on one’s behavior. As a result, the selection
of a neighbor as a reference by an individual is usually not
completely random in the decision-making process �20–22�.
Our approach is then as follows. We incorporate the hetero-
geneous network topology in strategy updating by assuming
a preferential imitation rule so that the evolution of coopera-
tive behavior in the PGG can be addressed in a quantitative
manner. Specifically, each individual i is assigned a weight
ki

�, where ki is the degree of the individual and � is an
adjustable parameter which we call the diversity parameter.
During the evolutionary process, every individual chooses
one of its neighbors as a reference with a probability propor-
tional to the neighbor’s weight. We find that, in general, there
exists an optimal value of � that leads to the highest level of
cooperation, in agreement with physical intuition. To place
the finding on a solid foundation, we work out a physical
theory, aided by numerical computations, to explain the ex-
istence of the optimal cooperation. Relevant phenomena
such as the payoff as a function of node degree and the
wealth distribution are also investigated. An encouraging re-
sult is that our analysis naturally yields a power-law wealth
distribution but with an exponential start-off, which has been
observed in real-world complex systems.

In Sec. II, we introduce our strategy updating rule in
PGGs on scale-free networks and present numerical observa-
tions for the resonancelike phenomenon of the emergence of
optimal cooperation. In Sec. III, a physical theory is pre-
sented to explain the phenomenon. Discussions are presented
in Sec. IV.

II. MODEL AND NUMERICAL EVIDENCE
FOR OPTIMAL COOPERATION

According to Ref. �13�, each individual i participates in
interactions in ki+1 neighborhoods that center about i and its
ki neighbors, where each neighborhood contains a central
node and all nodes that are directly connected to it. Each
cooperator contributes a total cost c=1 shared equally among
all the neighborhoods that it engages. The strategy is sx=1 if
a C game is played and sx=0 if a D game is played. The
payoff of an individual x with strategy sx associated with the
neighborhood centered at an individual y is given by

mx,y =
r

ky + 1�
i=0

ky si

ki + 1
−

sx

kx+1
, �1�

where i=0 stands for y, si is the strategy of the neighbor i of
y, and ki is its degree. The total payoff of player x is

Mx = �
y��x

mx,y , �2�

where �x denotes the community of neighbors of x and it-
self. In our model, each individual i is assigned a weight ki

�.

During the evolution, each individual chooses one of its
neighbors as a reference with a probability proportional to
the neighbor’s weight, i.e., the probability Ax→y of x select-
ing a neighbor y is

Rx→y =
ky

�

� jkj
� , �3�

where the sum is over all neighbors of x. For ��0��0�,
high-degree �low-degree� individuals have larger probabili-
ties to be selected as references. In the case of �=0, indi-
viduals are chosen randomly and uniformly as references for
a neighbor. Our weighted selection rule is related with those
in Refs. �23,24�. In particular, in Ref. �23�, the player has a
specific strategy-passing capacity, and reproduction restric-
tion in the PD game has been studied in Ref. �24�. After a
neighbor y is selected, player x adopts y’s strategy sy with the
probability:

W�sx → sy� =
1

1 + exp��Mx − My�/��
, �4�

where � denotes the amplitude of noise. Following previous
studies �19,25–28�, we set �=0.1.

To incorporate diversity in our model, we assume that
players are nodes in a standard scale-free network �29�. In
the network model, there are m0 nodes initially. At each time
step, a new node with m edges is added and preferentially
attached to m existing nodes with probabilities proportional
to the degrees of existing nodes. The average connectivity of
the network is controlled by m, i.e., �k�=2m, and the degree
distribution is power law with the exponent −3. In all simu-
lations, the population is set to be N=2000 and the average
connectivity is �k�=4. Initially, the two strategies, C and D,
are randomly distributed among the individuals with equal
probability 1/2. An indicator of the final degree of coopera-
tion is the cooperator density 	c in the steady state, which is
the fraction of the population involved in cooperation. In all
simulations, 	c is obtained by averaging over the last 2000
Monte Carlo time steps from a total of 30 000 steps. Each
data point results from 20 different network realizations with
20 runs for each realization.

Figure 1 shows 	c as a function of the multiplication fac-
tor r �
1� for different values of �. It can be seen that, for
fixed r, different values of � can affect the final cooperation
level dramatically. For ��0, 	c vanishes below some thresh-
old values of r. For ��0, cooperation can survive even for
r=1. To characterize the effect of varying � on cooperation,
we plot 	c as a function of the diversity parameter � for
different values of r, as shown in Fig. 2. The phenomenon of
optimal cooperation is unequivocal: for fixed value of r,
there exists an optimal value of � for which 	c is maximized.

We also observe that the payoffs of players can be quite
different due to the difference in the number of groups that
they participate in. This leads to a biased effect of noise � on
the strategy updating as determined by Eq. �4�. Thus, for
nodes with different degrees, a fixed value of � effectively
corresponds to different noise amplitudes. To eliminate the
bias of noise effect on the strategy updating and to test the
robustness of the phenomenon of optimal cooperation, we
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study the dependence of 	c on � by adopting normalized
payoffs in Eq. �4�. In particular, an arbitrary individual i’s
payoff is normalized by ki+1, the number of groups that i
belongs to. Simulation results are shown in the inset of Fig.
2. We see that 	c still peaks at some specific value of � and
the phenomenon of the occurrence of optimal cooperation is
robust.

III. PAYOFF PROPERTIES AND OPTIMAL COOPERATION

In the emergence of cooperation in PGGs, the standard
approach is the mean-field theory. The main result in the
literature �30–32� is that, for a well-mixed population to
which the mean-field approximation is applicable, coopera-
tion eventually dominates for r�N for random mixture of
initial conditions �i.e., equal initial probabilities of playing C
and D�. The opposite occurs for r�N. These results, how-
ever, do not explain the optimal-cooperation phenomenon as
exemplified in Fig. 2.

A. Relation between individual degree and payoff

To explain Fig. 2, we first investigate the role of hub
nodes by computing the payoffs that hubs gain. It has been

pointed out that in a scale-free network, the hubs �high-
degree individuals� play a prominent role in maintaining the
cooperation �13,33,34�. As shown in Fig. 3, for high-degree
individuals, payoffs are apparently linearly correlated with
their degrees, but for low-degree nodes, deviations from the
linear behavior occur. These behaviors can in fact be ex-
plained in the framework of mean-field theory. In particular,
assuming that the frequency of cooperation is given by 	c,
we can express the payoff mx,y as

mx,y =
r

ky + 1
��

i=1

N

Aiy
	c

ki + 1
+

	c

ky + 1
	 −

	c

kx + 1
, �5�

where Aiy is the adjacency matrix of the underlying network.
Neglecting the degree-degree correlation, we have

�
i=1

N

Aiy
1

ki + 1
= ky �

kmin

kmax

P�k�
ky�
1

k� + 1

= ky �
kmin

kmax k�P�k��
�k�

1

k� + 1

= ky� k

k + 1
�/�k� , �6�

where �·� denotes the average of all nodes, P�k�� is the de-
gree distribution of network nodes, P�k� 
ky� is the joint de-
gree distribution defined by P�k� 
ky�=k�P�k�� / �k�, and the
identity

�
kmin

kmax

P�k��
k�

k� + 1
= � k

k + 1
� �7�

has been used. Substituting Eq. �6� in Eq. �5�, we obtain

mx,y = 	c
 r

�k�� k

k + 1
� ky

ky + 1
+

r

�ky + 1�2 −
1

kx + 1
� . �8�

The total payoff is then given by

FIG. 1. �Color online� Steady-state cooperator density 	c versus
the multiplication factor r for different values of �.

FIG. 2. �Color online� Steady-state cooperator density 	c as a
function of � for different values of r. Apparently 	c can be opti-
mized by the diversity parameter �. The inset is 	c versus � for r
=3.5 for the case where normalized payoffs are used.

FIG. 3. �Color online� Payoff as a function of degree for differ-
ent values of � when the system’s cooperation level is stable. The
multiplication factor is r=1.6. The solid curves are theoretical re-
sults from Eq. �9�. The dashed line is of unit slope.
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Mx = �
y=1

N

Axymx,y + mx,x

= 	c� r� k

k + 1
�

�k� �
y=1

N

Axy
ky

ky + 1
+ r�

y=1

N

Axy
1

�ky + 1�2 −
kx

kx + 1

+
rkx

kx + 1

� k

k + 1
�

�k�
+

r

�kx + 1�2 −
1

kx + 1�
= 	c
 r

�k�2� k

k + 1
�� k2

k + 1
�kx +

r

�k�� k

�k + 1�2�kx

+
r

�k�� k

k + 1
� kx

kx + 1
+

r

�kx + 1�2 − 1� , �9�

where the numerically observed dependence of 	c on the
selection parameter � has been used. Predictions from Eq.
�9� for the different values of � in Fig. 3 are shown as solid
curves. We observe a good agreement with the numerical
data. The linear degree-payoff relation can be obtained by
setting kx�1 in Eq. �9�. We obtain

Mx � 	c
 r

�k�2� k

k + 1
�� k2

k + 1
�kx +

r

�k�� k

�k + 1�2�kx

+
r

�k�� k

k + 1
� − 1� . �10�

B. Distribution of payoff

Based on Eq. �9�, we can derive the distribution of payoff,
denoted by P�M�. It is also named wealth distribution in
economics where an individual’s wealth is determined by
payoff. In general, we have

P�kx�dkx = P�M�dM , �11�

where P�kx� is the node degree distribution. For the standard
scale-free network, we have P�kx�=2kmin

2 kx
−
 with 
=3. From

Eq. �9�, we have

dkx

dM
= 
 	cr

�k�2� k

k + 1
�� k2

k + 1
� +

	cr

�k�� k

�kx + 1�2�
−

	cr

�k + 1�2�k�� k

k + 1
� −

2	cr

�kx + 1�3�−1

. �12�

The wealth distribution can then be obtained as

P�M� = P�kx�
dkx

dM
= G0�kx��kx�M��−
. �13�

In general, the coefficient G0�kx� depends on kx and it is
given by

G0�kx� = kmin
 	cr

�k�2� k

k + 1
�� k2

k + 1
� +

	cr

�k�� k

�k + 1�2�
−

	cr

�kx + 1�2�k�� k

k + 1
� −

2	cr

�kx + 1�3�−1

. �14�

For high-degree nodes, G0 is independent of kx and it is
given by

G0 � kmin
 	cr

�k�2� k

k + 1
�� k2

k + 1
� +

	cr

�k�� k

�k + 1�2��−1

.

�15�

Simulation results for the wealth distribution are shown in
Fig. 4, which are consistent with the theoretical analysis. We
note that the “fat-tail” power-law wealth distribution ob-
tained here reproduces the empirical data from financial mar-
ket �35� fairly well.

C. Occurrence of optimal cooperation

First, for ��0, low-degree individuals have a larger
probability to be selected to refer to. When r is small, e.g.,
r�3 �the smallest group size in our present model�, even the
smallest group does not favor cooperation. In this case,
learning from low-degree individuals who occupy most
nodes in the network cannot promote cooperation. Second,
note that, since hubs usually have much higher payoffs, their
strategies will dominate their neighbors. As a result, for in-
termediate values of � �say, near the optimal value�, low-
degree individuals around the defector hub �D-hub� would
prefer to select D-hubs as references. As a result, the number
of cooperators around a D-hub decreases rapidly, reducing
quickly payoff for the hub. The payoffs of C-hubs can also
decrease, but the decreases are typically insignificant. This is
so because on a scale-free network, hubs share few neighbors
so that most of the C-hub neighbors tend to follow the
C-strategy. As a result, D-hubs become vulnerable to coop-
erators. Once an original D-hub is occupied by a cooperator,
its neighbors will subsequently take the strategy of coopera-

FIG. 4. �Color online� Cumulative payoff distribution for differ-
ent values of �. The distribution is obtained after the cooperation
density becomes stable. The multiplication factor is set to be r
=1.6. Solid curves are theoretical predictions from Eq. �13�.
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tion, prohibiting the diffusion of defection. Third, for large
values of �, the probabilities for some hubs to be selected as
references are also large. As a result, they pass their strate-
gies to the majority of nodes that can act only as receivers.
Exchanges of strategies among hubs are thus intensified, giv-
ing D-hubs better chances to survive. Note that the impor-
tance of information exchange among hubs for the emer-
gence and persistence of cooperation has already been
investigated in Refs. �36,37�. Combining all three regimes of
�, we can expect the existence of an optimal value of � that
leads to a maximum degree of cooperation.

To provide support for the above scenario, we construct a
special scale-free network where the highest-degree node has
103 connections and the second highest-degree node has 99
connections, and the two hub nodes are connected. Initially,
only the highest-degree individual is a defector and all the
other individuals are cooperators. We then compute the co-
operator densities in the neighborhoods of the two hubs as
functions of time, as shown in Figs. 5�a�–5�c�. From Fig.
5�a�, we see that, for �=1, the cooperative neighbors around
the C-hub only decrease by about 10% under the influence of
the D-hub, and the cooperation density in the D-hub’s neigh-
borhood decreases rapidly initially and then increases to
unity. At the turning point, the D-hub is occupied by a coop-
erator. For �=6 �Fig. 5�b��, the cooperator density in the
C-hub’s neighborhoods remains high at the initial time step,
but after the second time step, the number of cooperators
around the C-hub decreases rapidly, indicating that a defector
has taken over the C-hub. Figure 5�c� shows the evolution of

the cooperator density 	c for the entire network for �=1 and
�=6, where the initial condition is that there is a single de-
fector at the highest-degree node. One can see that for �=1,
	c decreases at the beginning and then increases to a high
value. For �=6, 	c decreases to a low value.

These results demonstrate the importance of information
exchange between the two hubs and how the C-hub prevents
the propagation of the defection strategy from the D-hub. For
�=6, because of the high weight of the D-hub, nearly all the
neighbors of the D-hub choose it as a reference, including
the C-hub with the second largest degree. Due to the higher
payoff of the D-hub, all its neighbors become defectors at the
second step, as shown in Fig. 5�b�. At the next step, all
cooperating neighbors of the hub with the second largest
degree become defectors and finally defection spreads to
nearly the entire network. This indicates that strong influence
of hubs can facilitate defection. For �=1, since the D-hub’s
weight is not so strong, it is not chosen by the C-hub despite
that a large part of neighbors imitate the D-hub. As a result,
the cooperator density around the D-hub decreases to about
0.3, but 	c around the C-hub changes a little, as shown in
Fig. 5�a�. At the next step, the D-hub’s payoff is considerably
reduced due to the death of many of its neighboring coop-
erators. Once the D-hub selects the C-hub, the D-hub will
definitely change to be a cooperator and the spread of defec-
tion is prevented. The neighbors of the largest-degree hub
finally become cooperators again, as shown in Fig. 5�c�.
From this analysis, we can infer that appropriate weights of
hubs can induce optimal cooperation. Indeed, our simulation
results show that the optimal value of the weight parameter �
is about 1 and depends weakly on the value of r.

Figure 6 shows, for different values of �, the density 	c
versus the degree variable k. We see that both high-degree
and very low-degree nodes tend to possess high cooperation
density, while the nodes with medium degrees are more
likely to be defectors. As we have discussed, for intermediate
values of �, the C-strategy is more stable for hub nodes than
the D-strategy so that cooperators dominate high-degree
nodes, as displayed in Fig. 6. For a scale-free network, low-
degree nodes are the majority and they are usually neighbors
of high-degree nodes. These nodes will then be influenced by
hubs and imitate their C strategy. As a result, very low-

FIG. 5. �Color online� Times series of cooperator density in
hubs’ neighborhoods for �a� �=1 and �b� �=6. �c� Time series of
cooperator density 	c for the entire network for �=1 and �=6. The
network size is 2000 and the average connectivity is �k�=4. For �a�
and �b�, open circles and open squares indicate evolutions of coop-
erators around the highest-degree and the second highest-degree
node, respectively, where the two hubs are connected and share five
neighbors. Initially only the highest-degree individual is a defector
and others are cooperators. The multiplication factor is r=1.2 and
each data point is obtained by averaging over 50 runs.

FIG. 6. �Color online� For r=1.6, cooperator density 	c as a
function of degree for different values of �.
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degree nodes can also present relatively high cooperation
density. For the medium degree nodes, they can gain more
payoffs from their low-degree cooperator neighbors if they
adopt the D-strategy. As a result, they are occupied by more
defectors.

In the above analysis, we assume that each cooperator
contributes the same total cost c=1, equally shared among
all the neighborhoods that it engages, such that the individual
contribution of each cooperator is independent of the number
of social ties �13�. In the opposite limit considered in Ref.
�13�, every cooperator contributes a cost c=1 in every neigh-
borhood that it engages. In this case, the total contribution of
each cooperator i is equal to ki+1, effectively the number of
its social ties. While we have found optimal cooperation in
the PGG in the former limit, a question is whether the same
occurs in the latter case. An affirmative answer is provided in
Fig. 7. Cooperation depending � for the case of normalized
is studied as well, as shown in the inset of Fig. 7. The exis-
tence of optimal cooperation induced by preferential imita-
tion is thus a robust phenomenon, regardless of whether the
contribution of cooperators is related to the number of their
social ties and whether payoffs are normalized �38�.

IV. CONCLUSION AND DISCUSSIONS

We have developed a framework to investigate the phe-
nomenon of diversity-promoted cooperation in evolutionary

game theory. This is motivated by the previous qualitative
finding that cooperation among individuals can be enhanced
by diversity among them. The phenomenon is somewhat
counterintuitive because naively, one would expect coopera-
tion to be favored among individuals of similar characteris-
tics. However, it is intuitively reasonable that cooperation
would not benefit if diversity is too strong. To resolve this
dilemma, it is necessary to be able study the interplay be-
tween diversity and cooperation in a quantitative manner.

To quantify the degree of diversity, we take advantage of
complex networks and tacitly assume that all individuals
�game players� are connected with each other, exhibiting
some heterogeneous connectivity �degree� distribution. The
setting is in fact quite general as cooperation typically occurs
on networked systems. To be able to systematically assess
the effect of diversity on cooperation, we have introduced a
diversity parameter in strategy updating. We have found that
a maximal degree of cooperation can be achieved for an
optimal level of diversity. The key to understanding this
resonancelike phenomenon lies in the role played by highly
connected individuals, or hubs, in the game. In particular,
while hubs are usually occupied by cooperators for moderate
level of diversity, which leads to strong cooperation, we find
that defectors can take over the hubs if the individual game
players are too diverse. We have also addressed the related
issue of payoff distribution and obtained a theoretical predic-
tion that is matched by realistic distributions. Evolutionary
games are an important tool for understanding a large array
of phenomena in complex systems, and our results have pro-
vided new insights into the role played by diversity in pro-
moting cooperation.
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