
Transient disorder in dynamically growing networks

Rui Yang,1 Liang Huang,1 and Ying-Cheng Lai1,2

1Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287, USA
2Department of Physics, Arizona State University, Tempe, Arizona 85287, USA

�Received 18 August 2008; revised manuscript received 11 December 2008; published 2 April 2009�

When a certain “seed” disturbance begins to spread on a large network, the number of nodes infected is a
function of time. Regarding the set of infected nodes as constituting a dynamic network that evolves continu-
ously in time, we ask: how does the order in the collective dynamics of the network vary with time? Utilizing
synchronizability as a measure of the order, we find that there exists a time at which a maximum amount of
disorder corresponding to a minimum degree of synchronizability can arise before the system settles into a
more ordered steady state. This phenomenon of transient disorder occurs for networks of both regular and
complex topologies. We present physical analyses and numerical support to establish the generality of the
phenomenon.
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I. INTRODUCTION

The occurrence of a temporally disordered state before a
more ordered state is reached is a common phenomenon in
nonlinear dynamical systems. In the case of transient chaos,
for example, starting from a random initial condition a tra-
jectory typically exhibits chaotic behavior for a finite amount
of time before settling into a regular asymptotic state such as
a periodic attractor �1�. Such behaviors occur in many physi-
cal, chemical, and biological systems �2�. In a large network,
temporal disorder can also arise when it subjects to sudden
perturbations. Take, for example, a social network. When a
disturbance �e.g., a virus� first occurred, confusion can arise
so that the network is more likely to be in a disordered state.
However, as individuals in the network get educated about
the nature, the cause, and possible consequences of the epi-
demic, often they can become adaptive to it. As a result, the
networked system tends to enter a more ordered �or stable�
state �3�.

In this paper, we address the phenomenon of transient
disorder in large networks. Our approach is to consider a
generic type of spreading dynamics on networks, the so-
called contact process �4–6�, and define a dynamically
evolving oscillator network or simply dynamic network,
which encompasses all infected nodes at any given instant of
time. Such a network is dynamic because, as the spreading
process continues, the set of infected nodes evolves, so does
the corresponding network. To characterize the order of the
network in a quantitative manner, we make use of the con-
cept of synchronizability �7–10� that is determined by the
eigenvalue spectrum of the coupling matrix of the network.
In particular, we regard a network as more ordered if its
synchronizability is stronger. This approach thus allows us to
map the phenomenon of transient disorder, as in the afore-
mentioned example of virus spreading in a social network,
into a model framework that can be analyzed quantitatively.
Our analysis and numerical computations reveal that tran-
sient disorder, or weak synchronizability, is a general phe-
nomenon in large networks, as its occurrence is independent
of the network topology.

In Sec. II, we describe a generic model for spreading dy-
namics and the synchronization-based approach. In Sec. III,

we present results and analytic predictions with respect to
dynamical evolution of the synchronizability for regular
backbone networks. Two types of connecting topologies will
be analyzed: lattice and ring, as they are relevant to dynamic
networks generated by the spreading in different phases. In
Sec. IV, we treat complex backbone networks with random
and scale-free topologies. Conclusions and a brief discussion
are presented in Sec. V.

II. MODEL

We consider the general contact-process model first pro-
posed by Harris �4� and recently adopted to complex net-
works �5�. The process starts from a random initial seed, i.e.,
a randomly selected infected node. For convenience, we say
that when a node is infected, it carries a “particle” that can
survive for a finite amount of time. Here, we assume that the
lifetime of a particle is significantly larger than the charac-
teristic time for the whole network to get infected so that,
practically, we can set the particle lifetime to be arbitrarily
large. At each time step, with probability Ps every existing
particle generates an “offspring” that can leave the “parent”
node to infect one of its neighbors. Specifically, suppose
node vi carries a particle at time T. A node v j from vi’s
immediate neighbors �the set of nodes that are directly con-
nected to vi� is chosen randomly. If v j is not infected �or
empty�, a new particle is generated at v j. Otherwise, if v j is
already occupied by a particle, its state remains unchanged.
For Ps�0, eventually all nodes in the network will be in-
fected, but the time it takes for this to occur depends on Ps:
the smaller the value of Ps, the longer it takes for the entire
network to be infected. Let this time be T0. Thus for any T
�T0, there is one connected subnetwork, which contains all
the infected nodes and their links, and we can address the
degree of order associated with the collective dynamics on
the subnetwork. Here we utilize the synchronizability as a
measure of the order.

The ability for a network to be synchronized is deter-
mined by the eigenvalue spectrum of the coupling matrix. It
has been known that the synchronizability can be character-
ized by the eigenratio R��N /�2, where �N and �2 are the
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largest and the smallest nontrivial eigenvalues �7–10�. In
general, the smaller the value of R, the more probable that
the network can be synchronized. Examining the two key
eigenvalues for dynamic networks as induced by spreading
can then lead to an assessment of the evolution of the degree
of synchronizability with time. In this paper we focus on
three types of network topologies: regular, random, and
scale-free.

III. REGULAR NETWORKS

To gain insight, we consider a one-dimensional ring type
of network, where every node is connected to m nearest
neighbors, and so the average degree �the number of links a
node has� is �k�=m. For such a regular backbone network, a
seed infection starting from a single node will initially spread
to a subnetwork that has a lattice structure: the boundaries at
both ends are open, but eventually the whole ring network
will be infected so that the boundary conditions become pe-
riodic. Figure 1�a� shows the evolution of the eigenratio of
the dynamic network with time for three different values of
the spreading probability Ps. The size of the backbone net-
work that supports the spreading dynamics is N0=1000 and
the average degree is �k�=100. We observe that, for all three
cases, R first increases, reaches a maximum at a particular
time, then decreases and approaches a constant value, indi-
cating a transient phenomenon. A constant R value indicates
that the dynamic network has reached a steady state. To fa-
cilitate analysis, we observe that the size of the infected net-
work, denoted by N, is a nondecreasing function of time.
Thus, if we plot the eigenratio as a function of the network
size N, we expect to observe a local maximum for certain
value of N. Since an infected network of certain size can be
reached in different times for different values of Ps, examin-
ing the properties of the network with respect to its size
effectively disregards any detailed information about the tim-
ing of the infection spreading. Thus, the plot of R versus N
should not depend on the specific details of the spreading
dynamics. Such a result is shown in Fig. 1�b�, where we see
that the three data sets in Fig. 1�a� have collapsed into a
single universal data set in the R-N plot. The main advantage
of focusing on the R-N relation is that it can be obtained
analytically for different network topologies, yielding in-
sights into the universal occurrence of transient disordered
states in network dynamics.

A. Lattice topology

In the initial phase of the spreading process, approxi-
mately, a dynamic network has a lattice topology: it is open
on both ends. It is thus useful to examine the spectral prop-
erties of the lattice type of regular networks. The coupling
matrix G is given by Gij =−1 for �i− j��m /2 and i� j, Gij
=0 for �i− j��m /2, and Gii=ki, where ki=m is the degree of
node i. For such a network of size N, we find numerically
that the ith component of any eigenvector e of the coupling
matrix has the following approximate form:

ei 	
 2

N
cos� f�i

N
+ �� , �1�

where i=1, . . . ,N, f is the basic spatial Fourier frequency
�0� f �N�, and � is the phase shift depending on the bound-
aries. The deviations of ei in Eq. �1� from the actual eigen-
vector components occur mainly near the boundaries, i.e., for
i
1 or i
N, which can be neglected if N is large. The
eigenvector is normalized: �ei

2=1. By definition, the eigen-
values satisfy the eigenequation �e=G ·e �11�. For the eigen-
value associated with the spatial frequency f , we have �ei
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FIG. 1. �Color online� For the ring backbone network of N0

=1000 nodes and average degree �k�=100, �a� evolution of the
eigenratio as a function of time for three values of the infection
probability: Ps=0.5 �circle�, 0.8 �triangle�, and 1.0 �square�, �b� R
versus the size of the infected network, which is apparently inde-
pendent of the value of Ps, and �c� eigenvalues �2 and �N versus N.
The solid curves are analytic predictions. The existence of the local
maximum in R for large N can be explained theoretically by noting
that a crossover from the lattice to the ring behaviors necessarily
occurs for dynamic networks of large sizes �see Sec. III B�. Here,
all simulation results are obtained by averaging over 100 indepen-
dent runs of the infection dynamics. For regular networks, since the
network structure is fixed for given size and average degree, en-
semble average using different network realizations is not
necessary.
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= �G ·e�i. Expanding the right-hand side yields

�G · e�i 	
 2

N��m + 1�cos� f�i

N
+ ��

− �
j=−m/2

m/2

cos� f��i + j�
N

+ ��� , �2�

where m /2� i�N−m /2. Elementary algebra gives the fol-
lowing result for the summation in Eq. �2�,

�
j=−m/2

m/2

cos� f��i + j�
N

+ ��
=

sin��m + 1�f�/�2N��
sin�f�/�2N��

cos�� +
fi�

N
� .

We thus obtain

�G · e�i 	 �m + 1 −
sin��m + 1�f�/�2N��

sin�f�/�2N�� �ei, �3�

which gives

� 	 m + 1 −
sin��m + 1�f�/�2N��

sin�f�/�2N��
. �4�

For �2 and e2, the spatial frequency is f2=1. We obtain

�2 	 m + 1 −
sin��m + 1��/�2N��

sin��/�2N��
. �5�

For �N, the value of the underlying spatial frequency fN
depends on network parameters. Generally, the dependence
of � on f has an attenuated wave form, and the largest value
occurs at the first maximum �Fig. 2�. Setting d� /df =0 yields
the following transcendental equation for determining fN:

m + 1 =
tan��m + 1��f/�2N��

tan��f/�2N��
. �6�

Numerically, we find that this equation has multiple roots in
f at the local maxima and minima of ��f�. To obtain esti-
mates of the roots, we note that for m�1, the period of the
function tan��f / �2N�� in the denominator is much larger
than that of the numerator tan��m+1��f / �2N��. Thus, in a
single period of tan��m+1��f / �2N��, the denominator can be
regarded as a constant. Since m�1, Eq. �6� stipulates that
the numerator be large. This can be achieved for

�m + 1��f/�2N� 	 �j + 1/2�� ,

where j is an arbitrary integer �Fig. 2�. Note that f =0 is also
a solution, which corresponds to the trivial minimum eigen-
value �=0. The first peak occurs for j=1, i.e.,

�m + 1��f/�2N� 	 �1 + 1/2�� ,

which gives f =3N / �m+1�� fp. We can use fp as an approxi-
mation of fN,

fN 	
3N

m + 1
,

as shown in Fig. 2�a�. Moreover, since the slope of ��f� at �N
is zero, a small deviation in f will lead to a much smaller
variation in �, indicating that the solution so obtained is
stable. Substituting fN back into Eq. �4�, we obtain the fol-
lowing approximation for �N:

�N 	 m + 1 + �sin
3�

2�m + 1��−1

. �7�

Our derivation is based on the assumption that the eigenvec-
tors have approximately sinusoidal forms, which neglects
possible effects on the vectors from about 2m boundary
nodes. Equations �4�, �5�, and �7� are thus valid for m�N
only. However, with numerical calculations we find that, al-
though there are deviations between the predictions from Eq.
�4� and the actual eigenvalues for about 2m eigenmodes,
Eqs. �5� and �7� approximate well �2 and �N, respectively,
insofar as m�N /2.

B. Ring topology

A ring network is a lattice with periodic boundary condi-
tions. For such a network, we find numerically that the ith
component of the normalized eigenvector e can be written as

ei =
 2

N
sin�2�fi

N
+ �� �8�

for i=1, . . . ,N, where f is an integer that satisfies 0� f
� int��N+1� /2� and � is the phase shift that can be different
for different eigenvectors. Note that for the ring topology,
there are no boundary effects, thus Eq. �8� is exact. Follow-
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FIG. 2. �Color online� For the ring backbone network of N0

=1000 nodes and m=10, �a� � versus spatial Fourier frequency f
from Eq. �4�, and �b� the left-hand side �LHS, horizontal line� and
right-hand side �RHS, dots� of Eq. �6�. The vertical lines from left
to right indicate the values of f for which the equality �m
+1��f / �2N�= �j+1 /2�� holds for j=0,1 , . . . ,m /2.
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ing steps similar to those in Sec. III A, we arrive at

� = m + 1 −
sin��m + 1�f�/N�

sin�f�/N�
. �9�

Note that � is independent of �. Also, for f =0, ei=
2 /N is
independent of i, leading to �=0. Equation �9� is accurate in
the sense that varying f from 1 to int��N+1� /2� yields all the
nonzero distinct eigenvalues of the coupling matrix for the
ring network. In particular, �2 is obtained by setting f =1,

�2 = m + 1 −
sin��m + 1��/N�

sin��/N�
. �10�

For �N, following the same steps of derivation as for the
lattice case, we obtain fN	3N / �2�m+1�� and, hence, �N is
given by the same formula �Eq. �7��, indicating that �N is
approximately the same for both the lattice and the ring to-
pologies. Note that, for large N, �N is independent of N and
it depends only on m, the average degree of the network.

Equations �9� and �10� are exact. For N=m+1 where m is
even, we have sin��m+1�f� /N�=sin�f��=0 for f �0 so that
Eq. �9� gives the eigenvalues of a fully �globally� connected
network ��1=0 for f =0 and �2= ¯ =�N=N for f �0�. For
1�m�N, Eq. �7� is a good approximation for �N.

Figure 1�c� shows, for a ring network, the eigenvalues �N
and �2 versus the size N of the spreading network. The solid
curves are analytic predictions. The value of m is used as the
average degree of the spreading network. We see that nu-
merically obtained values of �N agree with the theoretical
values very well. In particular, for N large, �N tends to a
constant, as predicted. When N is small �N� �k��, �2 is ap-
proximately given by the theoretical results of the ring net-
work. This can be understood that, since the spreading starts
from a single node and propagates to its neighbors which are
interconnected with each other �N� �k��, the resulting net-
work forms a fully connected clique whose �2 is given by
Eq. �10�. As N approaches to and exceeds �k�, the two fronts
of the spreading can no longer be directly connected, thus the
infected network has a lattice form with open boundaries, as
shown schematically in Fig. 3�a�. Indeed, numerical results
agree well with the theoretical results of �2 for lattice net-
works. When the size N of the spreading network approaches
the original network size N0, the two fronts of the spreading
network meet and a ring structure is formed again, as shown
schematically in Fig. 3�b�. In this case, the eigenvalue �2 is
again determined by the formula for the ring network �Eq.
�10��. We thus expect to observe a crossover of the numerical
data from the lattice to the ring formula for N close to N0, as
shown in Fig. 3�c�.

IV. COMPLEX NETWORKS

A. Random networks

A random network can be generated by connecting every
pair of nodes with probability p. The backbone-network size
is N0, and the average degree of the subnetwork of size N is
�k�= pN. To calculate the relevant eigenvalues analytically,
we note that, for the adjacency matrix A, where Aij =−1 if
nodes i and j are connected and Aij =0 otherwise, the distri-

bution of the eigenvalues �i
�A� follows the Wigner semicircle

law �12�, where the center of the semicircle is at zero. In
particular, we have

�1
�A� 	 − Np ,

�2
�A� 	 − 2
Np�1 − p� ,

�N
�A� 	 2
Np�1 − p� ,

where �i�i
�A�=0. For the coupling matrix G, where Gij

=Aij for i� j and Gii=ki, we have �1=0 and Tr�G�=�iki

=N2p. The nontrivial eigenvalues are still distributed accord-
ing to the semicircle law except that the center of the semi-
circle is now at Np. We thus have

�2 	 Np − 2
Np�1 − p� . �11�

The requirement that �2�0 yields, N�N2=4�1− p� / p for
fixed value of p. Since we assume that the backbone random
network is sparse, any dynamic network generated by the
spreading process is also sparse. Furthermore, the initial dy-
namic network can be so sparse that it can be regarded as an
overstretched network, i.e., a random network constructed
with the same parameters N and a deduced value of p is
usually not connected, which leads to a negative �2 in Eq.

1000400 600 800
10

−3

10
−2

10
−1

N
λ 2

Lattice

Ring

(b)(a)

(c)

FIG. 3. �Color online� For a regular backbone network with a
ring topology, �a� schematic illustration of a dynamic network in the
transient phase where the infected nodes �solid circle� constitute an
open latticelike network, �b� illustration of a large infected network
with a ring-type topology in the steady-state phase, and �c� cross-
over of numerically obtained values �circles� of �2 from prediction
based on the latticelike topology to that with the ring topology on
network of N0=1000 and �k�=100.
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�11�. If a few �typically one or two� edges with the largest
number of shortest paths passing through them are removed
�13�, the network will be disintegrated into two groups. Thus
conceptually, such an overstretched network can be regarded
as consisting of two subnetworks �or two clusters�, where the
numbers of nodes contained in the clusters are approximately
equal and the clusters are connected by very few edges so
that the probability of “intercluster” connection is small: pl
�0. An advantage of conceptualizing such a clusteredlike
structure is to make use of the theory developed in the con-
text of synchronization in complex clustered networks �14�,
from which we obtain �2=Npl. Say the two clusters are con-
nected by C links, where C�2 is a constant. We then have
�N /2�2pl=C, i.e., pl
1 /N2, which gives �2
N−1. The criti-
cal value of N below which this relation holds is N1=
8 / p,
obtained by setting C=2. The range in the size N, N1�N
�N2, in fact defines the transition regime in which the dy-
namic network changes from being clustered to being ran-
dom. These considerations lead to

�2 
 �N−1, N � N1 = 
8/p
transition, N1 � N � N2 = 4�1 − p�/p

Np − 2
Np�1 − p� , N � N2.

�12�

We now consider the largest eigenvalue �N. A recent result
gives that for a sparse random network, �N	kmax+1 �15�,
where kmax represents the largest degree of the infected sub-
network. For a random network, the variance 	2 of the de-
gree variable is Np�1− p�. The degree distribution P�k� can
be approximated by a normal distribution, P�k�
= �
2�	2�−1 exp�−�k− �k�� / �2	2��. For a finite network, the
average number of nodes that have degrees larger than kmax
is given by N�kmax


 P�k�dk. If this number is less than 1, kmax

is the largest degree. The reasoning leads to

N�
kmax




P�k�dk = 1. �13�

We then have

N�1

2
− erf� kmax − �k�

�Np�1 − p��1/2�� = 1, �14�

where the error function is erf�x���0
x�2��−1/2e−y2/2dy. The

value of kmax is thus given by

kmax = erf−1�N − 2

2N
�
Np�1 − p� + �k� . �15�

Figure 4�a� shows examples of the evolution of the eigenra-
tio with time for three values of the spreading probability Ps,
where a transient disorder is observed. Changing the time
variable into the size N of the dynamic network, we see that
cases with different values of Ps all collapse into a single
curve, as shown in Fig. 4�b�. Figure 4�c� shows �N and �2
versus N, together with our theoretical predictions for �2. We
observe that the numerical results for �N �open circles� are
matched very well by the quantity kmax+1 �open triangles�,

and for the regions N�N1 and N�N2, numerical results for
�2 �open squares� agree with the predicted formula �solid
curves� reasonably well. Our theory, however, does not pre-
dict the values of �2 in the transition region N1�N�N2.

B. Scale-free networks

For a scale-free network, the degree distribution follows a
power law �16�: P�k�=ak−� for k�m0, where ��0 is the
degree exponent, a is a constant, and m0 is the minimum
degree of the backbone network of size N0. The constant a

0 10 20 30 40
0

10

20

30

40

50

T

R

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

N

λ
10

1
10

2
10

3
0

10

20

30

40

50

N
R

(a)

N
2

λ
N

(b)

N
1 (c)

λ
2

FIG. 4. �Color online� For an ensemble of random networks of
fixed average degree �k�=20 and N0=1000 nodes, �a� evolution of
the eigenratio R in time for three values of the spreading probabil-
ity: Ps=0.3 �circle�, 0.5 �triangle�, and 0.8 �square�, �b� R, and �c�
numerical eigenvalues �2 and �N �symbols� versus the size of the
dynamic network and theoretical predictions �curves�. Circles: nu-
merically obtained �N; triangles: kmax+1; squares: numerically ob-
tained �2; and diamonds: minimum degree. The results are obtained
by averaging over 300 network realizations.
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can be determined by probability normalization: �m0


 P�k�dk
=1.

To estimate the eigenvalue �2, we note that because of the
sparsity of the dynamic network at the beginning of the
spreading process, the analysis is similar to that with random
networks. We have �2
N−1 for N�N1=
8 / p. When N is
larger than the critical point for percolation �17�, as given by

N2 = N0�k�/��k2� − �k�� , �16�

the network becomes relatively less sparse and we found
numerically that �2 can be approximated by the minimum
degree m. Since the dynamic network is constructed ran-
domly from the original network, m can be approximated by
m0N /N0 because, in general, a node has only N /N0 fraction
of its original neighbors in the dynamic network. We thus
have

�2 
�
N−1, N � N1 = 
8/p
transition, N1 � N � N2 = N0�k�/��k2� − �k��

m0
N

N0
, N � N2.

�17�

The largest eigenvalue �N can be approximated by kmax+1
�15�. Similar to Eq. �15�, kmax is given by

kmax 	 �k�N1/��−1�. �18�

Results from Eq. �18� agree with the simulation results when
the degree distribution is algebraic.

Numerical evidence for the appearance of transient disor-
der is shown in Fig. 5�a�. Collapse of temporal evolutions of
the eigenratio R for different values of the spreading prob-
ability into a single curve in the R-N plot is shown in Fig.
5�b�. Support for theoretical estimates of �2 and �N is pre-
sented in Fig. 5�c�. As shown in Figs. 5�b� and 5�c�, when N
is small, e.g., N�400, the algebraic characteristic of the de-
gree distribution is not so pronounced. In this case, there are
deviations between the theoretical predictions for �N and R
and the numerics.

V. CONCLUSIONS

In a dynamic environment where a large networked sys-
tem is subject to sudden perturbations, disorder can arise.
Often a disordered state lasts for a finite amount of time
before the system reaches a new steady state. Examples of
the appearance of such a transient disordered state abound in
different contexts including nonlinear dynamical systems
that model a vast variety of physical, chemical, and engineer-
ing phenomena and biological and social networks. While
transient chaos in dynamical systems has been studied exten-
sively �2�, the phenomenon of transient disorder in large net-
worked systems presents new challenges as a typical situa-
tion for such a disordered state to arise is where the
backbone-network structure supporting the state is dynamic
and evolves continuously in time. This is equivalent to the
situation where the phase-space dimension of a dynamical
system keeps increasing with time.

The contribution of this paper is a model paradigm that
allows the transient-disorder phenomenon to be addressed
systematically for large networks. There are two ingredients
in our model: spreading dynamics and network synchroniz-
ability. The former determines a set of dynamically evolving
subnetworks on which disorder can arise and the latter rep-
resents a convenient way to characterize the degree of disor-
der. Our model captures the essential features of the rise
of transient disorder, or weak synchronizability, in large net-
works. We have provided physical analyses and numerical
computations to establish the universality of the phenomenon
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�square�, 0.8 �triangle�, and 1 �circle�, ��b� and �c�� R, �2, and �N

versus the size of the dynamic network and theoretical predictions
�curves�. Circles: numerically obtained �N; triangles: kmax+1;
squares: numerically obtained �2; and diamonds: minimum degree.
The results are obtained by averaging over 300 network
realizations.
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in both regular and complex networks. While our focus in
this paper is on the dynamics of growing infected networks,
a systematic investigation of how disorders or the complex-
ity of the topology �18� changes as the infected network
grows would be interesting and may deserve further efforts.
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