PHYSICAL REVIEW E 80, 057202 (2009)

Dependence of intermittency scaling on threshold in chaotic systems
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Numerical and experimental investigations of intermittency in chaotic systems often lead to claims of
universal classes based on the scaling of the average length of the laminar phase with parameter variation. We
demonstrate that the scaling in general depends on the choice of the threshold used to define a proper laminar
region in the phase space. For sufficiently large values of the threshold, the scaling exponent tends to converge
but significant fluctuations can occur particularly for continuous-time systems. Insights into the dependence

can be obtained using the idea of Poincaré recurrence.
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An extremely common phenomenon in nonlinear dynami-
cal systems arising from a variety of disciplines is intermit-
tency [1]. By definition, intermittency describes the situation
where a dynamical variable of the system exhibits two dis-
tinct types of characteristically different behaviors inter-
spersed in the course of time evolution. For example, the
system can exhibit nearly regular motion for an extended
period of time and then undergoes a temporal transition to a
highly irregular state before returning to the regular state,
while the transitions can occur at random times. In this case,
the time series of a dynamical variable contains phases of
regular motion (laminar phases) interrupted by (often) short
phases of irregular bursts (turbulent phases). In low-
dimensional dynamical systems, the seminal work of
Pomeau and Manneville established the existence of three
types of intermittency [1], named simply as type-I, type-1I,
and type-III intermittency, which are generated by saddle-
node, Hopf, and inverse periodic-doubling bifurcations, re-
spectively. Another common type of intermittency is crisis-
induced intermittency, discovered by Grebogi et al. [2],
where the two distinct phases of motion are both chaotic but
with different characteristics. In dynamical systems with
symmetry, on-off intermittency can occur, where the “off”
state typically indicates that the motion of the system is re-
stricted to some low-dimensional invariant subspace as de-
termined by the symmetry and the “on” state characterizes
motion away from the invariant subspace [3]. Intermittency
is also common in spatially extended dynamical systems [4].

Because of the ubiquity of intermittency in all kinds of
nonlinear dynamical systems, the observation and character-
ization of intermittency have become a basic tool to probe
the underlying system. This is especially true in experimental
studies, where the equations of the system under study are
often unknown. Insights into the system dynamics can be
obtained by establishing scaling laws associated with any
observed intermittency. In this regard, a common practice is
to search, from given intermittent signals measured from the
system, for scaling between the average duration of the lami-
nar phase and system parameter variation beyond the onset
of intermittency [1,2]. To achieve this goal, one often sets a
threshold and regards the system as being in the laminar
phase if the dynamical variable of interest stays below the
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threshold. A large number of time intervals for the laminar
motion can then be accumulated, yielding an average length,
say (l), of the laminar phase. The value of (I) typically de-
pends on system parameters. Let p be a bifurcation param-
eter of the system and let p,. denote the critical parameter
value for the onset of the intermittency behavior. For p near
P., the following algebraic scaling law is typically observed
for intermittency:

<l> -~ |p _pc|_a’ (1)

where @>0 is an algebraic scaling exponent. For type-I (II,
IIT) intermittency, the theoretical value of « is 1/2 (1,1). For
crisis-induced intermittency, the value of « is determined by
the eigenvalues of the unstable periodic orbit mediating the
crisis [2]. When scaling law (1) is observed, the system is
regarded as belonging to a certain universal class of dynami-
cal systems exhibiting intermittency.

When the algebraic exponent is extrapolated from an ex-
perimentally or numerically obtained scaling in the form of
Eq. (1), a practical issue is how to choose a proper threshold
for classifying the motion as being laminar or bursting. A
difficulty is that the value of the extracted scaling exponent
often depends on the threshold. By adjusting the threshold,
one can in principle obtain a range of values for the expo-
nent. A natural question thus concerns about the dependence
of the exponent on the threshold. We are somewhat surprised
to find that, despite the tremendous amount of work on in-
termittency in the past, there has been no systematic investi-
gation of this fundamental issue in applied nonlinear dynam-
ics. The purpose of this Brief Report is to address this issue.
In particular, we shall adopt the concept of Poincaré recur-
rence, which has recently been exploited to detect various
transitions to chaotic synchronization [5] and to investigate
transient chaos in leaky dynamical systems [6]. To define
recurrences for a dynamical system exhibiting intermittency,
we divide the phase space into two regions, one hosting
laminar motion and other corresponding to bursting (or “tur-
bulent”) motion. The average duration of the laminar phase
can be related to the average recurrent time to the turbulent
region denoted by T,. Let (¢) be the average duration of the
turbulent phase and 7; be the average recurrent time to the

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.80.057202

BRIEF REPORTS

] ° ® =10°
LA ® =102
e °® e,
[ ) ° ) °
e [ ] ® o Y
[ ] ° Y
° ® o
° L JEPY °
0
10 ® o0 0 0 0 0 o
(a)
. . . .
107 107 107 107 107

. ® 10 )
10° 1 =m0 ]
v =107
A o070 «t
FoL || =0 « 7 aa
10 slope=1 _— < 4 A A v v i
_ < A v
_ « A L
" <« A A v?Y o ]
(c) _— «tiat vV o
10° |- ”-4-%$“<iv:-'.' u ot B T @0 i
10° 10' 10° 10° 10* 10°

M

FIG. 1. (Color online) For the logistic map, (a) algebraic scaling
of the average length (/) of the laminar phase with the parameter
variation ¢ for two different values of the threshold r (r=107° and
1072, respectively), (b) dependence of the scaling exponent o on the
threshold, and (c) relation between recurrence time 7, and (/) for
different values of r.

laminar region. A natural-measure-based consideration leads
to the following relation:

n_T
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We shall present evidence that, when proper recurrent re-
gions are chosen, the quantities () and T; usually do not vary
appreciably with parameter but 7, does. In this case, the scal-
ing of (I) with parameter variation is mainly determined by
the scaling of T,. Our key point is that the recurrence time 7,
typically depends on the size of the neighborhood used to
define 7; and T; in the first place. Consequently, the average
length of the laminar phase will also depend on the size or,
equivalently, on the threshold that defines the laminar phase.
In general, we expect a strong dependence of the algebraic
scaling exponent « on the threshold. While convergence of «
usually occurs for sufficiently large values of the threshold,
large fluctuations in the exponent tend to occur, particularly
for continuous-time dynamical systems. The implication is
that, in numerical or experimental situations, any scaling of
the average length of the laminar phase with parameter varia-
tion should be interpreted with caution.

To be concrete, we consider type-I intermittency, which
appears through a saddle-node bifurcation. Before the
occurrence of intermittency, in the phase space there is a

PHYSICAL REVIEW E 80, 057202 (2009)

periodic attractor and an unstable periodic orbit of the same
period. As the parameter p passes through p,, the two orbits
coalesce and disappear simultaneously leaving behind a
“weakly unstable” phase-space region around the original at-
tractor where trajectories can spend long stretches of time.
This defines the laminar phase. Since the region is not at-
tracting, a trajectory temporally confined in it can exit, giv-
ing rise to a bursting phase. If the dynamics in the region can
be described by a one-dimensional map of the type x,,;
=x,+ax_+e, where a and & are parameters, the algebraic
scaling exponent in Eq. (1) can be obtained as a=(z—1)/z,
provided that the size of the neighborhood is chosen properly
[1]. For the typical case of z=2, one obtains the “universal”
exponent a=1/2. This one-dimensional argument is, how-
ever, difficult to extend to higher-dimensional systems.

We shall examine intermittency in dynamical systems of
any dimension using the idea of Poincaré recurrence. Before
the occurrence of intermittency, say, for p<p., there is a
periodic attractor in the phase space. For simplicity, we as-
sume it is a fixed-point attractor Xx,., and its neighborhood can
be defined as N={x|[|x—x/]|<r}, where r is its size. Let &
=p-p.. For e =0, the natural measure of the neighborhood
is un(r,&)=1, which is independent of the values of & and r,
insofar they are small. For € =0, intermittency arises and the
underlying attractor becomes chaotic (the intermittency route
to chaos [1]). As a result, uy depends on both & and r. Since
the laminar phase is nothing but motion inside the neighbor-
hood, the probability for observing a laminar phase, denoted
by wm;, is uy. As € is increased, the probability for bursting
motion increases, so uy decreases for a fixed value of r. For
p=p. (e=0), we can write

w=1-0(P), (3)

where 8> 0 is a constant. We also observe that, for any fixed
value of €, as r is increased, u; should increase. In fact, we
have w;~ r?, where D is the pointwise dimension for typical
points on the attractor, which is equal to the Lyapunov di-
mension of the attractor [6,7]. Since the phase-space region
hosting the turbulent motion is complementary to the small
neighborhood where laminar motion occurs, the measure of
the turbulent phase is

w=1-p=0(eP). (4)

Based on the natural measures, we can define the average
recurrence time. In particular, the neighborhood correspond-
ing to the laminar phase will be visited by a typical trajectory
from time to time, say at 7,7, ..., 7,. The first recurrence
time to the laminar neighborhood is then 7;=7,—7_; (7
=(), and the average recurrence time is given by 7,
=lim,_..(1/n)2% 1. Similarly, we can define the average re-
currence time to the turbulent phase denoted by 7,. Kac’s
lemma [8], which relates the average recurrence time to the
natural measure, gives

Tl,t = . (5)
M

We then have
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FIG. 2. (Color online) Dependence of the scaling exponent & on
the threshold for (a) Hénon map, (b) classical Lorenz system, and
(c) generalized Lorenz system.
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where T is the total observation time, and Q; and Q, are the
portions of time the system spends in the laminar and the
turbulent phase, respectively. The quantities n; and n, denote
the numbers of laminar and turbulent phases contained
within 7, respectively. Due to ergodicity, we can identify w;,
with Q). Since n;j—n,= = 1 and for large 7, n;,> 1, we have
n;=n,. Similarly, we have T,=({r)+(l))/{t). Equation (2)
then follows.

According to Egs. (3) and (5), we have T;=1 for e<1.
Also, we expect small variations in € to have little influence
on (t), as laminar motions are dominant for p = p,.. The quan-
tity that depends sensitively on ¢ is 7}, as can be seen from
Egs. (4) and (5). In this case we have 8= a.

To calculate (), {t), T;, and T, numerically (with fixed &
and r) for discrete-time maps x,,;=F(x,) that possess a pe-
riodic attractor of period p before the occurrence of intermit-
tency, we first generate a typical trajectory. If, for some it-
eration i, the condition |[x;—x.||<r is satisfied, we set the
length of the laminar phase / to be 1. We then examine
yi =F?(y,), where y;=x,, and F? is the p-times iterated
map of F. If |ly;,,—x.|<r, we update [ to [+1. Otherwise,
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FIG. 3. (Color online) Relation between T, recurrent time to the
turbulent phase, and (/) for (a) Hénon map, (b) classical Lorenz
system, and (c) generalized Lorenz system.

the length of this laminar phase is I. The average length (/)
can then be obtained after a large number of laminar phases
are accumulated. The average length of turbulent phase (r)
can be computed similarly, where the turbulent phase is de-
fined as [|x;,—x || > r. The quantities T, or T, can be computed
according to their definitions, where the p-times iterated map
should be used. For continuous-time flows, these average
quantities can be computed by using maps defined on a suit-
able Poincaré surface of section.

There are two major steps in our numerical computation
of « for any given threshold r. The first is to find a reason-
able scaling region, namely, a region in & where (l) clearly
shows a decrease as ¢ is increased. This can be done by
extensive numerical trials. In all our computations, the scal-
ing region spans over three orders of magnitude in &, and
there are at least ten points used in the linear fit on a loga-
rithmic scale between (I) and & for « to be extracted. Second,
to compute (/) for a fixed & in the scaling region, we generate
a time series containing 1000 segments of the laminar phase
and obtain () by averaging the length of these segments. All
the scaling exponents are computed this way. We expect our
results to be valid for small as well as for relatively large
values of r. As we will show below, our systematic and ex-
tensive computations do reveal a strong dependence of the
scaling exponent on the threshold r [9].

To provide numerical support for the dependence of the
intermittency scaling exponent « on the threshold, we have
examined the following four systems: (1) the classical logis-
tic map [10] x,,,;=ax,(1-x,), where an intermittency occurs
for a<a.=1+\8; (2) the Hénon map [11] (x,y) — (a—x?
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+0.3y,x) for which an intermittency occurs for a<a,
=1.226 617 378 076...; (3) the classical Lorenz system [12]
[%,y,2]=[10(y—x), px—y—xz,xy—8/3], where an intermit-
tency occurs for p>p.=166.0614928...; and
(4) the generalized Lorenz system [13]

[, %,7,2]=[- (258 + 10)(w —x),(28 = 358)w + (298 — 1)x

—wy+2,— (8 + B)y/3 + wx,— 6w],
for which an occurs  for
=0.079 244 927....

Figure 1(a) shows, for the logistic map, the algebraic scal-
ing of the average laminar-phase length (/) on a logarithmic
scale for two different values of the threshold. Apparently,
the scaling exponents for the two cases are quite different.
Figure 1(b) shows the dependence of the scaling exponent «
on the threshold. We observe that there is a continuous range
of values of the exponent for the range of threshold values
considered. The theoretical value of @=1/2 is achieved for
sufficiently large threshold but there are fluctuations. Depen-
dencies of the intermittency exponent on the threshold value
for other three systems are shown in Fig. 2, where we ob-
serve that the fluctuations in « are quite large for continuous-
time systems even after « begins to converge.

In our numerical experiments, we have observed that
there exists a range of threshold values for which the average
length (r) of the turbulent phase and the average recurrent

intermittency

B<B.
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time 7 to the laminar region are relatively constant. In such
cases, Eq. (2) suggests that the average recurrent time to the
turbulent region 7, obey the same scaling as the average
laminar-phase length (/). Numerical calculations indeed
point out an approximately linear relation between 7, and (I),
as exemplified in Fig. 1(c) for the logistic map and in Fig. 3
for the other three systems. We remark that such an approxi-
mately proportional dependence does not hold uncondition-
ally, rather, it is dependent upon the choice of € and r. Only
when this proportional relation holds is the theoretical value
of a=1/2 attained, as can be seen from the results in Figs. 2
and 3.

In summary, we have revisited the problem of universal
intermittency scaling in nonlinear dynamical systems by in-
vestigating the dependence of the scaling exponent on the
choice of the threshold used to define laminar versus turbu-
lent phases. Extensive numerical computations reveal that
the exponent can depend strongly on the threshold. Insights
into the dependence can be obtained by using the theory of
recurrence. Our results suggest that proper caution should be
exercised when claiming universal intermittency classes
based on numerical or experimental scaling of the average
length of the laminar phase with parameter variation.
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