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Nonstationary dynamical systems arise in applications, but little has been done in terms of the characteriza-
tion of such systems, as most standard notions in nonlinear dynamics such as the Lyapunov exponents and
fractal dimensions are developed for stationary dynamical systems. We propose a framework to characterize
nonstationary dynamical systems. A natural way is to generate and examine ensemble snapshots using a large
number of trajectories, which are capable of revealing the underlying fractal properties of the system. By
defining the Lyapunov exponents and the fractal dimension based on a proper probability measure from the
ensemble snapshots, we show that the Kaplan-Yorke formula, which is fundamental in nonlinear dynamics,
remains valid most of the time even for nonstationary dynamical systems.
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I. INTRODUCTION

In many previous studies of nonlinear dynamical systems,
stationarity is assumed. That is, the underlying system equa-
tions and parameters are assumed to be fixed in time. One
can then define asymptotic invariant sets such as unstable
periodic orbits, attractors, chaotic saddles (nonattracting in-
variant sets), study their properties such as the spectra of
Lyapunov exponents and of fractal dimensions, and search
for various bifurcations that concern how the time-
asymptotic behaviors of the system vary with parameters [1].
There are, however, practical situations where the assump-
tion of stationarity does not hold. For a nonstationary dy-
namical system, many notions that are fundamental to the
development of nonlinear dynamics such as periodic orbits
and attractors, are no longer meaningful. The purpose of this
paper is to develop a systematic and physically meaningful
way to characterize nonstationary dynamical systems.

We shall be concerned with typical nonlinear systems
which, when being stationary, can have both chaos and peri-
odic motions depending on the parameters. Without loss of
generality we will focus on the relatively simple situation
where a single parameter of the system varies with time. In
discrete time, our model system can be represented by

X1 =f(x,.p0), (1)

where X is a d-dimensional dynamical variable, f is a non-
linear mapping function, and p, is a time-dependent param-
eter. In a time interval of interest, the parameter can vary in
a range, say [p,.p»] (p.<p,) where for any p €[p,,p,], the
corresponding stationary dynamical system x,, , =f(x,,p) can
possess a chaotic attractor, or a periodic attractor, or even
multiple coexisting attractors. Because of the time variation
of the parameter, a long trajectory originated from a single
initial condition typically appears random and exhibits no
fractal structure. To reveal the intrinsic fractal structure as-
sociated with the deterministic but nonstationary chaotic sys-
tem, a viable approach is to examine simultaneously the evo-
lution of a large number of trajectories from an ensemble of
initial conditions. At a given instant of time, the trajectories
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tend to form a pattern that can be apparently fractal. Such
patterns are called snapshot attractors in the context of ran-
dom dynamical systems that have proven effective to reveal
the underlying fractal structure [2-7]. For a nonstationary
system, the notion of “attractor” is no longer meaningful as a
trajectory will in general not have sufficient time to settle
down to any asymptotic state of the system. We shall call the
phase-space images of an ensemble of trajectories at a given
time ensemble snapshots. The question to be addressed in
this paper concerns the dynamical properties of such en-
semble snapshots. In particular, we will focus on their
Lyapunov exponents and the fractal dimensions.

Due to nonstationarity, we are restricted to examining the
dynamical evolution of an ensemble of trajectories in short
time intervals, during which the system can be regarded as
“stationary.” The lengths of these time intervals depend on
the rate of change of the system parameter: a slower rate
would give a relatively longer interval and vice versa. For
convenience, we call them adiabatic time intervals. Since the
rate of parameter change is in general time-dependent and
can even be random, in a long experimental time the adia-
batic time intervals are not necessarily uniform. Nonetheless,
assuming adiabatic time intervals allows the Lyapunov expo-
nents of an ensemble snapshot to be defined as the ensemble-
averaged values of the corresponding short-time Lyapunov
exponents from all trajectories comprising the snapshot. Due
to nonstationarity, the exponents exhibit random fluctuations
with time. If for any given time all trajectories in the en-
semble snapshot are contained in a single basin of attraction
for the “frozen” dynamical system at that time, the variance
of the fluctuations of the exponents is independent of time.
However, if the trajectories can be in different basins of at-
traction for the frozen system, the magnitude of the fluctua-
tions of the exponents will depend on the value of the instan-
taneous Lyapunov exponents [8] and therefore can vary with
time.

For a stationary dynamical system, the Kaplan-Yorke for-
mula holds, which relates the information dimension of an
attractor to its Lyapunov spectrum [9]. Thus, for our nonsta-
tionary system, after the Lyapunov exponents of an ensemble
snapshot have been calculated, one may wonder whether the
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information dimension of the snapshot can be defined and
related to the exponents. We shall argue that it is possible to
define a dimension spectrum for an ensemble snapshot. The
main result of this paper is that, if all trajectories constituting
the ensemble snapshot are contained in a single basin of the
underlying temporarily stationary dynamical system, the
Kaplan-Yorke formula still holds in the sense that the infor-
mation dimension obtained by a straightforward box-
counting procedure can be approximated by the value deter-
mined by the Lyapunov exponents.

In Sec. II, we propose a proper natural measure for non-
stationary dynamical systems, based on which the Lyapunov
exponents and fractal-dimension spectrum can be defined. In
Sec. III, we discuss the Kaplan-Yorke formula in the context
of nonstationary systems. Numerical examples, one from
discrete-time maps and another from continuous-time flows,
are presented in Sec. IV. A brief summary is given in Sec. V.

II. DEFINITION OF LYAPUNOV EXPONENTS
AND FRACTAL DIMENSIONS FOR NONSTATIONARY
DYNAMICAL SYSTEMS

For a stationary dynamical system, asymptotic trajectories
of infinite lengths can be obtained. Given a grid of cells that
cover the asymptotic invariant set (e.g., a chaotic attractor),
the natural measure of a cell is defined as the frequency of
visit of a trajectory from a random initial condition (a typical
trajectory) to the cell. The Lyapunov exponents and the
fractal-dimension spectrum can then be defined [1]. For a
nonstationary system, long trajectories with stationary dy-
namical properties are not available. To define a probability
measure, a remedy is to use a large number of trajectories
from an ensemble of initial conditions and to generate en-
semble snapshots at different instants of time.

Let T be a long experimental or measurement time inter-
val, which defines the largest time scale of the system, during
which the system equations and/or the parameters of system
can change significantly. To be concrete but without loss of
generality, we assume that one of the parameters, say p, in-
creases from p, for =0 to p, for t=T, where p,>p,. The
average rate of parameter change is thus Ap=(p,—p.)/T,
which is small for large 7. The parameter change can thus be
regarded as adiabatic. To facilitate the definition of
Lyapunov exponents and dimension spectrum, we divide T
into K epochs of time: 7,75, ...,Tk, where EﬁlTk=T and
T,<<Tfor k=1,...,K. The parameter assumes constant value
pi in epoch k. In the next epoch, the parameter value is
changed to p,+Ap. The subintervals of time T} need not be
uniform, enabling modeling of an arbitrary form of the pa-
rameter variation p(z). The special case where all T)’s are
identical corresponds to a uniform rate of change of the pa-
rameter, and a random set of 7}’s models stochastic param-
eter changes.

Say we choose N initial conditions at r=0 and evolve
them simultaneously under Eq. (1). For a fixed epoch of time
Ty, the system can be regarded as stationary with parameter
p=p- To define a measure, we cover a proper phase-space
region that contains all the trajectories by a grid of cells, each
of size . Let N, be the number of trajectory points in the ith
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cell. A measure can be defined as the probability for a tra-
jectory point to be in the cell: w;=limy_,..N;/N. In a strict
sense, u; is time-dependent since T is finite. However, since
T, is short, u; will not change significantly during the epoch.
Following the definition of dimension spectrum of an invari-
ant set in stationary dynamical systems [1], we define the
dimension spectrum of the ensemble snapshot for any epoch
of time as

1 . Inlg,e)
1m
1 - q e—0 ln 1/8

D, = ; (2)
where I(g,&)= Eiv(f ),u, is a sum over all N(g) nonempty
cells. The information dimension D, is given by

D, = lim 28 (3)

e—0 Ine

where I,(g) =3 _1 ,ul In w; is the information sum. To define
the Lyapunov exponents for epoch T}, we first fix an indi-
vidual traJectory and choose an orthonormal set of infinitesi-
mal vectors: 5x (O) at the beginning of the epoch, where j
=1,...,d. We next calculate the evolutions of these tangent
vectors for t=1,...,T, according to 5x (t+1)
=DF[x;(1)]- 5X (t) where DF[x,(r)] is the Jacoblan matrix
of the map funct10n We can then define, for this trajectory,
the following set of finite-time Lyapunov exponents:

xY(Ty)

A = 4 | 2T
5xY(0)

—Fk n (4)

for j=1,...,d. Finally, we define the spectrum of Lyapunov
exponents for the ensemble snapshot in this epoch of time as
the ensemble average of )\(’

N
A 1 .
A = Tim =AY, (5)
N—w Ny

III. KAPLAN-YORKE FORMULA

Having defined the spectra of fractal dimension and of
Lyapunov exponents for ensemble snapshots, we now ask
whether a Kaplan-Yorke type of formula exists that relates
the information dimension to the exponents. The following
heuristic argument suggests a positive answer. For simplicity
we focus on a two-dimensional phase space. Consider the
probability measure constituted by an ensemble of trajectory
points at any instant of time. We can use a grid of size € to
cover a finite fraction a of the measure, where 0<a<1.
Assume the number of cells required is N(e,a). A result in
nonlinear dynamics is that the box-counting dimension given
by the algebraic scaling of N(e,a) with & is in fact the in-
formation dimension of the underlying set, insofar as a# 1.
Let A, <O<\; be the two Lyapunov exponents in the kth
epoch of duration T;. Suppose we lay the grid of cells at the
beginning of the epoch and consider one nonempty, square
cell. At the end of the epoch, the cell will be stretched by the
positive exponent along one direction and compressed by the
negative exponent along another direction. That is, the cell
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will become a thin, elongated parallelogram with sizes of the
order of & exp(Ty\,) and & exp(T\,), respectively. Using the
smaller size eexp(Ti\,) to cover the same « fraction
of the probability measure, we need [eexp(Ti\;)/
e exp(T \,) IN(e, a) cells. That is

N[& exp(Ti\,), ] ~ exp[Ty(\; + [\ IN(e, ). (6)
Since N(g,a) ~ &1, Eq. (6) becomes
[e exp(TyAp) ™21 ~ exp[ T (N + [\ ]e™1, (7)
which suggests

Ay
Dy=14+7—=D,, 8

1 | )\2| L ( )
where D; is the Lyapunov dimension. For a stationary dy-
namical system, the time involved in Egs. (6) and (7) can be
arbitrarily long so that the Kaplan-Yorke formula Eq. (8) can
be expected to hold [10]. For a nonstationary dynamical sys-
tem, the luxury of taking the infinite-time limit is lost and we
are restricted to studying the dynamics in finite (small) time
epochs. Thus it is questionable whether the Kaplan-Yorke
formula Eq. (8) would still hold. Numerical verifications are
necessary.

IV. NUMERICAL EXAMPLES
A. Optical-cavity map

We consider the following two-dimensional Ikeda-
Hammel-Jones-Moloney (IHJM) map [11] that models the
dynamics of a nonlinear optical cavity, which has been a
paradigmatic model in nonlinear dynamics:

Py |2}’ ©)

1+z,

Zpe1 =A + Bz, exp{ik—

where z=x+iy is a complex dynamical variable and A, B, k,
and p,, are parameters. The time dependence of the parameter
p, stipulates nonstationarity of the system. We choose A
=0.85, B=0.9, k=0.4, and allow p, to vary in the range
[Pa>Pp]=[4.0,20.0], We focus on the situation where the pa-
rameter changes at a constant rate from p, to p,. In particu-
lar, we choose an experimental interval of 1000 epochs,
where each epoch corresponds to a time duration of 7;=10
iterations. Several examples of the ensemble snapshots are
shown in Fig. 1, where the number of initial conditions used
is 50000. The snapshots are apparently fractals. Figure 2
shows, for t=8007} on a logarithmic scale, the scalings of
N(e) (the number of boxes of size & required to cover the
ensemble snapshot) and of the information sum /;(g) with &.
We obtain, for this time epoch, Dy=~1.78 and D;~1.14. We
then compute the Lyapunov exponents. The time evolution
of the largest Lyapunov exponent is shown in Fig. 3(a),
where we observe a significant amount of fluctuations, the
origin of which can be attributed to multiple coexisting at-
tractors and the nonstationary nature of the system. In par-
ticular, due to nonstationarity (short time duration of each
epoch), the system is not able to settle into any attractor.
When there are more than one attractor in the frozen system,
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FIG. 1. (Color online) For the nonstationary IHIM map Eq. (9),
(a)—(d) four ensemble snapshots observed for the 200th, the 400th,
the 600th, and the 800th epoch. All trajectories are initiated ran-
domly in the small phase-space region defined by 0<(x,y)<0.1.
The fractal geometry of the snapshots is apparent.

at the end of any epoch, a random number of trajectories can
be found near each attractor, and this number varies from
epoch to epoch. This implies that increasing the number of
trajectories will do little to reduce the fluctuations, as we
have observed numerically. Signature of multiple attractors
can be seen from the distributions of the finite-time
Lyapunov exponent (say \;) at different times, as shown in
Figs. 4(a)-4(d) for epoch number k=200, 400, 600, and 800.

-4 D, = slope ~ 1.14

-14 L 1 I I
“6 -5 -4 -3 -2 -1

FIG. 2. (Color online) For the nonstationary IHIM map Eq. (9),
estimates of the box-counting and the information dimension of the
ensemble snapshot for 7=8007}. The number of trajectories used is
2X 106
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FIG. 3. (Color online) For the nonstationary IHIM map Eq. (9),
(a) evolution of the larger Lyapunov exponent and (b) evolutions of
the Lyapunov dimension D; and of the information dimension D;.
We observe that D; fluctuates about D; (estimated using a box-
counting procedure), indicating the validity of the Kaplan-Yorke
formula.

Appearance of distinct peaks in such a distribution during a
specific epoch indicates coexisting attractors in the underly-
ing frozen system at that time. We observe that, at different
times, due to the parameter variation, the locations of the
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FIG. 4. (Color online) For the nonstationary IHIM map Eg. (9),
histograms of \; for (a) k=200, (b) k=400, (c) k=600, and (d) k
=800. There is indication of multiple coexisting attractors in the
underlying frozen system, and the Lyapunov exponents of these
attractors vary with time.
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peaks are different, causing significant fluctuations of the
exponent as in Fig. 3(a). The fluctuations are also reflected in
the evolution of the Lyapunov dimension of the ensemble
snapshot, as shown in Fig. 3(b). The remarkable phenom-
enon is that, for most of the epochs, the information dimen-
sion calculated using the box-counting procedure lies about
the middle of the fluctuating Lyapunov dimension, as indi-
cated by the dots in Fig. 3(b). This suggests that the Kaplan-
Yorke formula is meaningful for nonstationary chaotic sys-
tems [12].

B. Forced Duffing oscillator

We now present an example from continuous-time flows.
We consider the forced Duffing equation which models the
mechanical oscillations of a cantilever beam [13]

and 0=1.
(10)

=y, y=x—x>=0.25y+0.3 cos(wb),

The driving angular frequency w is chosen to vary with time
in the interval [1.05, 1.1] to model nonstationarity. The total
number of epochs is set to be 50 and the time duration of
each epoch is 20. It is convenient to use the box-counting
procedure to obtain the fractal dimension of the attractor in

the (x,y) plane, say Dj. Because of #=1 the dimension of
the attractor in the full phase space is D;=Dj+1. To obtain
the Lyapunov dimension, the following procedure has been
employed. We first calculate the Lyapunov dimension of

the two-dimensional Poincaré map on the plane
3:{ (x,y, 0)|cos(wn=o} by the formula
M

D=1+, (11)
N

where N\; and A\, are the largest and the smallest Lyapunov
exponents of system (10), respectively, which satisfy
N, <O0<A\;. By including the time dimension, the Lyapunov
dimension of the chaotic attractor in system (10) can be ob-
tained as D;=D; +1.

In our numerical experiments, 10 000 initial conditions
have been used to calculate D; and D;. For these initial
points, 6],.o=0, x and y are chosen randomly in the small
interval [-1.5,1.5]. Figures 5(a) and 5(b) are typical en-
semble snapshots. These projections of the attractor on (x,y)
planes are apparently fractal. Figure 6 illustrates the informa-
tion dimension D; and the Lyapunov dimension D; as a
function of time. It can be seen that the two dimensions
agree with each other reasonably well, indicating the validity
of the Kaplan-Yorke formula for continuous-time nonstation-
ary dynamical systems.

V. DISCUSSIONS

In summary, we have demonstrated that ensemble snap-
shots can be used to characterize nonstationary chaotic sys-
tems in terms of Lyapunov exponents and fractal dimensions.
Indeed, the snapshot technique can reveal the fractal struc-
ture of the underlying chaotic system, despite nonstationar-
ity. We have presented evidence for the validity of the
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FIG. 5. (Color online) Ensemble snapshots observed for the
10th and the 30th epoch in the forced Duffing system given by Eq.
(10). All trajectories are initiated randomly in the small phase-space
region defined by —=1.5<(x,y)<1.5.

Kaplan-Yorke formula, both for a discrete-time map and for
a continuous-time flow.

The methodology developed in this paper is suitable for
studying nonstationary chaotic systems numerically. In ex-
perimental systems where obtaining an ensemble of trajecto-
ries is difficult, the use of our method is limited. There are,
however, experimental situations where the evolution of a
large number of trajectories can be determined simulta-
neously, such as the dynamics of floaters on the surface of a
chaotic flow, where previous experiments focused on the
characterization of fractal attractors by using the Kaplan-
Yorke formula under the assumption of random (but station-
ary) dynamical systems. Our results suggest that the same
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FIG. 6. (Color online) Time evolutions of the Lyapunov dimen-
sion D; and the information dimension D;.

technique can be applied experimentally to studying the frac-
tal patterns generated by chaotic dynamics even when the
system is nonstationary.
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