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We address the fundamental issue of network scalability in terms of dynamics and topology. In particular, we
consider different network topologies and investigate, for every given topology, the dependence of certain
dynamical properties on the network size. By focusing on network synchronizability, we find both analytically
and numerically that globally coupled networks and random networks are scalable, but locally coupled regular
networks are not. Scale-free networks are scalable for certain types of node dynamics. We expect our findings
to provide insights into the ubiquity and workings of networks arising in nature and to be potentially useful for
designing technological networks as well.
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Scalability is an important issue in many branches of sci-
ence and engineering. For example, in biology, synchroniza-
tion can occur in systems of different sizes, ranging from
neuronal and cellular networks to population dynamics in
natural habitats of vast distances. In computer science,
whether a particular program can work in systems containing
orders-of-magnitude different numbers of components is al-
ways a pressing issue. Similar scalability issues arise in
large-scale circuit designs. Our interest here is in dynamics-
based scalability of complex networks. In particular, we ask,
if a dynamical phenomenon of interest occurs in networks of
size N1, can the same phenomenon be anticipated in net-
works of size N2, where N2 is substantially larger than N1?
More importantly, does the scalability so defined depend on
the network topology? Addressing these questions can pro-
vide insights into fundamental issues such as the ubiquity of
certain types of networks in nature with respect to specific
dynamical functions. A good understanding of the scalabili-
ties of networks of different topologies can also be important
for practical design of various technological networks. De-
spite extensive research on complex networks in recent
years, the issue of network scalability has not been
considered.

To address the issue of network scalability, we focus on
synchronization, a fundamental type of collective dynamics
in natural systems �1�, and investigate the interplay between
synchronization-based scalability and network topology. The
distinct type of network topologies included in our pursuit
are globally connected, locally coupled regular, random
�2,3�, and scale-free �4�. We assume an identical nonlinear
dynamical process on every node. The associated master-
stability function �MSF� �5–7� ��K� can then be determined,
where K is a generalized coupling parameter. Let 0=�1
��2� ¯ ��N be the eigenvalue spectrum of the coupling
�Laplacian� matrix L for a given network. The system allows
a stable synchronization state if, for all i=2, . . . ,N, ��Ki� is
negative �6�, where Ki=��i and � is the actual coupling
strength. There are three typical classes of node dynamics
under which synchronization can occur �8,9�: �class I�
��K��0 in a single finite interval �Ka ,Kb�; �class II� Kb
→�; and �class III� ��K��0 in several distinct intervals
�Ka1 ,Kb1� , �Ka2 ,Kb2� , . . . , �Kaf ,Kbf�, where Kbf can be either
finite or infinite. Consider, for example, class-I node dynam-

ics. The stability condition becomes Ka���2���N�Kb. As
a result, we shall analyze the dependence of �2 and �N on
parameters N so that regions in the two-dimensional param-
eter plane �N ,��, where the underlying network is synchro-
nizable, can be determined analytically. Since the scalability
results for class-III node dynamics can be inferred from
those from class-I and class-II dynamics, and class II is ac-
tually a special case of class I �a synchronizable system un-
der class-I node dynamics is also synchronizable under
class-II dynamics�, it is convenient to focus on class-I dy-
namics and discuss situations of class-II dynamics where the
network is unsynchronizable for class-I dynamics.

The main results of this Rapid Communication are as fol-
lows. For globally connected and random networks, for any
system size N, there exists a nonzero coupling-parameter in-
terval ��a ,�b� for which the network is synchronizable �6�.
However, for locally coupled regular and scale-free net-
works, no such interval exists for sufficiently large system
size if Kb is finite. That is, these networks cannot be synchro-
nized if their sizes are too large when the node dynamics
belong to class I. For class-II node dynamics, scale-free net-
works can be synchronized, but locally coupled regular net-
works require arbitrarily large coupling to be synchronized
so that they are practically not scalable. Our findings can
provide insights into some fundamental issues in sciences
and engineering. For example, in biology, synchronization
can occur on networks of various sizes �1�. However, large
scale-free networks can be unsynchronizable and, hence, the
scale-free topology may not be important, or less ubiquitous,
in situations where synchronization is key to system func-
tions. From the standpoint of network design to achieve
some desired synchronization-dependent performance, ran-
dom networks are advantageous.

(1) Globally coupled networks. For such a network, every
node is coupled to all other nodes in the network �Lii=N
−1, Lij =−1 if i� j� and we have �1=0 and �2= ¯ =�N=N.
The network is synchronizable if K2=�2��Ka and KN
=�N��Kb. Synchronization is stable if Ka /�2���Kb /�N,
and we thus have �a=Ka /N and �b=Kb /N and, hence, 	�
= �Kb−Ka� /N�N−1. That is, for any physical network whose
size is finite, there exists a finite interval of the coupling
parameter for which synchronization can be achieved. The
behavior is shown in Fig. 1�a�, where the shaded strip in the
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parameter plane �N ,�� �on a logarithmic scale� indicates the
synchronizable region. For any fixed system size, as the cou-
pling parameter is increased, the network can undergo tran-
sitions from desynchronization to synchronization, and to de-
synchronization again. A remarkable feature is that, for a
reasonably fixed coupling parameter, as its size is increased,
a network can go from being desynchronized to being syn-
chronized and then to being desynchronized again. This
means that a globally coupled network can be synchronized
if its size is neither too small nor too large. There exists an
optimal range of the system size for which synchronization
can be achieved. This is basically a system-size resonance
phenomenon �10�.

(2) Locally coupled regular networks. In such a network,
every node is connected to m nearest neighbors, i.e., �k�=m.
We assume periodic boundary conditions. The elements of
the Laplacian matrix L are then Lii=m, Lij =−1 for j
= i
1, . . . , i
m /2, and Lij =0 otherwise. The eigenvector
associated with �2 is

e2 = �2/N�sin�2�/N�,sin�4�/N�, . . . ,sin�2���T,

where �·�T denotes the transpose. The key eigenvalue �2 can
then be expressed as �2=e2

T ·L ·e2=	i,j=1
N Lije2ie2j, where e2i

=�2 /Nsin�2�i /N�. After lengthy algebra, we obtain

�2 = m + 2 − 2 cos
m�

2N
� sin��/N + m�/2N�

sin��/N�
.

The largest eigenvalue can be obtained by manipulating

�N = eN
T · L · eN = 	i,j=1

N LijeNieNj ,

where eNi=�2 /Nsin��2�j/�N / f�� and f is the basic spatial
Fourier frequency, an integer between 1 and N /2. A similar
calculation gives

�N = m + 2 − 2 cos
 m�

2N/f � sin��/N/f + m�/2N/f�
sin��N/f�

.

Because of the frequency dependence of �N, the upper bound
of the synchronizable parameter interval is given by �b
=Kb /�N,max, where �N,max=�N�fc� and fc is given by fc
=min�f 
d�N�f� /df =0�. For a sparse network, we have �k�
=m�N. In this case, the expression for �2�N� and �N,max�N�
can be further simplified by proper Taylor expansions. We
obtain �2��2�m+2��m2+m+1� /6N2 and �N�m. That is,
�a=
N2 and �b=Kb /m �independent of N�, where 

�6Ka / ��2�m+2��m2+m+1��. We then have 	�=Kb /m
−
N2. The key feature that distinguishes a locally coupled
network from a globally coupled network is the existence of
a critical system size, above which the network is unsynchro-
nizable, regardless of the coupling. Our analysis gives the
following formula for the critical system size:
Nc=�Kb / �m
�. In principle, knowing the specific node
dynamics �which gives specific values of Ka and Kb�, we can
predict Nc. A typical behavior of the network synchronizabil-
ity in the parameter plane �N ,�� is shown in Fig. 1�b�. We
see that locally coupled regular networks are unscalable for
class-I node dynamics. Physically, this could be understood
that for globally coupled networks, the number of links per
node increases with network size, while for locally coupled
regular networks the number of links per node is a constant.
Thus as network size increases, the network distance be-
comes larger and it is more difficult for a node to communi-
cate with its diametrical counterparts, leading to degraded
synchronizability. For class-II dynamics, Kb→�, the stabil-
ity condition becomes ��Ka /�2, which can be satisfied in
principle. A practical issue is that, since �2 can be small for
large N, the coupling parameter needs to be unreasonably
large, e.g., ��
N2, for synchronization to occur. If there
exists a limit of the coupling parameter, say �u, the critical
network size is given by Nc=��u /
. In this sense, locally
coupled regular networks are not scalable.

(3) Random networks. Let p be the probability for a pair
of nodes to be connected. The average degree of the network
is �k�= pN. For the adjacency matrix A �Aij =−1 if nodes i
and j are connected, Aij =0, otherwise, and Aii=0�, the dis-
tribution of the eigenvalues �i

�A� follows the Wigner semi-
circle law �11�, where the center of the semicircle is at zero.
In particular, we have �1

�A��−Np, �2
�A��−2�Np�1− p�, �N

�A�

�2�Np�1− p�, and 	i�i
�A�=0. For the Laplacian matrix L,

where Lij =Aij for i� j and Lii=ki, we have �1=0 and
Tr�L�=	iki=N2p. The nontrivial eigenvalues are still distrib-
uted according to the semicircle law except that the center of
the semicircle is now at Np. We thus have �2�Np
−2�Np�1− p� and �N�Np+2�Np�1− p�, which give �a

=Ka / �Np−2�Np�1− p�� and �b=Kb / �Np+2�Np�1− p��.
Random networks arising in nature are typically sparse

�3�. For a sparse random network, the average degree satis-
fies �k��N or p�1. We thus obtain �a�Ka / ��k�−2��k��
and �b�Kb / ��k�+2��k��. A remarkable consequence is that,
if �k� is fixed, both �a and �b are independent of the network
size. As a result, arbitrarily large networks can be synchro-
nized, insofar as the network becomes increasingly sparse
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FIG. 1. �Color online� Synchronizable region �shaded� in the
parameter plane �N ,�� for �a� globally coupled networks, and �b�
locally coupled regular networks with fixed average degree �k�
=80. The node dynamics is described by the chaotic Rössler oscil-
lator: dx /dt=F�x���−�y+z� ,x+0.2y ,0.2+z�x−9��T, for which we
find Ka�0.2 and Kb�4.6.
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and the coupling strength falls in a constant interval �12�.
The size of this interval does not decrease as N is increased,
as exemplified in Fig. 2�a� for �k�=20. In this sense, random
networks are more synchronizable than globally connected
networks, as for the latter, the synchronizable parameter in-
terval 	� decreases inversely with the increase of the system
size �Fig. 1�a��. Note, however, if �k� increases with N �e.g.,
�k�= pN and p is fixed�, then for large N we have �k����k�
and, hence, 	���Kb−Ka� / �k��1 /N, as shown in Fig. 2�b�.
This is similar to the synchronization behavior of a globally
connected network. Thus random networks are scalable for
all three classes of node dynamics.

(4) Scale-free networks. For a scale-free network, the de-
gree distribution follows a power law �4�: P�k�=ak−� for k
�m0, where ��0 is the degree exponent and a is a constant.
The minimum degree is kmin=m0. The constant a can be
determined by �m0

� P�k�dk=1. For a scale-free network of in-
finite size, the maximum degree kmax diverges. However, for
any physical network, its size is finite. One can consider the
average number of nodes that have degrees larger than kmax,
which is N�kmax

� P�k�dk. If this number is less than 1, kmax is
the largest degree. This condition yields �kmax

� P�k�dk�1 /N,
which gives kmax�m0N1/��−1�. For scale-free networks, we
have �2�Ckmin, where the constant C is of the order of
unity, and �N�kmax �13�. Thus �2 is independent of the sys-
tem size but �N increases with N as a power law. We then
have �a�Ka / �Cm0� and �b��Kb /m0�N−1/��−1� and, conse-
quently, 	���Kb /m0�N−1/��−1�−Ka / �Cm0�. The point is that
there exists a critical system size Nc��Ka / �CKb��−��−1�,
above which synchronization is impossible. The synchroniz-
able region in the �N ,�� plane is shown in Fig. 2�c� for
scale-free networks of fixed average degree. A qualitatively
similar behavior occurs when the average degree increases
with the system size, as shown in Fig. 2�d� for �k�=0.05N.
Thus large scale-free networks are not synchronizable if the
node dynamics belongs to class I. For class-II dynamics,
since �2 does not decrease with network size N, synchroni-
zation can occur when the coupling parameter is in a proper
range, regardless of the system size. Therefore, scale-free

networks are not scalable for class-I node dynamics but are
scalable for class-II dynamics. An implication is that, if syn-
chronization is important for the functions of some complex
networked systems, the scale-free topology should not be the
choice if the node dynamics has a finite Kb. Likewise, in
biological situations where synchronization can occur in sys-
tems of all kinds of sizes, we expect the random-network
topology to be more pervasive since it is scalable for all
cases.

We now provide direct numerical support for our analysis.
To compare with eigenvalue analysis we again use class-I
node dynamics. The oscillatory networked system is de-
scribed by dxi /dt=F�xi�−�	 j=1

N LijH�x j�, where F�x�
= �−�y+z� ,x+0.2y ,0.2+z�x−9��T and H�x�= �x ,0 ,0�T is a
coupling function. Because of the complexity of the system
dynamics, the degree of synchronization can be characterized
only statistically. In particular, we define the synchronization
probability Psyn as the probability that the fluctuation width
W�t� of the system is smaller than a small number � �chosen
somewhat arbitrarily� at all time steps during an interval T0
in the steady state, where W�t�=Š
x�t�− �x�t��
‹, and �·� de-
notes the average over nodes of the network. In computation,
Psyn can be calculated by the ensemble average, i.e., the ratio
of the number of synchronized cases over the number of all
random network realizations. Figure 3 shows Psyn versus the
system size for both random and scale-free networks, where
Fig. 3�a� corresponds to the situation where �k�=20 and Fig.
3�b� is for �k�=0.05N. Indeed, for random networks of fixed
average degree, synchronization can occur for all system
sizes tested �open circles, Fig. 3�a��. However, a scale-free
network with fixed average degree cannot be synchronized if
its size becomes too large �open triangles, Fig. 3�a��. When
the average degree of the network is proportional to its size,
for both random and scale-free networks, for a fixed cou-
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FIG. 3. �Color online� Synchronization probability versus net-
work size. �a� Fixed average degree �k�=20 for random �circles, �
=0.05� and scale-free �triangles, �=0.035, �=3.5� networks. �b�
Average degree proportional to network size: �k�=0.05N, for ran-
dom �circles, �=0.1� and scale-free �triangles, �=0.06, �=3.5� net-
works. Simulation parameters are T0=3000 and �=0.01. Each data
point is from 1000 network realizations.
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FIG. 2. �Color online� For the same node dynamics as in Fig. 1,
synchronizable region �shaded� in the parameter plane �N ,�� for �a�
random networks with fixed average degree �k�=20, �b� random
networks with �k�=0.05N, �c� scale-free networks with degree ex-
ponent �=3.5 and fixed average degree �k�=20, and �d� scale-free
networks with �k�=0.05N.
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pling parameter, there exists a range of system sizes with
which synchronization can occur �Fig. 3�b��. These results
agree with those from our spectral analysis.

In summary, we have addressed the fundamental issue of
scalability in both complex and regular networks, by focus-
ing on their synchronizabilities. Our analysis indicates that
random networks are scalable in the sense that they are syn-
chronizable, regardless of their sizes, insofar as the coupling
parameter is chosen properly. However, scale-free networks
are scalable only for certain types of node dynamics. For the
regular topology, globally coupled networks are scalable but

locally coupled networks are not. Investigating network scal-
ability not only can provide a better understanding of the
workings of networks in nature, but also is important for
designing technological networks, notably computer net-
works in information infrastructure.
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