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Small network distance and homogeneous degree distribution have been found to be critical to efficient
network synchronization. In this paper, we investigate the synchronizability of clustered networks with regular
subnetworks and report a counterintuitive phenomenon: As the density of intracluster links is increased, the
network exhibits strong and weak synchronizability in an alternating manner. A theory based on analyzing the
eigenvalues and eigenvectors of the coupling matrix is provided to explain this phenomenon. The relevance of
the network model to tissue organization for intercellular communication in biological systems is discussed. An
implication is that, in order to achieve synchronization, local coupling density in the network needs to be tuned
properly.
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I. INTRODUCTION

Synchronization in complex networks has attracted much
attention recently �1–7�. Earlier works have found that ran-
dom �8�, small-world �9�, and scale-free �10� networks, due
to their small network distances, are generally more synchro-
nizable than regular networks �1�. However, small network
distance alone is not a guarantee for strong synchronizability.
For example, for a scale-free network, the existence of hubs
contributes to a small network distance but the underlying
heterogeneous degree distribution can cause a wide spread in
the eigenvalues of the coupling matrix, which can actually
inhibit network synchronization �2�. More recent works have
found that, by assigning larger weights to the hubs or intro-
ducing a gradient field from hub nodes to small degree
nodes, scale-free networks can be more synchronizable than
random networks �3�. Modifying local connecting structure,
if done properly, can also change the synchronizability sig-
nificantly �4�. Synchronizability of complex clustered net-
works has begun to be investigated only recently �5–7�.

In this paper, we investigate the synchronizability of lo-
cally regular, complex clustered networks �see Sec. II for
motivations from systems biology�. A clustered network con-
sists of a number of groups, where nodes within each group
are densely connected, but the linkages among the groups are
sparse. In fact, the tendency to form a clustered network
structure appears to be a key organizational feature in bio-
logical systems, such as protein-protein interaction networks
�11–13� and metabolic graphs �14�. Previous works have also
revealed that the clustered topology is fundamental to many
types of social and technological networks �15�. Our recent
work �7� on the synchronizability of clustered networks with
random subnetworks has revealed an interesting phenom-
enon, namely, more links, which make the network smaller,
do not necessarily lead to a stronger synchronizability. There
can be situations where extra links, if placed improperly, can
suppress synchronization. Realistic considerations stipulate
that the globally random connections among clusters be
sparse. Thus a key question is what can happen to network
synchronizability when the density of intracluster links is

varied. We find that, for a typical locally regular clustered
network, its synchronizability exhibits an alternating, highly
nonmonotonic behavior as a function of the intracluster link
density. In fact, there are distinct regions of the density for
which the network synchronizability is maximized, but there
are also parameter regions in between for which the synchro-
nizability diminishes. We show that, while surprising, this
phenomenon of alternating synchronizability can be fully ex-
plained theoretically based on analyzing the behavior of the
eigenvalues and eigenvectors of the coupling matrix. A fea-
ture that makes our theoretical analysis feasible is that, due
to the locally regular topology of the network, some key
eigenvectors within each individual cluster exhibit periodic
wave patterns. Both numerical eigenvalue calculations and
direct simulation of the actual synchronization dynamics of
the underlying oscillator network provide firm support for
the theory. One implication is that, in order to achieve robust
synchronization, the density of the local connections within a
cluster needs to be appropriately tuned since both high den-
sity and low density can hinder synchronization.

Considerations from systems biology that motivate our
work are described in Sec. II. A detailed theoretical treatment
of the synchronizabilities of clustered networks with regular
subnetworks is provided in Sec. III. In particular, we begin
with relatively simple networks of two clusters and then ex-
tend the analysis to networks with multiple clusters. The is-
sue of robustness of the alternating-synchronization behavior
will also be addressed. Direct numerical support from actual
simulations of synchronous dynamics is provided in Sec. IV.
Discussions are presented in Sec. V.

II. BIOLOGICAL MOTIVATIONS

Complex multicellular organisms such as the human body
require multiscale organizational structures, including forma-
tion of organs from large numbers of cells and integration of
many organs into the systemic structure necessary for indi-
vidual survival and proliferation. The organs typically con-
sist of large numbers of multicellular functional units such as
crypt in the colon, nephron in the kidney, lobule in the liver,
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and alveolus in the lung, etc. While extensive recent work
has focused on the structure and dynamics of intracellular
molecular networks �16–20�, there has been little effort to
extend this kind of analysis to the interactions among cells
within functioning multicellular organs which allow, for ex-
ample, the human liver to synchronize as many as 1012 indi-
vidual cells into a single functioning unit. There are two
general methods by which cells can communicate with each
other. Locally, cells usually establish their mutual communi-
cation channels through transmembrane pathways such as
gap junctions that allow small molecules to pass between
two cells in both directions. At a larger scale, cells commu-
nicate with each other through diffusing signals with cell-
specific receptors. The interaction is usually directed in the
sense that signals such as growth factors are produced by
some, but not all cells, and can be received only by other
cells that express the appropriate receptors. Despite the fact
that many of the specific pathways by which cells commu-
nicate have been reasonably well characterized, remarkably
little is known about the organizational principles that govern
communications among large numbers of cells and permit
synchronized function over substantial distances �21,22�.

Since cells communicate with each other using the two
general methods described above, an intercellular-
information network contains two essential features: A lo-
cally regular topology based on local communication with
neighbors via membrane structures such as gap junction and
integrins �23� and globally random, directional couplings
based on long-range diffusing signals and the corresponding
cell membrane receptors. To better distinguish between local
and global interactions, it is useful to assume that local in-
teractions are confined within clusters, and global interac-
tions occur among the clusters, as shown in Fig. 1. The result
is a class of complex clustered networks with a regular sub-
network in each cluster but with random, sparse couplings
among clusters. We shall address the issue of synchroniza-
tion on this class of networks. This is reasonable because
there are two basic biological requirements for such a net-
work: �1� There must be a sufficient degree of synchroniza-
tion to permit the entire organ to function as a single unit, so
as new cells are “added” during growth and repair, their pre-
cise locations and differentiated phenotypes are specified
with nearly perfect accuracy; and �2� the synchronization

must be robust so that lost cells �due, for example, to a
wound� can be replaced and the system is resistant to cas-
cading failure, enabling isolation of infections such as vi-
ruses to prevent rapid, global spread.

III. SYNCHRONIZABILITY VIA SPECTRAL ANALYSIS

We consider the following network structure: N nodes are
grouped into M clusters, where each cluster contains n
=N /M nodes. In each cluster, the nodes are ordered on a ring
so that the subnetwork is regular. Each node connects to m
nearest neighbors. Each pair of nodes in different clusters is
connected with probability p. While biological consider-
ations stipulate that the long-range links, i.e., links between
clusters, be directional, to be as general as possible we shall
treat both bidirectional and directional coupling cases. To
facilitate analytic derivation and understanding, we first con-
sider a network consisting of two clusters with bidirectional
intercluster links and then generalize the theory to M-cluster
networks for M �2.

The standard approach to addressing the synchronizability
of a complex network is to consider a corresponding coupled
oscillator network �1�, where one nonlinear oscillator is
placed on each node of the network. The dynamical system
can be described by

dxi

dt
= F�xi� − ��

j=1

N

GijH�x j�, i = 1,2, . . . ,N , �1�

where � is a global coupling parameter, G is the coupling
matrix determined by the network topology, and H�x� is a
coupling function. The coupling matrix G is defined as Gij
=−1 /ki if there is a link between node i and j, where ki is the
degree �the number of links� of node i, Gii=1, and Gij =0
otherwise. For a bidirectional network, the eigenvalues of G
are real and non-negative, and can be sorted as 0=�1��2
� ¯ ��N �24�. The coupled system is synchronizable only
if the effective coupling strength K=��i �i�1� falls into a
certain interval �K1,K2�, or K1���2 and K2���N, where K1
and K2 depend only on the dynamics of a single oscillator
�25�. For typical oscillators the second condition can be eas-
ily satisfied, so the synchronization condition is �2�K1 /�
�7�. The goal of our analysis is to derive a formula for �2 for
clustered networks with a regular local structure.

A. Networks with two clusters

The transpose of a matrix and the matrix itself have the
same set of eigenvalues. Let ei be the normalized eigenvector
such that GT ·ei=�iei, where ���T denotes the transpose.
Since � jGij =0, we have � jei,j =0 if �i�0 �26�. It is known
that for a one-dimensional ring network, the eigenvector e2
associated with �2 has a sinusoidal waveform: e2,i
�sin�2�i /n�, where n is the total number of nodes on the
ring. For two coupled ring subnetworks, we find numerically
that, when the inter- and intraconnections are not too dense,
components in e2 have a similar wave pattern for each sub-
network, although the mean values can be different, as
shown in Fig. 2. Since the two subnetworks are identical, the

FIG. 1. �Color online� Schematic illustration of our clustered
network model with regular subnetworks.
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amplitudes of the periodic waves are the same. The zero-sum
property of e2 requires that the mean values of the two sinu-
soidal waves have opposite signs. To characterize such a
wave pattern, we define A to be the amplitude of the sinu-
soidal waves, and B as the positive mean value, as indicated
in Fig. 2�a�. Thus e2 can be written approximately as

e2 = ��B + A sin�2�i1/n + �1��i1
,

�− B + A sin�2�i2/n + �2��i2
�T,

where i1 , i2=1 ,2 , . . . ,n, and �1 and �2 are the phases of the
first node in each cluster. We can relabel the nodes so that
�1=�2=0, thus have

e2 = ��B + A sin�2�i1/n��i1
, �− B + A sin�2�i2/n��i2

�T.

The normalization condition e2
Te2=1 gives

�
i1=1

n 	B + A sin
2�i1

n
��2

+ �
i2=1

n 	− B + A sin
2�i2

n
��2

= 1,

which yields

2nB2 + nA2 = 1. �2�

For a network whose e2 has a periodic wave pattern in each
cluster, the corresponding eigenvalue �2 can be calculated
analytically. Likewise, if e2 is constant within each cluster,
�2 can be obtained analytically as well �7�. The key obser-
vation is that, as the intracluster link density is increased,
there is a transition from the former to the latter. That is,
there exists a critical value mt, where for m�mt, the eigen-
vector e2 possesses a periodic wave pattern in each cluster
but, for m�mt, e2 is approximately constant in each cluster.
Our effort below will then be to obtain mt, based on which
the eigenvalue �2 can be calculated.

To proceed, we note that, from the definition GT ·e2
=�2e2, we have

�2 = e2
T · GT · e2 = �

i,j=1

N

Gije2,ie2,j .

The coupling matrix G has the structure that, for i−m /2
� j� i and i� j� i+m /2, Gij =−1 /ki, and for j belonging to
different clusters, Gij =−1 /ki with probability p. The degree
ki follows approximately a Gaussian distribution: P�k�
�N�m+ pn ,
pn�; thus we can use the mean value k�m
+ pn to approximate ki. As a result, �2 can be expanded as

�2 = �
i1=1

n 	B + A sin
2�i1

n
���	B + A sin
2�i1

n
��

−
1

k
�

l=−m/2,l�0

m/2 	B + A sin
2��i1 + l�
n

�� + �
i2=1

n

Gi1�n+i2�

		− B + A sin
2�i2

n
��� + c.c.,

where c.c. stands for the summation for the second cluster,
i.e., with i1 and n+ i2 interchanged. Since the clusters are
identical, the two summations are the same. The first term in
the summation for the first cluster, which is e2

T ·e2 /2, gives
1 /2. For the third term, note that Gi1�n+i2� equals −1 /k with
probability p. Because of this randomness, the summation
over A sin�2�i2 /n� vanishes, and

�
i1=1

n

�B + A sin�2�i1/n�� = nB .

Thus the third term equals nB�−1 /k�np�−B�=n2pB2 /k. The
second term, when expanded, gives

−
1

k��
i1=1

n 	B + A sin
2�i1

n
�� �

l=−m/2

m/2 	B + A sin
2��i1 + l�
n

��
− �

i1=1

n 	B + A sin
2�i1

n
��2� .

Since

�
i1=1

n

�
l=−m/2

m/2

sin
2��i1 + l�

n
= �

l=−m/2

m/2

�
i1=1

n

sin
2��i1 + l�

n
= 0,

the second term can be simplified as

−
1

k�n�m + 1�B2 + A2�
i1=1

n

sin
2�i1

n
�

	 �
l=−m/2

m/2

sin	2��i1 + l�
n

� −
1

2�
� −

1

k�n�m + 1�B2 −
1

2

+ A2�
0

n

sin
2�x

n
�dx�

−m/2

m/2

sin	2��x + y�
n

�dy�

0 100 200
−0.2

0

0.2

node i

e 2,
i

0 100 200

0 200 400
−0.1

0

0.1

node i

e 2,
i

0 200 400

(a)

(d)(c)

(b)

A
B

FIG. 2. �Color online� Typical configurations of e2 for a two-
cluster network of parameters N=200 and p=0.2 ��a� m=52 and �b�
m=80� and for a five-cluster network with N=500 and p=0.3 ��c�
m=40 and �d� m=80�.
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= −
1

k
�n�m + 1�B2 −

1

2
+

n2A2

2�
sin

�m

n
�

= −
1

k
�nmB2 +

nA2

2
	 n

�
sin

�m

n
− 1�� ,

where the last equality is due to Eq. �2�. Adding all the three
terms, we have

�2 = 2�1

2
+

n2pB2

k
−

nmB2

k
−

nA2

2k
	 n

�
sin

�m

n
− 1��

= 1 +
2nB2�np − m�

k
−

NA2

2k
	 n

�
sin

�m

n
− 1� . �3�

While the parameter A represents the magnitude of the wave-
form, B can be regarded as the strength of the clustering of
the network. Figure 3 shows the value of B versus m /n.
There is a sudden transition of B from 0 to 1 /
N �or corre-
spondingly, A from 
2 /N to 0�. Thus we can approximate B
�or A� by a step function of m /n. The transition point mt
where the wave patterns vanish �A becomes 0� can be calcu-
lated, as follows. For B=0, we have A=
2 /N and Eq. �3�
becomes

�2 = 1 −
1

k

 n

�
sin

�m

n
− 1� . �4�

For B=1 /
N, we have A=0. Noting that k= �N−n�p+m, we
can simplify Eq. �3� as

�2 = 1 +
np − m

k
=

Np

k
. �5�

Since �2 is continuous, at the transition point mt, the values
of �2 obtained from Eq. �4� and from Eq. �5� must be equal.
This yields

p =
mt

n
−

1

�
sin

�mt

n
+

1

n
. �6�

For the parameters used in Fig. 3, the transition point is mt
�0.508, as indicated by the vertical line. The analytical
value agrees well with the simulation result. Thus, for a two-
cluster network, �2 can be approximated by Eq. �4� for m
�mt and by Eq. �5� for m
mt. Figure 4�a� shows simulation
results and the theoretical prediction for �2 for both the bi-
directional �circles� and directional �triangles� intercluster
coupling case. There is an alternating behavior in �2 as the
intracluster link density m /n is increased and the theory cap-
tures the behavior of �2 reasonably well.

B. Multicluster networks

For a multicluster network, periodic wave patterns can
arise in each cluster as well �Fig. 2�c��. We have observed
numerically that the amplitudes of the wave patterns for dif-
ferent clusters are approximately equal, so the average am-
plitude A can again be used to characterize the wave patterns.
Similar to the two-cluster case, there is a sharp transition of
A from a constant value to zero as m /n increases. For A=0,
the wave pattern diminishes, and e2 has the structure that its
components within one cluster have approximately the same
value but they can vary significantly in different clusters
�Fig. 2�d��. In this case, it can be shown that �2 is given by

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

m/n

B

FIG. 3. �Color online� For a two-cluster network with N=200,
and p=0.2, quantity B vs m /n from simulation, where each point is
the average of 100 runs. For m /n�0.5, B approaches 1 /
N
�0.071. The vertical line indicating the transition point of B is
predicted by theory.

0 0.2 0.4 0.6 0.8 1
0.3

0.4
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0.6

0.7

0.8

0.9

m/n

λ 2

0 0.2 0.4 0.6 0.8 1
0.65
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0.8
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0.9

0.95

m/n
λ 2

(a)
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FIG. 4. �Color online� �a� For a two-cluster network with N
=200 and p=0.2 and �b� a five-cluster network with N=500 and
p=0.3, �2 vs m /n. The data points are obtained from simulation for
both bidirectional �circles� and directional �triangles� intercluster
connections. For the directional case, only the real part of �2 is
presented �Im �2�10−3 Re �2�. Each point is the average of 100
realizations. Solid curves are from theory.
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Eq. �5� �7�. To treat the case where A�0, we assume the
network has M clusters. The eigenvector e2 has the form of
�after relabeling�

��A sin�2�i1/n��i1
, . . . ,�A sin�2�iM/n��iM

�T,

for i1 , . . . , iM =1,2 , . . . ,n. The normalization condition of e2
gives �n /2�A2M =NA2 /2=1, which yields

A =
 2

N
. �7�

Again we have �2=�i,j=1
N Gije2,ie2,j. Note that the index

i1 , . . . , iM are interchangeable; thus we can focus the summa-
tion over i on a single cluster and carry out summation over
j. Doing so, we find that �2 is M times such summations:

�2 = M�
i=1

n

A sin
2�i

n 	A sin
2�i

n

−
1

ki
�

l=−m/2,l�0

m/2

A sin
2��i + l�
n

� + �
j�Vi

GijA sin
2�j

n
�� ,

�8�

where Vi is the set of nodes in the cluster containing i. Since
Gij equals −1 /ki with probability p and 0 otherwise, the third
term leads to 0. Using the mean value k�m+ p�M −1�n to
approximate ki, we have

�2 = M�
i=1

n

A sin
2�i

n � k + 1

k
A sin

2�i

n

−
1

k
�

l=−m/2

m/2

A sin	2��i + l�
n

��
=

k + 1

k
− M�

i=1

n
1

k
A sin

2�i

n
�

l=−m/2

m/2

A sin	2��i + l�
n

� .

The second term can be approximated by integration, which
yields

�2 =
k + 1

k
−

MA2

k

n2

2�
sin

�m

n
,

= 1 −
1

k

 n

�
sin

�m

n
− 1� , �9�

where the second equality results from using Eq. �7�. This
expression is the same as Eq. �4� for the two-cluster network
case. Since the expressions for �2 for both nonzero A and
zero A cases are the same as those in the two-cluster case, the
transition point mt can again be determined by Eq. �6�, which
is independent of M. Thus �2 can be approximated by Eq. �4�
�or Eq. �9�� for m�mt and by Eq. �5� for m
mt. Figure 4�b�
shows the theoretical prediction of �2 together with simula-
tion results for a five-cluster network. It can be seen that the
alternating behavior in �2 persists and is reasonably well
predicted by theory.

C. Robustness of alternating synchronization behavior

An immediate question is whether the predicted alternat-
ing behavior in �2 is robust. To address this, we need to
determine the value of mc for which �2 in Eq. �4� has a
minimum value or d�2 /dm�mc

=0. We obtain

p =�
1

�
sin

�mc

n
−

1

n

cos
�mc

n

−
mc

n ���M − 1� . �10�

For a given set of parameters �M,n,p�, �2 is maximized at mt
and reaches minimum at mc. Thus the system can be syn-
chronized at mt and desynchronized at mc. As a result, the
alternating behavior exists if mc�mt. Neglecting the term
1 /n, mt /n only depends on p �Eq. �6��, while mc /n depends
on both p and M �Eq. �10��. Figure 5 shows mc and mt for
different M values. For clarity only one n value is used since
the curves for n=100 and n=1000 are almost identical. For
large values of M, for any p, mc approaches n /2. Thus for
the particular parameter setting in Fig. 5, insofar as p�0.2,
networks with arbitrary number of clusters exhibit the alter-
nating behavior. When M is smaller, the critical value for p
for the alternating behavior decreases and the parameter re-
gion for the alternating behavior broadens. The conclusion is
that the alternating behavior in synchronization is a quite
robust feature in locally regular, complex clustered networks.

IV. NUMERICAL SIMULATIONS OF ACTUAL
SYNCHRONOUS DYNAMICS

While the alternating-synchronizability behavior is pre-
dicted and verified using eigenvalue analysis, direct numeri-
cal simulations of coupled oscillator networks give strong

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

m/n

p

Alternating
region

m
t

m
c

FIG. 5. �Color online� For clustered networks with parameters
M =2, 5, 100 and n=100, p vs mt /n �solid lines� and vs mc /n
�dotted lines�, where three dotted cases from left to right correspond
to M =2,5 ,100, respectively. The region between the mc line and
the mt line, i.e., mc�m�mt, is the region that �2 and therefore the
synchronizability exhibit an alternating behavior.
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evidence for the existence of this behavior. For instance, we
have chosen for each oscillator, when isolated, the Rössler
dynamics dx /dt=F�x�, where x= �x ,y ,z�T, F�x�= �−�y
+z� ,x+0.2y ,0.2+z�x−9��T, �=0.4, and H�x�= �x ,0 ,0�T. Nu-
merically, we find K1=0.2 and K2=4.62. Since the Rössler
system can have desynchronization bursts, it is necessary to
characterize the synchronization in a statistical way. In par-
ticular, we define

W�t� = ��x�t� − �x�t����

as the fluctuation width of the system at time t, where �·�
denotes average over all nodes in the network. The ensemble
and time averages of the fluctuation width ��W�T0

�e can be an
indicator of the degree of synchronization, i.e., if the system
is synchronized, ��W�T0

�e�0, and if not, ��W�T0
�e may as-

sume some large value. Figure 6�a� shows ��W�T0
�e versus

m /n for both the bidirectional and directional intercluster
coupling cases. When m is small �m /n�0.2�, ��W�T0

�e is
small and the system is synchronized. As m is increased
�m /n=0.3�, ��W�T0

�e becomes large and desynchronization

occurs. As m increases further �m /n=0.5�, the fluctuation
width reduces and the system becomes synchronized again,
and for m /n�0.6, the network loses its synchronizability.
The probability of synchronization, Psyn, defined as the prob-
ability that W�t� is smaller than a small number � at all time
steps during a time interval T0 in the steady state, can also be
used to characterize the synchronizability. Practically, Psyn

can be calculated by the ensemble average, i.e., the ratio of
the number of synchronized cases over the total number of
network realizations. Figure 6�b� shows Psyn vs m /n. The
alternating synchronization phenomena is apparent, as pre-
dicted.

V. DISCUSSIONS

In this paper, motivated by the problem of tissue organi-
zation and intercellular communication in biology, we have
studied the synchronizability of a class of clustered networks
where each cluster contains a regular subnetwork. Our find-
ing is that the network synchronizability exhibits an alternat-
ing, highly nonmonotonic behavior as the number of intrac-
luster links �gap junctions in a biological network� changes.
Although speculative, the results may suggest that the syn-
chronized function of organs in the face of perturbation may
be controlled by the ability of individual cells to vary the
number of gap junctions expressed on the membrane, which
has been observed in variations in gap junctional intercellu-
lar communication and connexion expression in fibroblasts
derived from keloid and hypertrophic scars �27–29�.

Using more biophysically detailed dynamical models for
simulation of synchronous dynamics is an interesting prob-
lem. However, a detailed model that can satisfactorily treats
the actual dynamical interactions in intercellular communi-
cation is beyond the scope of present research. Our goal in
this paper has thus been to understand the synchronizability
of the network, as synchronization is an important factor
determining intercellular communications. The main advan-
tage of the synchronizability analysis is that it allows us to
draw quite general conclusions about the ability for nodes in
the network to be synchronized. The key theoretical tool re-
quired for the analysis is spectral properties of the coupling
matrix of the underlying network. We wish to emphasize
that, although the synchronizability analysis can yield quali-
tative information about the likelihood for the network to
achieve synchronization, it is not able to yield information
about the detailed dynamical process that leads to synchro-
nization. Because of this limitation, making the individual-
node dynamics more “biological” is not very helpful from
the standpoint of spectral analysis. In fact, insofar as the
dynamics are oscillatory and somewhat random, we expect
them to produce synchronization phenomena consistent with
the predictions from the synchronizability analysis. That is
why we have chosen the chaotic Rössler oscillator as a
proper model for actual simulation of the synchronization
dynamics. Indeed, the results from such numerical
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FIG. 6. �Color online� For a cluster oscillator network with pa-
rameters N=200, M =2, p=0.2, �a� ��W�T0

�e vs m /n and �b� Psyn vs
m /n. Circles and triangles indicate cases with bidirectional and di-
rectional intercluster connections, respectively. Simulation param-
eters are T0=104 and �=0.005. The vertical lines indicating the
boundaries are determined by �2=K1 /�=0.5. Each data point is the
average of 700 realizations. The data for this figure were obtained
with 15 Pentium-IV 2.80 GHz CPUs for about 2 months.
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computations agree, qualitatively, with the theoretical predic-
tions based on spectral analysis.

Time delays of the interaction along the long-range links
are important and relevant to the biological system. How-
ever, as discussed above, our synchronizability analysis is
not designed to deal with time delays. This should be an
interesting topic for future explorations.
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