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A clustered network is characterized by a number of distinct sparsely linked subnetworks �clusters�, each
with dense internal connections. Such networks are relevant to biological, social, and certain technological
networked systems. For a clustered network the occurrence of global synchronization, in which nodes from
different clusters are synchronized, is of interest. We consider Kuramoto-type dynamics and obtain an analytic
formula relating the critical coupling strength required for global synchronization to the probabilities of intra-
cluster and intercluster connections, and provide numerical verification. Our work also provides direct support
for a previous spectral-analysis-based result concerning the role of random intercluster links in enhancing the
synchronizability of a clustered network.
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I. INTRODUCTION

Synchronization in complex networks has become an ac-
tive area of research in network science �1–11�. Previous
works have addressed the synchronizabilities of small-world
networks �3,4�, scale-free networks �7�, weighted networks
�8,9�, and gradient networks �11�. More recently, synchroni-
zation in complex clustered networks has been investigated
�12–14�. The approach employed in most existing studies is
the master stability function �15�, which enables the synchro-
nizability of the network under study to be inferred through
its spectral properties �16�. A requirement of this approach is
that all individual nodes, when isolated, are governed by an
identical set of dynamical equations. In realistic situations
this may not be the case. Thus it is interesting to ask what
can happen to synchronization when the oscillators are non-
identical. The problem can easily become intractable if the
local oscillatory dynamics is complicated, due to the com-
plex connecting topology of the network. Given the com-
plexity of the system, a compromise is to make the local
dynamics as simple as possible, yet nontrivial. The simplest
oscillatory dynamics is that given by an ideal phase oscilla-
tor, �̇=�, where � is the frequency. Assuming each node is
governed by such a phase evolution, heterogeneity in the
node dynamics can be modeled by assigning different fre-
quencies to different oscillators. In general, the frequencies
can be assumed to be drawn from a random distribution. For
the simple network topology where the coupling is all to all,
the phase-coupled oscillator network is the classical Kura-
moto model �17,18�, which is analytically treatable in many
aspects. Recently, the problem of transition to synchroniza-
tion of phase-coupled oscillators in scale-free networks has
been addressed �19�. In particular, an analytic formula for the
critical coupling strength at the onset of synchronization,
where a properly defined order parameter �see below� char-
acterizing the degree of synchronization begins to increase
from zero, has been obtained.

In this paper, we investigate the dynamics of phase-
coupled oscillators on complex clustered networks. A clus-

tered network typically consists of a number of sparsely con-
nected subnetworks, or clusters, where the connectivity
within each individual cluster is dense. Such a clustered
structure is commonly seen in social �20� and biological �21�
networks, and it also appears in certain technological net-
works �22�. Due to the dense connections in any individual
cluster, synchronization within the cluster can be expected as
the coupling strength is increased from zero. In particular,
since the connections among nodes belonging to different
clusters are sparse, for relatively small coupling strength the
dynamics in distinct clusters can be regarded as being inde-
pendent of each other. Roughly, this means that the onsets of
synchronization in different clusters can be treated as inde-
pendent of each other as well. For a complex clustered net-
work, the more relevant and perhaps the more interesting
issue concerns thus the occurrence of global synchronization
among nodes in different clusters. Let po be the probability
of an intercluster link, i.e., the probability for a pair of nodes,
each belonging to a different cluster, to be connected. The
critical coupling strength �c required for global synchroniza-
tion depends on po. Intuitively, �c decreases as po is in-
creased. The main contributions of this paper are an analytic
formula relating �c and po and numerical support.

In Sec. II, we present our theoretical derivations that lead
to an explicit dependence of �c on po. In Sec. III, we provide
numerical support and also address the issue of the role of
the nature of intercluster links on network synchronizability
through direct calculation of �c. Conclusions are summarized
in Sec. IV.

II. THEORY

We consider the following modified Kuramoto model for
a clustered network of N nodes:

�̇n = �n + ��
m=1

N

anm sin��m − �n� , �1�

where 0��n�2� is the phase variable of node n, �n is the
corresponding frequency, � is a coupling parameter, and anm
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are the elements of the adjacency matrix determined by the
connecting topology of the clustered network. Specifically,
anm=1 if nodes n and m are connected, anm=0 otherwise,
and ann=0. The frequencies are drawn from a probability
distribution g0���, say Gaussian or uniform distribution,
which can be conveniently chosen to center about zero. We
assume that the network consists of M identical clusters,
each of L nodes. For convenience we choose N such that
N=ML. Without loss of generality we further assume that an
arbitrary node has probability pi to connect with other nodes
inside the cluster. The network is thus characterized by two
probabilities: the probability of intracluster links pi, and the
probability of intercluster links po. For typical clustered net-
works, usually pi� po.

The standard approach to analyzing Eq. �1� is to introduce
a proper order parameter. Since our focus is on synchroniza-
tion among nodes in different clusters, it is necessary to dis-
tinguish such nodes. We thus follow Ref. �19� to consider the
following local order parameter rn:

rnei�n � �
m=1

N

anm�ei�m�t��t, �2�

where �·�t denotes a time average, rn is real valued and posi-
tive, and �n is the time-averaged phase of node n. Using
Eq. �2�, Eq. �1� becomes

�̇n = �n − �rn sin��n�t� − �n� + �hn�t� , �3�

where hn�t�=Im�e−i�n�t��m=1
N anm�ei�m�t�− �ei�m�t��t�� and

Im�·� stands for the imaginary part. We are interested
in the coupling regime where all oscillators are nearly
synchronized. In this case, rn= 	�m=1

N anm�ei�m�t��t 	

	�ei�m�t��t 	�m=1

N anm
	�ei�m�t��t 	dn, where dn=�m=1
N anm is

the degree of node n. For the term hn�t� note that �m�t�
�ei�m�t�− �ei�m�t��t is in fact the amount of fluctuation of
ei�m�t� with respect to its time average. Thus, roughly, two
such fluctuation terms �m�t� and �n�t� where n�m, can be
regarded as uncorrelated. This means that hn�t� is approxi-
mately the sum of dn uncorrelated random terms. We have
hn�t���dn. Since nodes are densely connected �at least
within the same cluster�, we have dn�1. Thus rn� 	hn�t�	
and we can neglect hn�t� in Eq. �3�. This leads to

�̇n 
 �n − �rn sin��n�t� − �n� . �4�

Note that the same approximation has been used in Ref. �19�
for scale-free networks. In that case, each node in the net-
work is assumed to be densely connected. In our case of
clustered networks, as we have argued, the assumptions lead-
ing to Eq. �4� are automatically satisfied due to the defining
nature of the networks.

Toward the global synchronization point, all oscillators
become increasingly phase locked. The locked phase is given
by the stable fixed point of Eq. �4�, which is given by

�n
0 = �n + sin−1 �n

�rn
� . �5�

Near the global synchronization point, i.e., when �=�c, we
have �m
�n. �We have verified numerically that this ap-

proximation indeed holds for clustered networks.� Following
the argument in Ref. �19�, we can write the order parameter
as

rn 
 �
m=1

N

anm
�1 − ��m/��crm��2. �6�

Since dn is large, we expect the frequency distribution of all
nodes connected to node n to be representative of the fre-
quency distribution of all oscillators in the network. The
summation can thus be replaced by an integral. We have

rn 
 �c�
m=1

N

anmrm�
−	

+	

g�z�crm��1 − z2dz , �7�

where z�� / ��crm� and the frequency distribution function
g��� is determined by the threshold value of the global order
parameter r, defined as r=ei
= 1

N�m=1
N ei�m, for characterizing

global synchronization, which in general differs from the ini-
tial distribution g0��� for �=0 when oscillators are indepen-
dent of each other. Since, as the global synchronization state
is approached, the frequency distribution becomes increas-
ingly narrow, the integral in Eq. �7� is effectively indepen-
dent of intercluster probability po and tends to a constant. In
addition, in a clustered network, the connections inside each
cluster are dense, and connections among clusters are ran-
dom, thus we have rn
rm. To evaluate the summation in Eq.
�7�, we note that a node is connected with �L−1� nodes in the
same cluster with probability pi, and simultaneously the node
is connected with a node from a different cluster with prob-
ability po. There are �N−L� such nodes. We thus have
�m=1

N anm= pi�L−1�+ po�N−L�. These considerations finally
lead to

�c =
C

pi�L − 1� + po�N − L�
, �8�

where the constant C depends on the threshold value of the
global order parameter r for defining global synchronization,
which can be regarded as a fitting parameter. Equation �8� is
our main result. It says that given the intracluster probability
pi for a certain clustered network, as the probability po of an
intercluster link is increased, the critical coupling strength
required for global synchronization is decreased. In particu-
lar, for a network that contains many clusters �i.e., N�L�, if
po is not close to zero, �c is approximately inversely propor-
tional to po.

III. NUMERICAL SUPPORT

We now provide numerical support for our main result.
We first demonstrate that, for small probability po of an in-
tercluster link, synchronous clusters occur, as shown in Figs.
1�a�–1�d� for �=1.0. The network has N=300 nodes grouped
into M clusters locating on a ring, each being connected to
its nearest-neighbor clusters. In this case, probability po is
close to zero. The initial frequencies �i of oscillators are
drawn from a Gaussian distribution of zero mean and unit
variance. In particular, Fig. 1�a� shows the final frequency
versus oscillator index for M =3 and Fig. 1�b� displays the
time evolution of the global order parameter r. We observe
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distinct frequencies associated with each cluster, and the av-
erage value of the order parameter is below unity. Similar
behaviors occur for M =10, as shown in Figs. 1�c� and 1�d�,
respectively. The formation of the synchronization clusters is
apparently independent of the initial frequency distribution,
as we have verified numerically.

We next increase po, the probability of intercluster links.
For a fixed value of po, as the coupling parameter � is in-
creased from zero, synchronization clusters form, followed
by a transition to global synchronization. Figures 2�a�–2�c�
show the final frequency distributions for �=0.01, 0.5, and
1.0, respectively, where the system parameters are N=300,
M =10, pi=0.7, and po=0.002. We see that for �=1.0, global
synchronization, as characterized by one common frequency
for all oscillators in the network, has already been achieved
for this ten-cluster network even when the intercluster link-
ing probability is quite small.

Since for clustered networks, the intercluster probability
po plays a dominant role in shaping the network topology, we
now fix the intracluster probability pi to verify the depen-
dence of �c on po. To do so we calculate, for a number of
fixed values of po, the global order parameter r as a function
of �, as exemplified by Fig. 3 for five fixed values of po. We
observe that, as � is increased from zero, r increases almost
immediately from a small residual value for �
0, indicating
the occurrence of synchronous clusters. This reinforces our
reasoning that the onset of local synchronization, on which
almost all previous works on Kuramoto-type models focus,
is a relatively straightforward �if not trivial� issue for a net-
work that is already structurally clustered. Instead, global
synchronization is more relevant. Setting a threshold value
near 1 for r yields �c, the critical coupling parameter for
global synchronization. Figures 4�a� and 4�b� show �c versus
po for pi=0.7 and pi=1.0, respectively. The clustered net-
work has N=500 nodes with M =5 clusters, and the initial
frequencies are drawn from a Gaussian distribution. In
Fig. 4, the circles and crosses are for rc=0.999 and rc

=0.99, respectively, and the solid curves are theoretical pre-
dictions. We observe an excellent agreement between theory
and numerics. Furthermore, comparing Figs. 4�a� with 4�b�,
we find that increasing probability pi of intracluster links
generally enhances global synchronization, as predicted by
Eq. �8�. Similar agreement has been obtained for uniform
initial frequency distribution �in �−1,1��, as shown in
Figs. 4�c� and 4�d�.
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FIG. 1. �Color online� For a clustered network of N=300 nodes,
pi=0.7, and po
0, �a� final frequency distribution and �b� evolution
of the network-averaged order parameter, both for M =3. �c�, �d�
Respective plots for M =10. The coupling parameter is �=1.0 for
�a�–�d�.
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FIG. 2. �Color online� For a clustered network of N=300, M
=10, pi=0.7, and po=0.002, �a�–�c� final frequency distribution for
�=0.01, 0.5, and 1.0, respectively. Global synchronization has al-
ready occurred for �=1.0.
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FIG. 3. �Color online� The global order parameter versus the
coupling parameter for po=0.001, 0.01, 0.05, 0.1, and 0.2, corre-
sponding to the curves from bottom up. For very small po, only
clustering occurs. Global synchronization can be achieved with in-
crease of po. The network parameters are N=500, M =5, and pi

=0.7.
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In Ref. �12�, it is emphasized that for a clustered network,
the random intercluster links can enhance the network syn-
chronizability most effectively. If the intercluster links are
placed not completely randomly, even when their number is
large, the network synchronizability may not be strong. This
result is obtained based on analyzing the behavior of the
eigenratio of the coupling matrix, which is meaningful only
for identical oscillators. Here, the simplicity of the node dy-
namics �i.e., simple phase oscillator� allows us to address the
effect of the nature of intercluster links in a direct and quan-
titative manner, for nonidentical oscillators. To be concrete
and to compare results with those in Ref. �12�, we use the
same model of clustered network, i.e., a ring topology for
clusters with intracluster probability pi=1, as in Ref. �12�.
The probability of intercluster links can be written as p�l�,
where l is the distance between two clusters. In Ref. �12�,
p�l� is assumed to be exponential: p�l��e−�l, where �0 is
a parameter that determines the nature of the intercluster
links. In particular, for �0, short-range intercluster links
are favored, while long-range links are more likely for �
�0. Random intercluster links are favored for �
0. For a
fixed value of the link ratio q, the ratio of the number of
intercluster links to the total number of links in the network,
we can calculate �c, the critical coupling strength for global
synchronization as a function of �. Since a smaller value of
�c indicates stronger network synchronizability, we expect �c
to reach minimum for �
0 when intercluster links are com-
pletely random. This behavior has indeed been observed, as
shown in Fig. 5�a� for three cases: M =20, 40, and 80, where
q=0.02 and L=5 are fixed. Likewise, we can fix the coupling
parameter � and investigate how qc, the critical link ratio,
varies with �. Since a smaller value of qc implies stronger

network synchronizability, we expect qc to be minimal for
�
0 as well. Again, this behavior has been numerically ob-
served, as shown in Fig. 5�b�, where �=1.0. These results
thus confirm and generalize the previous finding concerning
the interplay between the network synchronizability and the
nature of the intercluster links.

IV. DISCUSSIONS

In summary, we have addressed the occurrence of global
synchronization in clustered networks of heterogeneous
phase oscillators. As the probability of intercluster links is
increased, the network becomes more synchronizable, as
characterized by smaller values of the critical coupling pa-
rameter required for global synchronization. While this result
can be intuitively expected, we have obtained an explicit
theoretical formula relating the dynamical to the topological
properties of the network, and provided strong numerical
support. The relevance of clustered networks to real-world
situations, particularly in biology and social science, has
been increasingly recognized. Our work provides a quantita-
tive criterion for predicting under what conditions global
synchronization may occur in these networks.
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