
Observation-based control of rare intense events in the complex Ginzburg-Landau equation

Lin Du,1,2 Qingfei Chen,2,* Ying-Cheng Lai,2,3 and Wei Xu1

1Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
2Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287, USA
3Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287, USA

�Received 2 April 2008; published 11 July 2008�

We demonstrate that rare intense events in the complex Ginzburg-Landau equation can be suppressed by
using only observation-based control. Our control strategy eliminates the requirements of a precise system
model and prediction. Analytic insights for guiding the control and numerical verification are obtained. The
issue of time delay is also addressed. We expect our results to provide insight into the challenging problem of
harnessing spatially extended complex systems.
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Spatially extended systems exhibit extremely rich dy-
namical phenomena such as nonlinear waves, synchroniza-
tion, intermittency, and spatiotemporal chaos or turbulence.
These have been studied extensively, due to their relevance
to many branches of science and engineering. One important
phenomenon that has received relatively less attention is ex-
treme events in spatiotemporal systems that occur rarely but
with intensities far greater than those associated with typical
events in the system. Intuitively, rare intense events are due
to nonlinear interactions among distinct spatial components
in the system, leading to an extreme form of constructive
interference. Consider, for example, a wave system. The
wave amplitude at a particular spatial location at a particular
time is the result of many wave packets generated at different
spatial locations from previous times. If the phases of most
wave packets happen to be coherent, a large amplitude event
at that location and at that time can arise. It is, however,
difficult for phase coherence over a large spatial scale to
emerge, the occurrence of extreme-amplitude events thus
cannot be expected to occur commonly. Nonetheless, once
such an event actually occurs, the consequences can be se-
vere in the sense that significant damage can incur to the
system and its surroundings. Despite previous efforts to
probe statistical behaviors of and scaling laws associated
with rare intense events �1,2�, their dynamical origins remain
elusive.

Among the numerous spatially extended dynamical sys-
tems, the complex Ginzburg-Landau equation �CGLE� is one
of the most studied. It models the dynamical behaviors of a
broad class of systems including nonlinear waves, supercon-
ductivity, superfluidity, Bose-Einstein condensation, and liq-
uid crystals �3–7�. The CGLE has also been used as a para-
digmatic model for investigating rare intense events in
spatially extended dynamical systems. Recently, an attempt
has been made to control rare intense events in the CGLE
�8�. The idea is that if a precise model of the underlying
system is available so that the occurrence of some rare in-
tense events can be predicted accurately in the sense that
their precise locations and timings can be calculated in ad-

vance, some suitable control can be applied to these loca-
tions at those times so as to suppress the amplitudes of the
events. Apparently, the success of this control strategy relies
on one’s ability to construct a precise model of the underly-
ing physical system. Even when such a model is available,
sensitive dependence on initial conditions can ruin any rela-
tively long term prediction in a fundamental way, rendering
difficult the implementation of such prediction-based control.
In view of the ubiquity of spatially extended dynamical sys-
tems in nature �9� and the severe consequences of rare in-
tense events, it is of broad interest to articulate control strat-
egies that do not rely on model and prediction.

In this paper, we propose a prediction-free, observation-
based scheme to control rare intense events in the CGLE.
Given a system, our hypothesis is that its state is qualita-
tively observable in the sense that the time and space aver-
aged values of some key state variables of the system are
available. Practically, this can be accomplished by some
proper imaging monitoring techniques �e.g., satellite image�
that are nowadays employed commonly in many fields of
science and engineering. At any given time, such an obser-
vation would give the intensity distribution of the physical
variable of interest and, in particular, a small set of points in
space for which the intensity values are significantly larger
than those at typical points of the system. Such a small set of
points can be regarded as the locations at which rare intense
events are likely to occurr. We call such a set the relevant set
�of points in space� for rare intense events, and we assume
that the set is continuously available through observation.
Our basic idea for control is then to apply spatially highly
localized perturbations at the relevant set of points. The de-
tailed control law depends, of course, on system details. For
example, in the common situation where rare intense events
are associated with large energies, some proper local damp-
ing control can be applied to the relevant set. We shall pro-
vide analytic insights into the choosing of control parameters
in the CGLE and demonstrate computationally that rare in-
tense events can be significantly suppressed by our control
method. The important technical issue of time delay in ap-
plying the control will also be addressed. Although our
analysis and demonstration are for the specific system of the
CGLE, our strategy of applying local control at a relevant set*qchen20@asu.edu
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of points through observation can be useful for mitigating
rare intense events in other spatially extended systems.

The two-dimensional CGLE is

�u

�t
= �u − �� + i���u�2u + �� − i���2u , �1�

where �, �, �, �, and � are parameters. For �=0, �=0, and
�=0, Eq. �1� is reduced to the nonlinear Schrödinger equa-
tion �NLSE�. It has been demonstrated that rare intense
events can occur in the parameter region close to the NLS
limit �1�, namely, for � ,��� ,� ,�. To illustrate this, we
show in Fig. 1 a snapshot of u�x ,y , t�, where a square region
of side length l=20� in the �x ,y� plane is chosen and peri-
odic boundary conditions are used. The solution u�x ,y , t� to
Eq. �1� is obtained by using a standard finite-difference
method with random initial conditions.

We develop a physical theory for the control of rare in-
tense events in the CGLE. To illustrate the basic idea in an
intuitive way, we assume a control parameter of the system is
available in the sense that adjustments can be made to it
about a nominal value in a small region in the space. Sup-
pose at time t, an event of large amplitude has been observed
to occur at the point �xmax ,ymax�. A small square region of
side length r about this point, say, �� : ��x ,y���x−xmax�
	r /2, �y−ymax�	r /2�, is then chosen as the control region
for which the control parameter is changed from its nominal
value. In our strategy, the region � varies with time, depend-
ing on the location of the observed event. Let 

� �� ,� ,� ,� ,�� be the control parameter. Mathematically
the control law can be represented by


 = ��1 + ��
0, if �x,y� � � ,


0, otherwise,
	 �2�

where 
0 is the nominal parameter value and � is the control
perturbance. A key question is how to choose a proper con-
trol parameter. While the answer in general depends on the
details of the system to be controlled, for the CGLE we are
able to address this question analytically by focusing on the
dynamics of the system in the vicinities of locations where
rare intense events are likely to occur.

Taking the real and imaginary parts of Eq. �1�, we obtain

�ur

�t
= �ur − ��u�2ur + ��u�2ui + ��2ur + ��2ui,

�ui

�t
= �ui − ��u�2ui − ��u�2ur + ��2ui − ��2ur. �3�

At a given time, the value of the control parameter in the
small control region � is changed. While the control param-
eter is spatially discontinuous, it is constant in �. It is in-
sightful to examine the evolution of the intensity �u�x ,y , t��2
in �,

��u�2

�t
= 2ur

�ur

�t
+ 2ui

�ui

�t

= 2��u�2 − 2��u�4 + 2��ur�
2ur + ui�

2ui�

+ 2��ui�
2ur − ur�

2ui� . �4�

In �, the system is locally smooth so that the evolution of
the total intensity contained is determined by

�

��u�2dxdy

�t
= 2�� �

�

�u�2dxdy − 2�� �
�

�u�4dxdy

+ 2�� �
�

�ur�
2ur + ui�

2ui�dxdy

− 2�� �
�

�ui�
2ur − ur�

2ui�dxdy . �5�

Due to the symmetry of the CGLE: u→u exp�i��, spatial
shapes of the real and imaginary parts of the CGLE are simi-
lar. Therefore, we can approximate ur and ui as

ur = exp�− A�x2 + y2�B�ur
max�t� ,

ui = exp�− A�x2 + y2�B�ui
max�t� , �6�

where A and B are constants, ur
max�t� and ui

max�t� are the
respective maxima of ur�t� and ui�t� in �. Making use of the
fact that rare intense events possess an approximately self-
similar structure in space �1�, we can regard A and B as
constants. Inserting Eq. �6� in Eq. �5� yields

P
���u�max�2

�t
= 2�P��u�max�2 − 2�Q��u�max�4 + 2�K��u�max�2,

where P�

� exp(−2A�x2+y2�B)dxdy, Q
�

� exp�−4A�x2+y2�B�dxdy, and K�

��4A2B2�x2

+y2�2B−1−4AB2�x2+y2�B−1�exp�−2A�x2+y2�B�dxdy are con-
stants in the control region �. Combining terms of the same
order, we obtain

P
���u�max�2

�t
= 2��P + �K���u�max�2 − 2�Q��u�max�4 �7�

from which we see that the maximum intensity ��u�max�2 ex-
hibits a stable equilibrium

FIG. 1. An example of rare intense events at a specific instant of
time in the CGLE for �=30, �=30, �=1, �=1, and �=1.
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��u�max�2 =
�P + �K

�Q
. �8�

Equation �8� indicates that the intensities of rare events are
determined by the system parameters �, �, and � only; the
intensities are in fact independent of the NLSE parameters �
and �. For the CGLE, although the occurrence of rare in-
tense events requires that the parameters �� ,� ,�� be much
smaller than � and �, the triplet of parameters is critical for
rare intense events �10�. Thus choosing any one from the
triplet as the control parameter can be effective for suppress-
ing intense events in the system. Or, we can adjust all three
parameters so as to make the right-hand side of Eq. �8� small,
thereby reducing the maximum intensity of the local bursts.
For instance, since P
0, Q
0, and K	0, we can decrease
�, increase � and � to reduce significantly the intensities of
the bursts.

We now demonstrate our method by choosing � as the
control parameter. �Similar results have been obtained by
choosing � and/or � as control parameters.� Figure 2 shows,
on a logarithmic scale, the probability distribution function
P��u�� for different values of � in the control law �2�, where
the side length of the local control region is set to be r
=20� /16. Note that the area of the control region is over two
orders of magnitude smaller than the region of interest. In the
absence of control �the rightmost curve�, the amplitudes of
intense events apparently obey a power-law distribution, as
indicated by the thick straight-line fit, which has been shown
previously as a characteristic feature of rare intense events in
the CGLE �11,12�. When control is applied, a significant
reduction in the maximum possible amplitude of the solution
occurs. There is an indication that the control results in an
exponential cutoff from the original power-law distribution
in P��u��. Another feature is that, since at any time our con-
trol is targeted at a small local area in the space that contains
some high-amplitude bursts and since such bursts are rare,
the typical system dynamics as represented by relatively
small-amplitude oscillations are largely unaffected. We thus
expect the distribution P��u�� for small values of �u� to be
invariant under control. This has indeed been observed, as in
Fig. 2.

The control scheme discussed so far assumes tacitly that
at any time parameter perturbation can be applied instanta-
neously at the location where an event of relatively large
amplitude has been observed. In physical reality the issue of
time delay in applying the control must then be addressed.
Intuitively, if the time delay is small, the control region is
still under the influence of some event so that the control can
be effective. However, a large time delay would render our
control strategy ineffective because, when such a control is
applied, the target region is already free of any intense ac-
tivities, reducing the likelihood of suppressing such activi-
ties. Some specific questions can be, for example, how much
delay can our control scheme tolerate while still achieving
the goal of suppressing rare intense events? Would it be pos-
sible to compensate the effect of time delay by increasing the
magnitude of the control perturbations? To address these
questions, we consider the following time-delayed version of
the CGLE �assuming � is the control parameter�:

�u

�t
= �cu − �� + i���u�2u + �� − i���2u ,

�c = ��1 + ���0, if �x,y� � ��t − �� ,

�0, otherwise,
	 �9�

where �0 is a nominal value of �, and time delay occurs in
the time-dependent control area ��t�. We ask what the most
relevant time scale is in the system to which the time delay
can be compared. Physically, a rare intense event can last for
a finite amount of time at a given space location, and this
time can be regarded as the lifetime of the event at that space
point. For intense events occurring at different space points,
their lifetimes are typically random. An average lifetime 
te�
can then be defined. To compute 
te�, we locate the maxi-
mum value �u�max of �u� in the region of interest and plot it as
a function of time, as shown in Fig. 3�a� for the unperturbed
system ��=0�. Since �u�max can last for a finite amount of
time at any particular space point, in the time evolution of
�u�max there exists a set of times when �u�max switches from
one space point to another. These time instants are illustrated
by the open circles in Fig. 3�a�. Any time interval between
two adjacent open circles can be regarded effectively as the
lifetime of an intense event at a particular space point, from
which the average lifetime 
te� can be calculated. When con-
trol is applied, the value of �u�max is reduced but the switch-
ing of the space point for �u�max occurs more frequently, as
shown in Fig. 3�b�. Intuitively, this can be understood by
noting that the effect of control is basically to direct the
“energy” associated with events of large amplitude to other
space points and to “smooth out” the variation of �u� in a
desirable way.

We can now assess the effect of time delay on control.
Figure 4 shows, for five different values of the time delay �,
the average lifetime 
te� as a function of the magnitude of the
control perturbation �. We see that, for �=0, 
te� reduces to
near-zero values as � is increased from zero. A general ob-
servation is that for ��0, but small, 
te� still decreases as �
is increased, however, it plateaus when � becomes large. A
reduction in 
te� indicates that the control is effective. How-
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FIG. 2. �Color online� Probability distribution functions of spa-
tial oscillation amplitudes of the CGLE with and without control.
Each curve is obtained by using 4000 snapshots separated by �t
=0.05.
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ever, if � is too large �e.g., for �=0.1�, there is essentially no
change in 
te� as � is increased, indicating the ineffectiveness
of the control. Examining the behavior of 
te� as in Fig. 4
thus allows us to obtain an estimate of the allowed time
delay for effective control: it should be of the same order of
magnitude as the average lifetime of the intense events in the
unperturbed system.

In conclusion, we have articulated a strategy for control-

ling rare intense events in the CGLE without the need of
prediction. Our method is local and based on observation
only, and it is tolerant to time delay. We have gained analytic
insights and carried out numerical experiments to demon-
strate the working of our method. Controlling rare intense
events is an important problem in many areas of science and
engineering where spatially extended dynamics arise, and we
hope our work can be stimulating for addressing this chal-
lenging problem.
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FIG. 3. A representative example of time evolution of �u�max for
�a� �=0 �absence of control� and �b� �=10. Open circles indicate
the time instants when �u�max switches its location in space.
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FIG. 4. For the locally time-delayed CGLE �9�, the average
lifetime 
te� of intense events as a function of the magnitude of the
control perturbation � for five different values of the time delay. A
significant reduction in 
te� as � is increased indicates the effective-
ness of control.
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