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The ubiquity of scale-free networks in nature and technological applications and the finding that such
networks may be more difficult to synchronize than homogeneous networks pose an interesting phenomenon
for study in network science. We argue and demonstrate that, in the presence of some proper gradient fields,
scale-free networks can be more synchronizable than homogeneous networks. The gradient structure can in fact
arise naturally in any weighted and asymmetrical networks; based on this we propose a coupling scheme that
permits effective synchronous dynamics on the network. The synchronization scheme is verified by eigenvalue
analysis and by direct numerical simulations using networks of nonidentical chaotic oscillators.

DOI: 10.1103/PhysRevE.75.056205 PACS number�s�: 05.45.Xt, 89.75.�k, 89.20.Hh, 05.10.�a

Complex networks have attracted a great deal of interest
since the discoveries of the small-world �1� and scale-free �2�
properties. Roughly, small-world networks are characterized
by a locally highly regular connecting structure and a glo-
bally small network distance, while the defining characteris-
tic of scale-free networks is a power-law distribution in the
number of links or the degree variable. Signatures of small-
world and scale-free networks have been discovered in many
natural and man-made systems �3–5�, and they constitute the
cornerstones of modern network science.

At the network level, synchronization is one of the most
common dynamical processes. For instance, in biology, syn-
chronization of oscillator networks is fundamental �6�. In a
computer network designed for large scale, parallel compu-
tation, achieving synchronous timing is essential. Recent
studies of the synchronizability of complex networks have
revealed that small-world and scale-free networks, due to
their small network distances, are generally more synchroni-
zable than regular networks �7–9�. A somewhat surprising
finding is that a scale-free network, while having smaller
network distances than a small-world network of the same
size, is actually more difficult to synchronize �9�. This coun-
terintuitive phenomenon can be explained heuristically as
due to the blockade of communication, or interaction, among
nodes due to the highly heterogeneous degree distribution
seen in scale-free networks. Considering the ubiquity of
scale-free networks and the importance of synchronization in
network functions, the finding seems to have generated a
paradox. Since the networks considered in the original study
�9� are unweighted and undirected, recent efforts have been
focused on searching for network configurations incorporat-
ing weights and directionality, to achieve more efficient syn-
chronization in scale-free networks �10–12�. For instance, in
Ref. �10�, the coupling strength for a given node from other
connected nodes �incoming coupling strength� in the network
is determined by the local degree of this node. In this case,
the average degree of the network is the key to synchroniza-
tion and, under certain conditions, scale-free networks can
indeed be synchronized more easily as compared with homo-
geneous networks �10�. In Ref. �11�, it has been proposed

that high synchronizability can be achieved when the incom-
ing coupling strength to a node is matched by the between-
ness centrality of the node. Since knowing the betweenness
centrality requires knowledge about the entire network con-
nection topology, this scheme may be said to be based on
global information. In the situations considered �10,11�, the
couplings are directed and asymmetrical.

In this paper, we propose a scheme to address the syn-
chronizability of asymmetrical and weighted complex net-
works. The setting is quite general, incorporating, for any
pair of nodes in the network, both the directionality and the
asymmetry of the coupling. The basic idea is to regard such
a network as the “superposition” of a symmetrically coupled
network and a directed network, both being weighted. A
weighted, directed network is actually a gradient network
�13,14�, a class of networks for which the interactions or
couplings among nodes are governed by some gradient field
on the network. Hypothesizing an appropriate gradient field
based on a few elementary considerations of realistic net-
works, we are able to come up with a coupling scheme and
demonstrate that it can lead to networks that are more syn-
chronizable than those from previous schemes. �Our con-
struction of the new coupling scheme can also be regarded as
a detailed derivation of the “optimal” scheme proposed in
Ref. �15�, where a similar configuration is briefly introduced
based on empirical observations.� Indirect synchronizability
analysis based on eigenvalues of the coupling matrix and
direct simulation of oscillator networks provide support for
the effectiveness of our scheme.

We consider oscillator networks of the form

ẋi = F�xi� − ��
j=1

N

Gi,jH�x j�, i = 1,...N , �1�

where F�xi� governs the local dynamics of uncoupled node i,
H�x� is a coupling function, � is the coupling strength, and
Gi,j is an element of the coupling matrix G that is completely
determined by the connecting topology of the underlying
network. In general, G is asymmetrical. Let Gi,j be the cou-
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pling from node j to node i; we have Gi,j�Gj,i. Defining
�Gi,j �Gi,j −Gj,i, we can write Gi,j = �Gi,j +Gj,i� /2+�Gi,j /2,
where the first term is a symmetrical coupling, and
the second term represents a directed coupling. Since �Gi,j
=−�Gj,i, the direction of the coupling is defined to be from
node j to i if �Gi,j �0, and vice versa. The original network
can thus be regarded as being composed of a symmetrical
network characterized by the symmetrical coupling term, and
a directed network represented by �Gi,j. Both networks are
weighted since the coupling value depends on the indices i
and j. This “decomposition” idea is shown schematically in
Fig. 1.

An important goal in the study of synchronization of com-
plex networks is to figure out the appropriate coupling matrix
Gi,j to make the network as synchronizable as possible
�10–12�. In this regard, one can examine the spread of the
eigenvalue spectrum of the coupling matrix. A network is
generally more synchronizable when the spread is narrower
�8,9�. In particular, let 0=�1��2¯ ��N be the eigenvalue
spectrum of the coupling matrix. Then the smaller the ratio
�N /�2, the more likely synchronous dynamics is to occur on
the network.

Our idea to construct synchronizable networks is based on
the concept of gradient networks �13,14�. To define a gradi-
ent network, consider a network denoted by ��V ,E�, where
V stands for the set of nodes �vertices� and E denotes the set
of links �edges� that can be conveniently specified by the
adjacency matrix A= �ai,j�, where ai,j =1 if i and j are con-
nected, ai,j =0 otherwise, and ai,i=0. Consider a scalar field
denoted by h= �h1 , ... ,hN�, where hi is the scalar assigned to
node i. In practice, the scalar field can be generated by the
potential or temperature in chemical systems, the informa-
tion concentration in technological systems, or the rate of
processing and adequacy in neuronal systems �13,14�. Re-
garding the problem of network synchronization, a natural
choice is to define the scalar field on node degrees. Let ki be
the degree of node i. We define the neighbors of i as the set
of nodes that are linked to it: Vi= �j�V	ai,j =1�. This way a
directed link pointing to i can be established from one of its
neighbors, if this neighbor has the highest value of the scalar
field. If several neighbors have the same scalar field, one is
chosen randomly to have a link pointing to i. A gradient
network is the collection of all the directed links �13�. Re-
gardless of the topology of the originally undirected network,
e.g., regular, random, or scale-free, the way in which the
gradient is established stipulates that there be no loops in the
network except self-loops. Previous work has shown that, for
a homogeneous network of random scalar distribution, the

degree distribution of gradient network follows a power-law
scaling, P�k�
k−�, where ��−1 �13�.

The conventional way �13,14� of constructing a gradient
network has the drawback of stipulating the equality of the
number of directed links and the number of nodes. This is
not compatible with the directed network component that can
be extracted from an arbitrary oscillator network, as in Fig.
1. Thus a generalized definition of the gradient network is
needed. A simple remedy is to consider a pair of linked
nodes and direct the link according to a prescribed scalar
field. This way the number of links in the directed network is
the same as the number of links in the original network, in
consistency with the decomposition scheme in Fig. 1.

We now present heuristic considerations that lead us to a
class of asymmetrical network possessing synchronizability
superior to that of previous networks reported in the litera-
ture. To propose a gradient field suitable for synchronization,
we assume that any given node can access only local infor-
mation about its neighbors. This consideration is more of a
practical nature, as global information about the whole net-
work is usually not readily available for an arbitrary node in
the network. Thus the value of the gradient field at node i is
determined by, for instance, its degree and the degree infor-
mation of its neighbors. Our choice is

hi = ki
	 �

l�Vi

kl
	, �2�

where 	 is a control parameter �the function of 	 will be
explained later�. The adoption of Eq. �2� is partially moti-
vated by wide observations in real networks, including sci-
entific collaboration networks, airport networks, and meta-
bolic networks, where weighted asymmetric links are
reported and the gradient between nodes has been found to
exhibit a strong correlation with the corresponding degrees
�17�. Now consider an arbitrary pair of connected nodes, say
i and j, where Ai,j�0. We have

�Gj,i 
 hi − hj = ki
	 �

l�Vi

kl
	 − kj

	 �
l�Vj

kl
	. �3�

If both i and j are hubs, we have ki�kj, �l�Vi
kl

	��l�Vj
kl

	

and, hence, �Gi,j 
0. Thus the interactions between two hub
nodes are mostly nondirectional. The recent finding shows
that, during the process of network synchronization, hub
nodes are usually synchronized first and the synchronized
hubs act as the “core” in propagating the synchronous state
over the entire networks �18�. This finding indicates that, to
achieve synchronization, it is advantageous to establish effi-
cient coupling between the hubs. Since symmetric coupling
is more efficient in achieving partial synchronization among
the hubs than directional couplings �18�, it is reasonable to
set nondirectional coupling between the hub nodes. On the
other hand, if i is a hub node and j is not, then hi�hj and the
interaction between them is strongly directed. To obtain an
explicit expression for �Gj,i, we need to include a normal-
ization constant in Eq. �3�. For convenience, we write

�Gi,j =
1

Ci,j
�ki

	 �
l�Vi

kl
	 − kj

	 �
l�Vj

kl
	� .

FIG. 1. Schematic illustration of how a general weighted, asym-
metrical network may be regarded as a superposition of a symmetri-
cal and a directed �or gradient� network, both weighted.
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A natural requirement for the normalization constant Ci,j
is that it be symmetrical with respect to nodes i and j: Ci,j
=Cj,i. We choose

Ci,j = �
l�Vi

�
l��Vj

kl
	kl�

	 , �4�

which leads to

�Gj,i = Gj,i − Gi,j =
ki

	

�
l�Vj

kl
	

−
kj

	

�
l��Vi

kl�
	

.

Incorporating the definition of the adjacency matrix, we have
thus arrived at the following choice for the coupling matrix
Gi,j:

Gi,j = −
Ai,jkj

	

�
j=1

N

Ai,jkj
	

for i � j . �5�

For convenience, we choose Gi,i=1. Note that, regardless of
the value of 	, the total coupling cost of the network remains
constant. Different values of 	 simply correspond to differ-
ent distributions of the coupling. �It is worthy of note that the
coupling scheme Eq. �5�, the one we have derived from the
gradient-network point of view, has essentially the same con-
figuration as the empirical scheme proposed in Refs.
�15,16��.

To demonstrate the synchronizability of the class of net-
works as defined by Eq. �5�, we have carried out a series of
numerical tests. Please note that the coupling matrix can be
written as G=QLD	, with D=diag�k1 ,k2 , ... ,kN� the diagonal
matrix of degrees and Q=diag�1/� jL1,jkj

	 , ... ,1 /� jLN,jkj
	� the

normalization factors on rows of G. From the identity

det�QLD	 − �I� = det�Q1/2D	/2LD	/2Q1/2 − �I� , �6�

we can see that the eigenvalues of the asymmetric matrix G
are equal to those of the symmetric matrix H
=Q1/2D	/2LD	/2Q1/2, which are real and non-negative. We
consider an ensemble of scale-free networks of N=1024
nodes with average degree �k
=6. Figure 2�a� shows the
eigenratio R versus the control parameter 	, for 
=3.0. We
observe a continuous decrease of R as 	 is increased, indi-
cating improved network synchronizability for large values
of 	. Of particular interest is the region where 	�0. In this
case, the coupling in the gradient-network component is
from large-degree to small-degree nodes. Incorporating the
symmetrical-network component, this means that large-
degree nodes have more significant influence than small-
degree nodes, an attribute that can be expected in realistic
networks.

The decrease of the eigenratio as 	 is increased can be
explained heuristically, as follows. For the limiting case of
	→�, the only contribution to the coupling that a node re-
ceives is from the node with the largest degree among all the
neighboring nodes. Every node in the network, except for the
largest-degree node, receives coupling from another node but
provides coupling to a different node. This is effectively a
one-way coupling scheme, which corresponds to a “treelike”

structure. The largest-degree node, however, can receive cou-
pling from and provide coupling to the same node, the one in
its neighboring set with the largest degree. There is then a
“loop” structure, but it is associated only with the largest-
degree node in the network. For such a network, we have
�N=2 �associated with the loop structure only�, and �i=1
�i=2, . . . ,N−1� �associated with the other nodes which are
one-way coupled�. The eigenratio is thus 2. As 	 is increased
from zero, we expect to observe a continuous decrease of the
eigenratio toward this limiting value �19�.

We also find that, for 	�0, the eigenratios of our net-
works are smaller than those from previously achievable
eigenratios reported in the literature �10,11�. For example, in
these previous works, for the same ensemble of scale-free
networks, the minimally achievable eigenratio is about 6,
while in our case, the ratio can be made smaller for almost
all 	�0. In particular, the case 	→� in our network is
similar to the ideal model proposed in Ref. �12�, if we de-
couple the loop structure associated with the largest-degree
node.

To illustrate the advantage of network heterogeneity in
promoting synchronization, when weight and asymmetry are
taken into account, we show in Fig. 2�b� the dependence of
the eigenratio on the degree exponent 
 for unweighted,
symmetrical networks �the upper trace� and for weighted,
asymmetrical networks constructed from our coupling
scheme �the lower trace�. As references, the eigenratio of a
homogeneous network, the case of 
→� in scale-free net-
works, under the situations of unweighted, symmetrical cou-
pling �the upper dashed line� and weighted, asymmetrical
coupling �the lower dashed line� are also plotted. As 
 is
increased, the network becomes less heterogeneous. Most re-
alistic scale-free networks have values of 
 around 
0=3 �4�.

FIG. 2. �Color online� Ensemble of scale-free networks with
N=1024 and �k
=6 under the coupling scheme defined by Eq. �5�.
�a� Eigenratio R versus the control parameter 	. There is a continu-
ous decrease of R as 	 is increased, indicating improved network
synchronizability in the large-	 regime. �b� Eigenratio R versus the
degree exponent 
 for unweighted and symmetrical networks �up-
per trace� and for networks under the coupling scheme defined by
Eq. �5� by setting 	=1.5 �lower trace�. The two dashed lines rep-
resent the corresponding synchronizability of homogeneous net-
works under the situation of unweighted symmetrical coupling �the
upper line� and weighted asymmetrical coupling �the lower line�.
When the networks are weighted and the interactions among nodes
are directed, heterogeneity in the degree distribution actually helps
improve the synchronizability. Each data point is the result of av-
eraging over 50 network realizations.
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We see that, if weight and asymmetry are not taken into
account, the eigenratio increases as 
 is decreased toward 
0,
indicating continuous deterioration of synchronizability as
the network becomes more heterogeneous �9�. This is the
origin of the so-called synchronization paradox for scale-free
networks �10–12�. As indicated by the lower trace in Fig.
2�b�, the paradox is naturally resolved when weight and
asymmetry are present in the network, since the eigenratio
decreases continuously as 
 is decreased, suggesting that
scale-free networks are more synchronizable than homoge-
neous networks under the new coupling scheme. This pro-
vides a justification for the ubiquity of scale-free networks in
natural and technological systems.

The results exemplified by Figs. 2�a� and 2�b� are from
numerical eigenvalue analysis. It is useful to examine the
synchronous behavior of actual oscillator networks. For this
purpose we use scale-free networks of nonidentical, chaotic
Rössler oscillators, a typical model employed in detecting
the collective behavior of complex networks �8,10,11,18�
�similar phenomena to those we are going to report for the
Rössler oscillator are also found in other models such as
phase oscillators, Van der Pol oscillators, and logistic maps�.
The dynamics of a single oscillator is described by Fi�xi�
= �−�iyi−zi ,�ixi+0.15yi ,zi�xi−8.5�+0.4�, where �i is the
natural frequency of the ith oscillator. In simulations we
choose �i randomly from the range �0.9, 1.1�, so as to make
the oscillators nonidentical. The coupling function is chosen
to be H�x�=x. The degree of synchronization can be char-
acterized by monitoring the amplitude A of the mean field
X�t�=�i=1

N xi�t� /N �10,18�. For small coupling strength �, X�t�
oscillates irregularly and A is approximately zero, indicating
lack, or a lower degree, of synchronization. As the coupling
parameter is increased, synchronization sets in. We expect to
observe a relatively fast increase of A as the coupling is
increased through a critical value, as shown in Fig. 3�a� for
an ensemble of 100 scale-free networks of 1024 nodes and
�k
=10, and for three values of the control parameter �	
=0,1 ,5�. We have also tested this oscillator network model
for previous coupling schemes �10–12�, and have found that,
to achieve the same value of the amplitude A, the coupling
strength needed in our scheme is generally smaller. Evidence
for the improvement of synchronization in our scheme with
increasing parameter 	 is shown in Fig. 3�b� for �=0.1.

A few remarks are in order. �1� Distributing coupling
strength according not only to the degree of the node itself
but also to the degrees of its neighbors is one of the key
features that distinguishes our scheme from previous ones.
�2� The parameter 	 not only determines the direction of the
gradient field, but also controls its weight. �3� For a given
network, there usually exists a small set of low-degree nodes

with some hub nodes as their neighbors. Such nodes may
play an important role in promoting synchronization as they
provide “bridges” between the hubs. Our scheme emphasizes
the role of these small-degree nodes �Eq. �2��. This is the
main reason that our scheme can lead to highly synchroniz-
able networks.

In summary, we have argued that the topology of gradient
networks can be expected naturally in any weighted, asym-
metrical network, and this can be used to devise effective
coupling schemes for designing complex networks with en-
hanced synchronizability. We have presented a general cou-
pling scheme and demonstrated that scale-free networks so
constructed can be more synchronizable than homogeneous
networks of the same system size and total number of links.
The present scheme also possesses a higher synchronizability
than the previous ones, and actually reaches the “optimal”
configuration that has been proposed more recently �15,16�.
The importance of gradient networks has been recognized
only recently, with particular focus on the problem of traffic
jamming �13,14�. Here we have shown that they can also be
useful for studying other types of dynamics on complex net-
works, such as synchronization. Many interesting issues con-
cerning gradient networks can arise, such as the detection of
any possible gradient structure for a given complex network
based on experimental measurements. It seems that gradient
networks represent an interesting topic of study in network
science.
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