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Noise sensitivity of phase-synchronization time in stochastic resonance: Theory and experiment
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Recent numerical and heuristic arguments have revealed that the average phase-synchronization time be-
tween the input and the output associated with stochastic resonance is highly sensitive to noise variation. In
particular there is evidence that this average time exhibits a cusplike behavior as the noise strength varies
through the optimal value. Here we present an explicit formula for the average phase-synchronization time in
terms of the phase diffusion coefficient and the average frequency difference between the input and the output
signals. We also provide experimental evidence for the cusplike behavior by using a bistable microelectronic-

circuit system.
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I. INTRODUCTION

One of the most remarkable phenomena in nonlinear and
statistical physics is stochastic resonance (SR) [1,2], through
which noise plays a beneficial role in enhancing the system’s
response to weak signals. Traditional measures for character-
izing SR include the signal-to-noise ratio [3], the correlation
between the input and the output signals [4], the residence
time distribution [5], spectral amplification [6], and quanti-
ties from the information theory [7,8]. Recent years have
seen efforts [9,10] in relating SR with another important phe-
nomenon in nonlinear dynamics: phase synchronization (PS)
[11]. This is motivated by the consideration that an SR sys-
tem typically requires input and output signals and, as such,
a question is whether there can be synchrony between the
signals. Due to nonlinearity and noise, the output signals
usually differ from the input ones in their detailed evolution
with time. As a result, complete synchronization between
these signals, defined by their approaching each other in the
asymptotic time limit, can be ruled out. Instead, a weaker
type of synchronization, phase synchronization as signified
by a tendency for the input and the output signals to follow
each other, can occur. In particular, let x(r) and y(z) represent
the input and the output signal, respectively, and assume they
are oscillatory so that the corresponding phase variables
¢,(1) and ¢,(1) can be defined, where one cycle of oscillation
in x(7) [y(#)] generates a 277 phase increase in ¢,(¢) [¢,(1)].
Now consider a time interval [¢,,7,] that contains many
cycles of oscillation. There is phase synchronization if the
phase variables satisfy |¢,(1)— ¢, ()| <2 for all ¢ in this
interval. Since noise is present, the interval A¢r=¢,—¢, cannot
be arbitrarily long, and one can consider an ensemble of the
identical SR system and define the average phase-
synchronization time as the ensemble average: 7= (Ar). This
average time depends on the noise amplitude £ and a natural
question is how.

Insights to this question have been obtained recently in
Ref. [10] where a heuristic theory based on analyzing the
transition probabilities for a mechanical particle in a stochas-
tic double-well potential system is derived. The result and
numerical computations point to an extremely fast rising and
falling, cusplike behavior in 7 as the noise amplitude & is
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varied through the optimal value £ for which traditional mea-
sures such as the signal-to-noise ratio reach maximum. Since
the approximate theory in Ref. [10] does not apply to the
noise regime in the close vicinity of &, it is interesting to
assess the behavior of the function 7(g) for € near £. In this
aspect, the recent analysis of the phase diffusion process by
Casado-Pascual et al. [12] indicates that the effective diffu-
sion coefficient Dy varies smoothly through &. Since the
average phase-synchronization time 7 can be related to D g,
the dependence of 7on & should also be smooth about €. One
aim of this paper is to provide an explicit formula to show
that, despite the anticipated smooth behavior, 7 typically var-
ies drastically (e.g., over several orders of magnitude) as &
changes through €. This is to be contrasted to the behavior
of, say, the signal-to-noise ratio, where typically it hardly
varies about £. Another purpose of this paper is to provide
the experimental evidence for the cusplike behavior in 7. We
shall use the Schmitt-trigger circuit [ 13] and demonstrate the
power of understanding SR using PS and in particular, the
quantity 7.

A potential use of our result lies in signal processing. A
known example is to develop a device to assess the working
environment based on the principle of SR [14]. In particular,
for various types of measuring devices in a noisy environ-
ment, it is desirable to have the signal spectral peak as pro-
nounced as possible with respect to the broad, noisy back-
ground. The principle of SR can naturally be used to detect
the optimal noise level (or the optimal working condition).
Ando6 and Graziani recognized that the SNR 1is in general not
suitable for this purpose, as it does not allow for online tun-
ing of the noise variance because of its insensitivity to noise
variation about the optimal level. In a series of papers [14],
they developed mathematical models utilizing feed-forward
estimation theory and tested experimental devices based on
the Schmitt trigger to overcome the difficulty. Having a mea-
sure that is highly sensitive to noise variation is desirable.

Our result may also be useful for understanding the work-
ing of biological systems. There has been extensive experi-
mental evidence that biological systems use the mechanism
of SR for various tasks [15]. Since timing is commonly used
(for instance, by neural systems) for information processing,
it is possible that biological systems may take the advantage
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of the average synchronization time to tune to the optimal
noise level for SR. It may be of interest to carry out biologi-
cal experiments to test this conjecture. In this regard, we
expect our experimental methodology to be useful.

II. THEORY

We consider heavily damped motion of a classical particle
in the double-well potential given by V(x)=x*/4—x%/2, sub-
ject to periodic forcing and noise. The Langevin equation is

x<z>=—dg—§f)+F(r)+§<z), (1)

where F(r) is a rectangular periodic input signal of period T
and &(r) represents Gaussian white noise that satisfies (&(z))
=0 and (&()&(t'))=2e8(r—1'). Mathematically, the forcing
function can be written as F(f)=(-1)""A, where
n(t)=[2t/T,| and |-] denotes the floor function. That is, F(z)
=A(-A) if t e [nTy/2,(n+1)T,/2] for n even (odd). The fre-
quency of the input signal is Q;,=2m/T,. Letting U(x,?)
=V(x)—F(t)x be the effective potential, we rewrite Eq. (1) as

dU(x 1)

x(1) = +&(1). 2)

Since the effective potential is time dependent and the driv-
ing is periodic, the shape of the potential changes periodi-
cally with time. For A <A,,=\4/27, the potential U(x,?) has
a “double-well” shape in the sense that it has two minima,
located at x;(r) <0 and x,(¢) >0, respectively, and a maxi-
mum at x,(7) for all 7. By the symmetry of the effective
potential, these three positions satisfy the following condi-
tions: xm(t) ( l)n xm(o) xl(t)+x2(t)+xm(t) O and x; (t)

(1202 here Ax(0)=x,(0)—x, (0).

The average phase synchronization time 7 can be calcu-
lated if the average frequency of the output signal €, and
the effective diffusion coefficient D are known. The diffu-
sion coefficient is defined by

Dy = ——[<‘1’2> (w1, 3)

where W(z) is the phase difference between the input and the
output signal and thus (W(7))=(Qgy—Qi,)7. Formulas for
Q. and D have recently been obtained by Casado-Pascual
et al. [12]. Here we shall use their results to obtain an ex-
plicit formula for 7.

When the noise strength ¢ is sufficiently small, intrawell
relaxation time scale of the particle is small compared with
both the interwell transition time scale and the driving period
Ty. The interwell relaxation time is typically independent of
the intrawell transition time. In this adiabatic regime, the
Langevin dynamics can be approximated by the following
pair of rate equations:

P(1,1) == y()P(1,0) + y,() P(2,1),
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P(2,1) == %, ()P(2,0) + () P(1,1), (4)

where P(1,f) and P(2,1) are the probabilities that the particle
is in the left and in the right well, respectively, and (1) is
the Kramers rate [16] of escape from the well j at time 7 (j
=1,2):

= 20 p{_ 6

Ulx,(1).1] - ULx,(0).1] } 5

In Eq. (5), the quantities w;(¢) and w,,() are given by

(1) = NdPULx,(0), 1)/ dx® = \3[x,(0) > - 1,

w,(t) = \e’/dzU[)cm(t),z‘]/dx2 =\1- 3[x,,(0 71>

Equation (4) describes the evolutions of the probabilities be-
tween two consecutive changes in the shape of the potential.
The Kramers rate formula Eq. (5) can be simplified by using
the symmetry of U(x,7) [12]. One obtains

r .
(0 =7l1-(= D"HAP,(0)], (6)
where  I'=91(0)+72(0)=y(1)+7,(1).  APey(0)=Pey(2.0)
_Peq(l aO)a and Peq070)=[5j,1y2(0)+ 5]271(0)]/F is the

equilibrium probability of state j at r=0.
The average frequency of the output signal is

To
Qom=Tz f [y P(1,0) + y(t)P(2,1)dt. (7)
0J0

An extensive derivation by Casado-Pascual er al. [12] yields
the following formula for Q,:

4 tanh(FTO/4))} @

al
Quu=—|1-[AP. (0 2(1—
out 2 |: [ eq( )] FTO

They have also obtained the following formula for the diffu-

sion coefficient:
2177 I'7,)\ |?
TO[APeq(O)]4|:tanh< T) ]

L I'T,
- 2—TO[APeq(0)]2{1 - [APeq(O)]z}( 12 tanh(TO)

i)

To obtain the average phase-synchronization time 7, we
can use the definition of the diffusion coefficient Eq. (3) to
write [17]

D= 71-(Zout -

<\I,2> -~ <\I,>2t2 + 2Defft. (10)
Since 7 is the average time required for a 27 change in W to
occur, we have (V2(n7))=(2nm)?, leading to {(W(1))|,-,

=21, Using this result and (¥)=Q,,—,, yield the follow-
ing formula for 7
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FIG. 1. (Color online) The average phase-synchronization time
7 for ;,=0.002 and A=0.18. The solid curve is from the theoreti-
cal formula Eq. (11) and the circles are from direct numerical com-
putation of Eq. (2). A proportional constant is used in Eq. (11) to
compare the theory with the numerics. The unit of 7is the period of
the input signal Ty,

. 2
- Der 1+(27T<‘P>) —1. (11)
(¥)? Dege

Note that this theoretical prediction does not give the abso-
lute value of the average phase-synchronization time. Thus a
proportional constant must be chosen to compare the theory
with numerics. In general, as the noise strength approaches
the optimal value &, a maximal degree of phase synchroni-
zation between the input and the output can occur. Thus the

average frequency difference (W) approaches zero. At the
same time, the diffusion process slows down as it takes
longer for a 27 change in W to occur. As a result, the diffu-
sion coefficient also decreases.

Heuristically, we have W~ 1/t where t is the time re-
quired for W to reach a fixed value (say 2). From Eq. (3)

we have a scaling relation Deff~\1}2t, leading to D~ 1/t.

Thus we expect that, about the optimal noise intensity, V¥ and
D decrease in a similar manner as & approaches £ and
hence the term inside the square brackets in Eq. (11) is ap-
proximately a constant with respect to the variation in €. We
have

T~ 1{¥) — o as (V) — 0. (12)

Since noise is present, the average frequency difference W
can be small but not infinitesimal. This means that, for &
— &, 7 can become large but it does not diverge. Thus the
behavior of 7 vs & should be smooth and it does not exhibit
a cusp in the mathematical sense of derivative discontinuity.
Nonetheless, it is possible that 7 can increase drastically for
& — &, herewith the term cusplike behavior [10], as shown in
Fig. 1 for ;,=0.002 and A=0.18, where the solid curve is
from the theoretical formula Eq. (11) and the circles are from
direct numerical computation of Eq. (2). The theoretical and
numerical results are consistent. We wish to emphasize that
our derivation is not rigorous but only heuristic. Its validity
needs to be checked numerically and experimentally.
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FIG. 2. Schmidtt-trigger circuit system.

III. EXPERIMENT

A class of experimental systems for testing phenomena
associated with SR is nonlinear electronic circuits, which
nowadays are usually implemented by using metal-oxide-
semiconductor field-effect transistor based microelectronic
circuits [18]. As we have seen, bistability is convenient for
generating SR. Here we use a class of microelectronic cir-
cuits known as the bistable multivibrators (e.g., Schmitt trig-
gers) [18] to construct our experimental SR system.

The Schmitt-trigger circuit system with operational ampli-
fiers (op amps) U1 and U2 and resistors R, and R,, which we
have constructed for our experimental study, is shown in Fig.
2. In our experiments, we choose R;=1 K and R,
=11.7 KQ, and use TLO82 op amps with saturation voltage
10 V. The threshold voltages are approximately 860 mV.
The average phase synchronization time between the input
Ugn and the output v, are calculated by using long voltage
signals (200 s, typically containing between 100 and 25 000
21 phase slips) and by using the Hilbert-transform method
for a systematic set of noise levels. The noise signal is from
a wide-band analog random voltage generator (SRS-DS345,
30 MHz). The noise amplitude is defined to be the rms value
of the random voltage signal. The whole experiment is re-
peated 30 times to reduce the statistical fluctuations in the
measured average phase-synchronization time.

When noise is off, the average phase-synchronization
time 7 is approximately zero because the output is simply
zero and does not follow the input, but 7 increases with the
noise amplitude. When the noise amplitude is close to the
optimal value for SR, which is determined to be about 0.8 V,
the circuit is triggered at a rate close to the frequency of the
input signal, which is a 1.5-KHz sinusoidal signal of ampli-
tude 110 mV, giving rise to a large value in 7. The result of
7 vs the noise amplitude is shown in Fig. 3. We observe a
significant increase in 7 (of nearly five orders of magnitude!)
as the optimal noise amplitude is approached, providing ex-
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FIG. 3. Experimental result of the average phase synchroniza-
tion time 7 (in the unit of the number of cycles of the input signal)
vs the noise intensity & (V), where the input Vg, is a 1.5-KHz
sinusoidal signal of amplitude 110 mV. We observe a significant
increase in 7 as the optimal noise level for SR is approached (a
cusplike behavior).

perimental evidence for the predicted cusplike behavior in
the average phase-synchronization time associated with SR.

IV. DISCUSSION

The contributions of this paper are twofold. First, an ex-
plicit formula has been worked out for a paradigmatic SR
system, the double-well potential system under simple peri-
odic driving, which relates the average phase-
synchronization time to the phase-diffusion coefficient and
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the average frequency difference between the input and the
output signals. The formula indicates that, although the time
varies smoothly, it can increase drastically as the optimal
noise level is approached. The formula is thus consistent
with the recent conjecture that the average synchronization
time shows a cusplike behavior. Second, we have presented
an experimental study of the cusplike behavior via a bistable
Schmitt-trigger system implemented using microelectronic
circuits, and obtained direct experimental evidence for the
cusplike behavior. Given a nonlinear system, the average
phase-synchronization time can thus be highly effective for
tuning noise to its optimal level to achieve SR.

A number of open issues remains to be explored. For
instance, precise frequency tuning may be required in appli-
cations of nonlinear systems. The presence of a proper
amount of noise can again be advantageous for this purpose
(the so-called bona fide resonance [19]). Does the average
phase-synchronization time also exhibit a cusplike functional
relationship with the frequency of the driving so as to serve
as an effective measure for precise frequency tuning? So far
there has been ample evidence [15] that many biological sys-
tems may actually use SR for various purposes. A general
question is how do biological systems tune to optimal noise
level? Is it possible that the average phase-synchronization
time is used?
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