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Desynchronization waves in small-world networks
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A regular array of oscillators with random coupling exhibits a transition from synchronized motion to
desynchronized but ordered waves as a global coupling parameter is increased, due to the spread of localized
instability of eigenvectors of the Laplacian matrix. We find that shortcuts, which make a regular network
small-world, can destroy ordered desynchronization wave patterns. Wave patterns in a small-world network are
usually destroyed gradually as the degree of regularity in the network deteriorates. No ordered wave patterns
are observed in scale-free and random networks. The formation of ordered wave patterns in a coupled oscillator
network can be explained by considering the time evolution of phase in each oscillator. We derive a general
type of the Kardar-Parisi-Zhang equation for phase evolution in a prototype oscillator network. The equation
demonstrates well the ordered desynchronized wave patterns found in the network with and without shortcuts.
Our results provide a qualitative justification for the requirement of certain degree of regularity in the network

for ordered wave patterns to arise.
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I. INTRODUCTION

Synchronization in complex networks is a topic of grow-
ing recent interest [1-7]. Usually, one is concerned with the
synchronizability of networks with the small-world [8-12] or
the scale-free [9—13] topology, which can be analyzed by the
master-stability function approach [14]. In particular, given a
complex network, one can make it “dynamic” by placing an
oscillator on each node, effectively generating an oscillator
network. The complex-network topology can be conve-
niently described by a coupling matrix, the Laplacian matrix.
The stability of a synchronized solution can be analyzed by
solving the variational equations in all eigensubspaces trans-
verse to the synchronization manifold. In each subspace, the
effective coupling parameter is proportional to the eigen-
value of the Laplacian matrix associated with this subspace.
The master stability function is the largest transverse
Lyapunov exponent that determines the maximal exponential
rate of growth of a small perturbation from the synchroniza-
tion manifold. Physically meaningful synchronization re-
quires that this function be negative. Typically, for an oscil-
lator network, the master-stability function can be negative
only in a finite interval, say (K;,K,), of some normalized
coupling parameter K. Since the range of K is determined by
the spread of the eigenvalues of the Laplacian matrix, the
network synchronizability can be characterized by this
spread. To our knowledge, most existing works focused al-
most exclusively on the interplay between the network topol-
ogy and synchronizability [1-7].

In this paper, we go beyond the synchronizability issue by
focusing on desynchronization wave patterns in complex net-
works. In many fields where synchronization is important
[15], such as biology [16], laser physics [17], and chemistry
[18], etc., the emergence of wave patterns is an interesting
issue. One can imagine a synchronized oscillator network,
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where no wave appears due to the synchronized motion of all
oscillators. Wave patterns can arise when desynchronization
occurs, say, due to a change in the coupling parameter. Thus
desynchronization is a physical mechanism through which
wave patterns can be generated in the underlying network. In
this regard, the recent work by Restrepo et al. [19] investi-
gated, for regular oscillator networks with random coupling,
how desynchronization wave patterns may be generated as
the normalized coupling parameter K falls outside the syn-
chronization interval (K,,K,). Their finding is that ordered
wave patterns can be generated as a result of the propagation
of the Anderson localization of some unstable eigenmodes.
Considering that under noise and/or oscillator parameter mis-
matches, a stable system can exhibit irregular desynchroni-
zation bursts, the presence of more ordered wave patterns in
the locally unstable system is remarkable.

The question that we wish to address here is how the
complex-network topologies may affect the desynchroniza-
tion wave pattern. We first focus on a regular network and
then consider random shortcuts, that make the network
small-world (SW) [8], and further investigate complex net-
works with random and scale-free structure where regularity
does not exist. Our main result is that ordered wave patterns
in a SW network are destroyed gradually as the number of
random shortcuts increases, i.e., as the degree of regularity in
the network deteriorates. Considering that such shortcuts
generally make the network more synchronizable [1,2], our
finding that in the locally unstable system the role of short-
cuts is the opposite is surprising. Our numerical efforts on
scale-free and random networks reveal no ordered wave pat-
terns. We find that the deterioration of ordered wave patterns
in SW networks can be explained theoretically by consider-
ing the time evolution of the phase of each oscillator in the
network. We derive a general type of Kardar-Parisi-Zhang
(KPZ) equation for the evolution. The equation is capable of
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generating wave patterns that are observed in direct numeri-
cal simulations. Our results suggest that desynchronized
wave patterns in general cannot occur in complex networks
with no local regularity in their connectivities.

In Sec. II, we investigate the effect of complex-network
topology on desynchronized wave patterns through numeri-
cal simulations of four different network structures and show
that desynchronized wave patterns appear only in networks
with certain degree of regularity. In Sec. III, we derive a
dynamic equation for phase evolution in a prototype SW
oscillator networks. The partial differential equation can re-
produce wave patterns observed in numerical simulations. A
brief conclusion is presented in Sec. IV.

II. OSCILLATOR NETWORKS AND DESYNCHRONIZED
WAVE PATTERN

We begin with a prototype of oscillator network: a ring
network with periodic boundary conditions [19]. Each oscil-
lator, when isolated, is described by dx/dr=F(x), where X is
a d-dimensional vector and F(x) is the velocity field. Since
we are interested in wave patterns, we choose the parameters
in F(x) such that it generates periodic oscillations of period T
(i.e., a periodic attractor). For concreteness, we choose the
Rossler oscillator so that x=[x,y,z]" and F(x)=[-(y+z2),x
+0.2y,0.2+z(x—2.5)], where [*]" denotes the transpose. The
equations describing the dynamics of a ring network of N
nodes are

N

dx; .

= =Fx)-e X GHK), i=1,..N, (1)
J=1

where the index i denotes the spatial location of the ith os-
cillator on the ring, g is a global coupling parameter, G;;’s are
the elements of the symmetric Laplacian matrix that satisfy
2,G;;=0, and H(x)=[x,0,0]" is a linear coupling function
(chosen somewhat arbitrarily). To model random coupling,
the matrix elements G;; are drawn from a uniform distribu-
tion in the interval [0.1,1.0] so that no value of the matrix
element is small enough to effectively disconnect the net-
work. The explicit form of the Laplacian matrix is

b] —a 0 0 0 —day
—aj bz —da 0 0 0

G= 0 —dy b3 —dasz " 0 0 N (2)
—day 0 0 0 —dan-1 bN

where b;=(a;_; +a;). Adding a shortcut between node i and j
is equivalent to setting G;;=Gj;=a;, where «a; is a random
number from [0.1,1.0]. To keep the coupling matrix Laplac-
ian, we adjust the diagonal matrix element b; so that the
property 2;G;;=0 always holds when shortcuts are added to
the network. The matrix’s being Laplacian makes a linear
stability analysis of the synchronization state feasible, as Eq.
(1) permits an exact synchronized solution: x;(¢)=x,(r)
=---=xy(7)=s(t), where ds/dt=F(s) and s(t+T)=s(z). The
variational equations governing the time evolution of the set
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of infinitesimal vectors &x;(r) =x;(r)—s(¢) are

N
6%,
7"’ =DF(s) - &x,— g3, G,DH(s) - ;. (3)

J=1

where DF(s) and DH(s) are the Jacobian matrices of the
corresponding vector functions evaluated at s(z). Diagonaliz-
ing the Laplacian matrix G yields a set of eigenvalues 0
=N <N,<---<\y and the associated eigenvectors
€;,€e,,...,ey. The transform Sx=4Jy-O’, where O is the or-
thogonal matrix whose columns are the set of eigenvectors,
leads to the block-diagonally decoupled form of Eq. (3):

ddy;/dt=[DF(s)— g\, DH(s)]- dy;. Letting K=g\;
(i=2,...,N) be the normalized coupling parameter, we can
write

d oy

o [DF(s) — KDH(s)] - dy. (4)

The largest Lyapunov exponent from Eq. (4) is the master-
stability function W (K) [14].

For the chosen periodic Rossler oscillator, the function
W (K) is negative in the interval [0",K,], where K.~4.15
[19]. Thus, for K<K,, all eigenvectors (eigenmodes) are
transversely stable and the network is synchronized. Un-
stable eigenmodes begin to arise as K is increased through
K., leading to desynchronization. For the regular ring-
network configuration, for K=K, the unstable eigenmodes
are exponentially localized in space and these are the “trig-
gers” of ordered desynchronization wave patterns [19]. For
instance, for g=1.3(=<g,) and N=500, the six eigenmodes
associated with the six largest eigenvalues are unstable and
the remaining 494 eigenmodes are stable. For g>g., where
g. depends on network structure, the network becomes un-
stable. Because of the periodic motion of each Rdssler oscil-
lator, it is insightful to examine its phase variable, which can
be conveniently defined as

n(i,t) +[t—t_(i,0)]

[1,G,0)—1_(Gi,0)]

where t_(i,t)=max{s:x,(s)=0,x;>0,s <1}, t.(i,1)
=min{s:x;(s)=0,x;>0,s>1}, and n(i,?) is an integer chosen
so that ¢ is a continuous function of ¢ and that @(i+1,7) is
close to ¢(i, 1) for all i. Starting from the synchronized state,
say x;(0)=0 and ¢(0)=0, arbitrarily small perturbations to
x;(0) induce localized unstable eigenmodes, which spread
the instability to nearby and then to distant nodes through
coupling, eventually leading to an ordered wave pattern, as
shown by the snapshots of ¢; and x; at three instants of time
in Fig. 1. The locations of the six localized unstable eigen-
modes are visible in Figs. 1(d) and 1(f). The orderedness of
the desynchronization wave pattern can be assessed by the
nearly smooth variations of both the phase and the dynamical
variables over the network, as can be seen in Figs. 1(e) and
1(f).

When shortcuts are added to the network, the eigenvalues
shift in the eigensubspace, leading to a shift in the critical
global coupling parameter g.. We observe that the ordered
desynchronization wave pattern deteriorates and is appar-

(,D(i,t) =27
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FIG. 1. (Color online) Snapshots of the phase variables ¢;(7) and
the dynamical variables x;(f) over the network introduced in Eq. (1):
(a, b) t=0, (c, d) r=5600, (e) r=11200, 7700, 7000, 6300, 5600,
4900, 4200, 3500, 2800, 2100, and 1400 from top to bottom, and (f)
t=11200. From (e), we see that phase surface becomes rougher
with time for < 7(=10 000), but the trend stops for > 7, where a
facet morphology is formed at r=7. From (d, f), we see that for
large times, the dynamical variables x;(r) exhibit nearly regular and
smooth spatial variations over the network, indicating an ordered
wave pattern. The spatially localized unstable eigenmodes can be
identified by the small spikes on top of the smooth variation of x;.

ently destroyed when the number of shortcuts, M, is in-
creased, as shown in Fig. 2. In this case, an analytic stability
analysis is not feasible, so we perform a numerical stability
analysis. In particular, we use g=1.3, 1.2, 1.05, and 0.993 for
M=1, 5, 20, and 50, respectively, where g =<g, in all cases.
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FIG. 2. Snapshots of ¢;(r) and x;(r) for t=8400 and for four
different values of M (the number of shortcuts): (a, b) M=1 and
g=1.3, (c,d) M=5 and g=1.2, (e, f) M=20 and g=1.05, and (g, h)
M =50 and g=0.993, the system diverges for g=0.994.
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For M <20, the eigenmode associated with the largest eigen-
value is unstable (gh\y>K,), but all other eigenmodes are
stable (g\; <K, for all i <N), for the two largest eigenvalues
are (A\y,\y_1)=(3.34,3.18), (3.83,3.37), and (4.04,3.85) for
M=1, 5 and 20, respectively. When M =50, all eigenmodes
are stable even for g=<g,., leading to flat surfaces in both
snapshots of ¢;(r) and x;(r) (see Fig. 2). As the number of
shortcuts is increased, the ring network becomes effectively
more random and synchronized motion is observed. In this
case, the parameter interval for desynchronized waves
shrinks. The phenomenon persists even when the Rossler
oscillators are made slightly different.

As the network loses the degree of regularity by increas-
ing the number of random shortcuts, desyncrhonization wave
pattern disappears gradually. For random and scale-free net-
works, no ordered wave patterns have been observed. For
instance, we have generated a scale-free network of 500
nodes and average connectivity (k)=4 by using the method
in Barabasi and Albert [9]. No ordered wave pattern is ob-
served in the network for g=g.. We have also generated a
random network of 500 nodes and (k)=4 by using the
method in Ref. [20] and have found a similar behavior. These
results show that regularity in the connectivity of the net-
work is needed for ordered desynchronized wave patterns.

III. PHASE EVOLUTION EQUATION FOR
DESYNCHRONIZED WAVE PATTERN

The observed desynchronization wave patterns in Sec. 11
can be explained by considering the evolution of phase of
each oscillator near the critical value g.. Let C denote the
stable closed orbit corresponding to x. The phase ¢ of an
isolated oscillator increases with time monotonically [21]

de

o= W,

C, 5
dt X e ®)

where w, is the frequency. Now assume that the velocity
field is perturbed. We write

dx

0 F(x) + ep(x), (6)
where p(x) denotes the perturbation and € is an indicator of
the smallness of p. The small perturbation leads to slight
deviation of the period of the oscillator but the periodic mo-
tion of the oscillator persists. To find the small change in the
period to the lowest order €, we write Eq. (6) as

de(x)

d
. Z(“")?j =Z(p) [F®+ep®]. (1)

where Z(p)=grad, ¢. Since C is a stable orbit, the condition
Z(¢) -F(x)=w, is satisfied. We obtain

de(x)
dt

= wy+ €Z(¢) - p(x). (8)

Suppose that in the ring network, each link connecting
two neighboring oscillators has a small coupling constant
that is a random number between D, and D, (D,>D,>0).
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The perturbation p at oscillator i due to the network connec-
tion is given by

X;) + gau (X, — X;) = gDo(X; + X — 2X;)

X;) + 8a; (X, — X;), )

p(x;) = ga;(x; -
+gaj(x;—
where j=i—1, k=i+1, a;=Dy+aj};, ag=Dy+ay, a; and ay

are random coupling constants and g is a global coupling
constant. In the continuum limit we have

e . e S ST
PR =D7G-ersr e =Dz, (10)

where D= gD,, cl—gaﬂ, cy=ga}, and ¢=c,—c;. Equation
(10) can be rewritten as

2
p(x) = DH(qo)i +DY<¢>( 5) +c~n<qo>j—‘§, (11)

where II(¢)=dx(¢)/de and Y(¢@)=d’x(¢)/d¢?. Inserting
Eq. (11) in Eq. (8), we get a partial differential equation

Jp(x)

P J
= wy+ OV )—§+DQ“ (QD)?+DQ(2)( )( ‘;)
(12)

where c=€, D=€D, and QU (¢)=Z(¢)-I(¢) and Q?(¢)
=Z(¢)-Y(¢) are T-periodic functions. In order to obtain the
average values for QW and Q(z), we introduce a phase dis-

turbance variable ¢ according to ¢=wyt+¢ and write Eq.
(12) as

il = QW (wyr + l//)(;—lé + DO (wyt + lﬁ)% + DO (wyt

ot
2
+ zﬂ)(%) . (13)

Since ¢ is a slow variable, it hardly changes during the pe-
riod T and thus Eq. (13) can be time averaged. After averag-
ing the periodic coefficients over the period 7, we have

N
O7t—a)(75 0752-”\ pr: (14)
and
e, T (a_so)
P w0+wa§+v0§2+)\ 2] (15)

where w=cv/D is a random number depending on the site &,
v, and \ are constants defined by

D

T
=— | OW(wy)dt
v Tfo (wo)

and

D T
A=— f Q@ (wyr)dt.
T 0

When shortcuts are added to the network so that it be-
comes small-world, the perturbation at oscillator i is changed
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FIG. 3. (Color online) Snapshots of numerical solution of Eq.
(15) without shortcuts for =0 (a, b), =100 (c, d), r=8400,700,
600, 500, 400, 275, 150, 50, 20, and 10 from top to bottom (e), and
t=8400 (f). Left-hand panels, phase surface ¢;(¢). Right-hand pan-
els, the corresponding x; profile.

o p'(x)=p(x;)+po(x;) from p(x;), where po(x;)=Za;(x;
—x;) is the new perturbation term due to the shortcuts and the
sum is over all shortcuts that end at site i. By using the
method used to obtain Eq. (15), we have, approximately,

€Z(¢) - p'(x;) = 0,2 [¢(D) - @()], (16)
!

where w, is a random number that has different value for
each shortcut. In the continuum limit, the last term in Eq.
(16) can be written as o, ()~ ¢(&)}d{ = w,f o/ )dL,
where i and [(=i+a) are replaced with ¢ and £, a constant a
is set to 1, and fgdg means a summation over site /. We then
obtain the general equation for the evolution of phase in the
small-world type of oscillator network,

de(£.1) dp P (ﬂ_so) f o
T @ w(f) §+ (952 +X o +wl,é) dg.

(17)

Equation (17) is a general type of KPZ equation [22,23]. For
w,=0, Eq. (17) is similar to quenched KPZ equation. In the
quenched KPZ equation, the KPZ nonlinear term )\(%‘2)2
makes ¢(&) surface rough, similar to the behavior in Fig.
1(e)[24-26].

To test the use of Eq. (17) to describe the desynchronized
wave phenomenon in oscillator networks, we first consider
the case of w,=0 so that the network is regular. We set pa-
rameter values (somewhat arbitrarily) to be »=0.05,
A=-0.4, w a random number between —2 and 2, and solve
Eq. (17) by using the standard finite-difference method with
N=500 spatial sites (the number of oscillators in the net-
work). Figures 3(a), 3(c), and 3(e) show the phase surface at
a number of different times. The dynamical variable of the
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FIG. 4. Snapshots of the solution of Eq. (17) with shortcuts for
t=8400 (steady state) for four difference cases: (a) one randomly
placed shortcut, (b) one shortcut connecting the node with the low-
est frequency and its diametrical node, (c) five randomly placed
shortcuts, and (d) 20 randomly placed shortcuts.

oscillator can be obtained from the phase variable by
x(€,1)=A sin[ ¢(£,1)], where we choose A=4 (approximately
the amplitude of the periodic oscillation of the Rdssler sys-
tem). Some snapshots of x(&,7) are shown in Figs. 3(b), 3(d),
and 3(f). We observe the emergence of an ordered desyn-
chronization wave pattern. To take into account shortcuts, we
set w, to be random values in the interval [1.5,2.5] in Eq.
(17). Figures 4(a)-4(d) show the phase surface (upper panel)
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and the x-profile (lower panel) for four cases where (a) one
shortcut is randomly placed, (b) one shortcut is placed which
connects a node and its diametrical node, (c, d) five and 20
shortcuts are placed randomly, respectively. We see that there
are increasingly more local minima in the steady-state phase
surface as the number of shortcuts is increased, eventually
destroying the ordered wave pattern.

IV. CONCLUSION

In summary, we have uncovered a phenomenon concern-
ing desynchronization wave patterns that typically appear in
regular networks with random coupling: a small number of
shortcuts, which make the network small-world, can actually
destroy ordered wave patterns which disappear gradually as
the number of shortcut is increased, i.e., as the network regu-
larity deteriorates. We have derived a general KPZ type of
equation to account for this phenomenon. Our results show
that ordered desynchronized wave patterns require a certain
degree of regularity in the network. Ordered wave patterns
are important spatiotemporal dynamical phenomena that are
potentially relevant to a number of fields. Our finding sug-
gests that network connecting topologies can have a drastic
effect on these wave patterns, a topic that deserves further
attention.
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